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ABSTRACT
Latent Semantic Analysis (LSA) has shown encouraging per-
formance for the problem of unsupervised image automatic
annotation. LSA conducts annotation by keywords prop-
agation on a linear Latent Space, which accounts for the
underlying semantic structure of word and image features.
In this paper, we formulate a more general nonlinear model,
called Nonlinear Latent Space model, to reveal the latent
variables of word and visual features more precisely. Instead
of the basic propagation strategy, we present a novel infer-
ence strategy for image annotation via Image-Word Embed-
ding (IWE). IWE simultaneously embeds images and words
and captures the dependencies between them from a prob-
abilistic viewpoint. Experiments show that IWE-based an-
notation on the nonlinear latent space outperforms previous
unsupervised annotation methods.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Indexing methods

General Terms
Algorithms, Theory

Keywords
auto-annotation of images, semantic indexing, nonlinear la-
tent space, image-word embedding

1. INTRODUCTION
The potential value of large image collections fully de-

pends on effective methods for access and search. When ad-
equate annotations are available, searching image collections
is intuitive. Moreover, image users often prefer to formu-
late intuitive text-based queries to retrieve relevant images,
which requires the annotation of each image belonging to the
collection. Since off-line image annotation is laborious and
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expensive, automatic image annotation has thus emerged
as one of the key research areas in multimedia information
retrieval [1][2][3][7]. Image auto-annotation performs auto-
matic association of images with words that describe the
image content such as “water” or concepts such as “sunset”.

The state-of-the-art techniques for image auto-annotation
can be grouped into two categories. The first one looks upon
annotation as a supervised learning problem, and associates
words to images by first defining classes. Each class cor-
responds to a word [3], or a set of words define a concept
[7]. After training of each visual class model with manu-
ally labeled images, each image will be classified into one or
more classes, annotation is hence attained by propagating
the corresponding class words. The second one addresses im-
age auto-annotation as a unsupervised problem. It attempts
to discover the statistical links between visual features and
words on an unsupervised basis through estimating the joint
distribution of words and regional image features, and ele-
gantly posing annotation as statistical inference in a graph-
ical model [1].

Motivated by the success of latent space models in text
analysis, two commonly used text analysis models, named
Latent Sematic Analysis (LSA) [4] and Probabilistic LSA
(PLSA) [5] have been applied to image annotation in the
literature [8][9]. Monay et al. [8] show that annotation
by LSA+propagation significantly outperforms annotation
by PLSA+inference. So in this paper, we only explore the
LSA model and develop novel annotation methods based
on it. Although generative probabilistic models for PLSA-
based auto-annotation have been proposed in [9], they are
too complex (too many parameters unknown) to be gener-
alized.

We first present the nonlinear latent space model as an
alternative to existing latent space models [4][8] which are
linear. Later a soft inference strategy is performed on the
learned nonlinear latent space, which is simple but effec-
tive. We call the proposed auto-annotation method Non-
linear Latent Semantic Analysis (NLSA). Second, we learn
an Image-Word Embedding (IWE), which takes as input in-
ferred results by NLSA, for a large collection including an-
notated and non-annotated images. IWE can capture the
inherent high-level probabilistic relations within and across
the textual (words) and visual (images) modalities. IWE
incorporated with NLSA constructs our automatic image
annotation framework.

2. IMAGE REPRESENTATION
Presumably we refer a more general “vocabulary” for a
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collection of annotated images over separate sets of all ob-
served textual keywords and visual keywords, which are re-
ferred as “terms” in [8]. Annotated images are thus summa-
rized as extended documents combining two complementary
modalities, i.e. textual and visual modalities which are both
represented in a discrete vector-space form.

Textual feature: word. The set of words of an an-
notated image collection defines a keywords vector-space of
dimension K(K words in total), where each component in-
dexes a particular keyword W that occurs in an image. The
textual modality of the d-th annotated image Id is hence
represented as a vector wd = (w1

d, · · · , wi
d, · · · , wL

d )T of size
L, where each element wi

d is the frequency (count) of the
corresponding word Wi in “document” Id.

Visual feature: image. In line with the successful im-
age representation: 6×6×6 RGB histograms [8], we compute
3 RGB color histograms from three fixed regions (i.e. the
image center, and the upper and lower parts in the image)1.
To keep only the dominant colors, a threshold is used to
keep only higher values. So the visual modality of Id is a

vector of size L̄ = 3 ∗ 63: vd = (v1
d, · · · , vj

d, · · · , vL̄
d )T .

Then, the concatenated vector represented by xd = (wd;vd)
is the feature of the annotated image Id which is the d-
th multimedia document in the collection. Now we define
a term-by-document matrix X = [x1, · · · , xd, · · · ,xN ] ∈
�M×N for an annotated image collection, where N is the
number of documents (images) and M is the vocabulary
size L + L̄.

Each annotated image can be thought as an interaction
between textual and visual factors, each factor referring to
the other. For instance, an image potentially illustrates hun-
dreds of textual words, while its caption specifies the visual
content. As for non-annotated images Iq, corresponding
representations xq also are computed in the full vocabulary
vector-space, with all elements corresponding to textual key-
words set to zero, i.e. xq = (0;vq).

3. LSA-BASED ANNOTATION

3.1 Latent Space
A classic algorithm arising from linear algebra, LSA de-

composes the term-by-document matrix A = XT ∈ �N×M

in three matrices by a truncated Singular Value Decompo-
sition (SVD):

A ∼= USVT , (1)

where U ∈ �N×K , S ∈ �K×K and V ∈ �M×K . The op-
eration performs the optimal least-square projection of the
original space onto a space of reduced dimensionality K.
The subspace representation has been empirically shown to
capture to some degree the semantic relationships across
terms in a corpus.

Specifically, V is the latent space basis and all annotated
and unannotated image features will be projected on it to
compute similarities in the learned latent space. It is easy
to realize that the subspace V can also be attained via run-
ning PCA on XXT , i.e. V is the principal component of
eigenspace of XXT . Therefore, latent space model is an-
other description of PCA.

1In this paper, we use the simple quantized image represen-
tation for the visual feature, other representations such as
blobs and LBP will be discussed in our future research.

3.2 Propagation vs. Soft Inference
In the latent space, latent features of documents x are

extracted by VT x for whether annotated or non-annotated
images in the collection. After the cosine similarity between
an unannotated image xq and the annotated image corpus
is measured, top-Z similar annotated images (documents)
are ranked as xN (j)(j = 1, · · · , Z). The annotation is then
propagated from the words associated with ranked images.

LSA+propagation has been demonstrated to be rather ef-
fective in [8], unfortunately, LSA lacks a clear probabilistic
interpretation [5]. Hence image users cannot attach proba-
bility to each ranked keyword, also cannot know which anno-
tated word is reliable. Furthermore, the propagation strat-
egy cannot provide a dynamic annotation decision using a
threshold level that is often given by users.

To overcome this problem, we propose a simple inference
strategy for annotation, named soft inference. Here we only
consider top-Z ranked documents for any unannotated im-
age xq, and estimate the posterior distribution over key-
words as below

P (Wi|xq) = C
Z�

j=1

cos(VT xq, V
T xN (j)) ∗ wi

N (j), (2)

where C is the normalized constant such that
�

i P (Wi|xq) =
1, cos(∗, ∗) denotes a standard cosine measure in terms of
any two vectors. Thereby, words will be predicted for the
unannotated image document xq with a posterior probabil-
ity higher than a threshold that may be varied for different
users.

4. NONLINEAR LATENT SPACE MODEL
LSA builds latent space representation in a linear formu-

lation, which assumes equal relevance for the text and vi-
sual modalities. The assumption is not always reliable and
is somewhat unreasonable in theory, because textual fea-
tures and visual features are formed from two very differ-
ent modalities. Hereby, we develop a nonlinear latent space
model to complement the linear one.

4.1 Definition of Nonlinear Latent Space
To correlate word and image features with different modal-

ities, integrate them into one unified modality is primary.
Here we introduce a nonlinear mapping from the document
vector-space {x1, · · · , xN} to an implicit feature space F ,
i.e. φ : x ∈ �M −→ φ(x) ∈ �f , where f > M is the di-
mension of F and could be infinite. Because the mapping φ
ensures multi-modal co-occurrences uniform, the same way
to LSA, a linear subspace can be computed to capture the
relationships across textual and visual terms in corpus. Mo-
tivated by analysis in Section 3.1, the latent space basis in F
is leading eigenvectors U of the following covariance matrix

C = N−1
N�

n=1

(φ(xn)−φ̄)(φ(xn)−φ̄)T = ΦYYTΦT = ΨΨT ,

(3)
where mean φ̄ =

�
n φ(xn)/N , Φ = [φ(x1), · · · , φ(xN)], a

N × N constant matrix Y = N−1/2(I − 11T /N),Ψ = ΦY.
Computing U is consistent to Kernel PCA [10], the im-

plicit feature vector φ(xn) don’t need to be computed ex-
plicitly, instead it is embodied by computing the inner prod-
uct of any two vectors in F utilizing a kernel function,
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which is guaranteed by the Mercer’s theorem and satisfies
k(x1,x2) = (φ(x1) · φ(x2)) = φ(x1)

T φ(x2). So we define a
N × N matrix

C̃ = ΨT Ψ = YT ΦT ΦY = YT KY, (4)

where K = ΦT Φ is the N × N kernel matrix with entry
K(i,j) = (φ(xi) · φ(xj)) = k(xi,xj).

The eigensystem for C can be derived from C̃. Sup-
pose that the eigenpairs of C̃ are {(λn,vn)}N

n=1 sorted in
a non-increasing order w.r.t. λn, then the K(< N) leading

eigenvectors UK for C is derived as ΦYVKΛ
−1/2
K , where

VK = [v1, · · · ,vK ] and ΛK = Diag[λ1, · · · , λK ]. For suc-

cinct formulation, assume the N×K matrix D = YVKΛ
−1/2
K

then UK = ΦD.
By projecting φ(x) on the basis UK latent in F for any

vector x ∈ �M , we obtain another nonlinear mapping as a
explicit form

�(x) = UT
Kφ(x) = DT ΦT φ(x) = DT (k(x1,x), · · · , k(xN ,x))T .

(5)
� maps any vector in �M to a K-dimensional vector. We
denote the mapped feature space Ω = {�(x)} as Nonlin-
ear Latent Space which is suitable for multi-modal features,
e.g. above concatenated features from textual and visual
modalities.

4.2 NLSA-based Annotation
In line with LSA and PLSA, we name the text analy-

sis method with nonlinear latent space model as Nonlinear
LSA (NLSA). Using annotated images x1, · · · ,xN as train-
ing samples, NLSA learns the nonlinear mapping � for any
document x (including annotated and non-annotated im-
ages) as shown in (5).

NLSA-based annotation method consists of two steps: i)
similarity calculation in the nonlinear latent space under
the nonlinear mapping between the image to be annotated
and each annotated image in the corpus, using a standard
cosine measure, and ii) soft inference based on top-Z anno-
tated images xN (j)(j = 1, · · · , Z) depending on the similar-
ity rank. There is a discrepancy between current posterior
distribution w.r.t. keywords and the previous one in (2), we
reformulate it in the nonlinear latent space

P (Wi|xq) = C
Z�

j=1

cos(�(xq), �(xN (j))) ∗ wi
N (j). (6)

5. IWE-BASED INFERENCE
To refine annotation by soft inference with (2) and (6),

we try to learn and infer the inherent high-level probabilistic
relations within and across the textual and visual modalities
in a specific embedded space, which will make annotation by
inference more reliable.

5.1 Image-Word Embedding (IWE)
Motivated by Parametric Embedding [6], it is not nec-

essary to explicitly learn an embedding from x or �(x).
Given a set of class posterior, PE tries to preserve the pos-
terior structure in an embedding space. Here we extend
PE to inference-based image annotation, and our inference
method is called Image-Word Embedding (IWE) which si-
multaneously embeds both annotated images and their as-
sociated words in a low-dimensional space. Impressively, a

2D embedding of words and image features is capable of re-
vealing the high-level probabilistic dependencies within and
across textual and visual modalities.

IWE takes as input the following posteriors and priors,
which are estimated from the count of each word occurring
in each annotated image and the whole corpus respectively

P (Wi|xn) = wi
n/

L�

l=1

wl
n, P (Wi) =

N�

n=1

wi
n/

L�

l=1

N�

n=1

wl
n. (7)

Then IWE tries to embed annotated images xn with coor-
dinates rn and words Wi (classes) with mean φi, such that
P (Wi|rn) are approximated as closely as possible by the pos-
terior probabilities from a unit-variance spherical Gaussian
mixture model in the embedding space

P (Wi|rn) =
P (Wi) exp{− 1

2
‖rn − φi‖2}

�L
l=1 P (Wl) exp{− 1

2
‖rn − φl‖2} , (8)

where the embedding-space word conditional distribution
p(rn|Wi) = exp{−‖rn − φi‖2/2} is from a single spherical
Gaussian model.

The degree of correspondence between input probabilities
and embedding-space probabilities is measured by sum of
Kullback-Leibler (KL) divergences for each annotated im-
ages:

�
n KL(P (Wi|xn)||P (Wi|rn)). Minimizing this sum

w.r.t. {P (Wi|rn)} is equivalent to minimizing the objective
function

E({rn}, {φi}) = −
L�

i=1

N�

n=1

P (Wi|xn) log P (Wi|rn). (9)

Such optimization problem can be solved by employing coor-
dinate descent method, which minimizes E iteratively w.r.t.
to {φi} or {rn} while fixing the other set of parameters until
convergence. Particularly, the Hessian of E w.r.t. {rn} is
a semi-definite matrix and the globally optimal solution for
{rn} given {φi} can be found.

5.2 Annotation with IWE
In the testing stage, for any image xq to be annotated,

we need to minimize the simplified object function w.r.t the
embedded coordinate rq

E(rq) = −
L�

i=1

P (Wi|xq) log P (Wi|rq). (10)

With {P (Wi|xq)} learned by soft inference (6) and {φi}
learned in the above training stage, the derivative vector
of E(rq) is dE/drq =

�L
i=1(P (Wi|xq)−P (Wi|rq))(rq −φi).

The optimization is very fast to converge especially for a
small dimension, e.g. 2, of the embedding space.

Once the solution rq is used to compute the refined pos-
terior distribution P (Wi|rq)(i = 1, · · · , L) in the embedding
space instead of P (Wi|xq), we create a robust annotation
over the full keyword vocabulary by varying a threshold level
and predicting the words with a posterior probability higher
than this selected threshold.

6. EXPERIMENTS
Since most recent image annotation works are performed

on the well known image database, the Corel image collec-
tion, we use images from it as experimental data as well.
Specifically, 10 different subsets are sampled from 80 Corel
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clouds  sky  sun  tree  
water  sun  tree  sunset  clouds  sky  grass

sun sunset clouds tree sky water   
sun sunset clouds sky tree

mountain  snow  trees  water
sky  clouds  mountain  trees  water   grass  

sky  mountain snow clouds water tree 
sky mountain  snow water tree

field  foals  horses  mare
horses  field  foals  mare  people  flowers  tree

  horses foals mare field grass tree 
horses foals mare field grass

people  pillars  stone  temple 
stone  pillar  sculpture  statue  tree  temple  people  

pillars  sculpture statue stone  temple people   
pillars  sculpture  statue stone temple people

Figure 1: Annotation examples. First line is the annotation from Corel, second is LSA1, third is NLSA and
last is NLSA+IWE. Except in LSA1, the keywords order in inference-based annotation methods is defined
by the posterior probabilities rank.

Table 1: Comparative performance: maximum nor-
malized score vs. number of latent components K
for all latent space models. LSA1 represents LSA
with annotation propagation, LSA2 represents LSA
with soft inference, NSA+IWE denotes NSA fol-
lowed by IWE-based inference.

Number of Latent Components: KMethod
20 40 60 80 100

PLSA 0.445 0.447 0.450 0.448 0.446
LSA1 0.490 0.517 0.521 0.536 0.546
LSA2 0.493 0.513 0.523 0.535 0.548
NLSA 0.535 0.567 0.583 0.602 0.598

NLSA+IWE 0.548 0.583 0.608 0.624 0.615

CDs, of which each consists of 5000 training images and
2000 testing images in average. The average textual vo-
cabulary size per subset is 150, and the average textual
keyword number for each annotated image is 3. Anno-
tated or unannotated image feature representation has been
clearly described in Section 2. The kernel function k(x,y)
involved in NLSA is defined as the Gaussian kernel k(x,y) =
exp{−‖x − y‖2/2σ2}, and the value of Z involved in top-
Z rank is set to 3. The dimension of the embedding space
{rn} is predefined as 2, which facilitates fast learning and
inference processes that IWE requires.

To evaluate annotation accuracy on a dataset with the
vocalulary size L, we use the normalized score measure [1]
Emethod

NS = r/l−w/(L− l), where l denotes the actual num-
ber of keywords in the test image and r is the number of
correctly predicted words, w denotes the wrongly predicted
number of keywords on the contrary. This measure can be
used for any of the annotation procedures described in this
paper.

For PLSA [8], LSA followed by soft inference, NLSA,
and IWE-based inference after NLSA, the normalized score
varies according to a variational threshold level. For LSA
with propagation [8], no probability is attached to each
ranked keyword, hence the threshold level cannot be ap-
plied directly. The way to deal with it is to compute the
average number of predicted words at each threshold level
over all subsets, the corresponding normalized score is then
computed subject to the number. By tuning the thresh-
old level, we report the corresponding maximum normalized
scores under different number K, i.e. the number of latent
space components (aspects), in Table 1. We conclude that
PLSA is the baseline annotation method, LSA1 and LSA2
are very close in performance, while a larger improvement

is observed for NLSA and NLSA+IWE, with the latter as
the best annotation approach among comparative annota-
tion procedures. Some real image auto-annotation examples
are shown in Figure 1.

7. CONCLUSIONS
We proposed a new unsupervised image auto-annotation

system, which comprises two serial annotation procedures
NLSA and IWE. First, NLSA trains a nonlinear mapping,
which spans the nonlinear latent space. Later soft inference
is introduced to attach probability to each ranked keyword.
Based on the inferred posterior distribution over the key-
word vocabulary, IWE re-infers the posteriors via modeling
the interacted nature inherent in multi-modal data.
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