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Abstract—In this paper, we propose a novel approach for
real-time 3-D tracking of object pose from a single camera. We
formulate the 3-D pose tracking task in a Bayesian framework
which fuses feature correspondence information from both pre-
vious frame and some selected key-frames into the posterior
distribution of pose. We also developed an inter-frame motion
inference algorithm which can get reliable inter-frame feature cor-
respondences and relative pose. Finally, the maximum a posteriori
estimation of pose is obtained via stochastic sampling to achieve
stable and drift-free tracking. Experiments show significant im-
provement of our algorithm over existing algorithms especially
in the cases of tracking agile motion, severe occlusion, drastic
illumination change, and large object scale change.

Index Terms—Bayesian fusion, real-time vision, 3-D pose
tracking.

1. INTRODUCTION

EAL-TIME 3-D object pose tracking is often required
Rin many computer vision applications such as human
computer interaction (HCI) and augmented reality (AR). The
problem of estimating a rigid pose transformation relating
one 2-D image to known 3-D geometry has been intensively
studied. Closed form solutions [1] three or four 2-D-3-D point
correspondences to estimate the pose. Since the solution is
based on the root of high degree polynomial equations and
does not use the redundancy in the data, the estimation result is
susceptible to noise. The nonlinear optimization based methods
[2] apply Gauss—Newton or Levenberg—Marquardt optimiza-
tion to the pose estimation problem. This approach relies on a
good initial guess to converge to the correct solution and is gen-
erally slow to converge. The iterative linear method has been
developed by employing the specific geometric structure of
the pose estimation problem during optimization [3], [4]. Such
methods require little computational cost, which is appealing
for real-time processing. All the above methods are based on
point correspondence which is critical for pose tracking.

For the temporal pose tracking problem, existing methods can
be divided into two groups. The first kind of method estimates
the incremental pose changes between neighboring frames by
registering the model with the image directly, which either pre-
supposes that there are known model features whose image pro-
jection can be determined [5] or there is a template image with
known pose and the registration between the template and the
current image can be carried out [6], [7]. The main problem for
this kind of method is that fixed model features can be unstable
in cases of occlusion, non-rigid deformation and illumination
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change, thus the registration between the template and the cur-
rent image is difficult. The second kind of method is differential
tracking which estimates the incremental pose change via incre-
mental motion estimation between neighboring frames. It can
make use of arbitrary features on the model surface and does
not need to model complex global appearance changes. But the
main problem for this kind of method is that the differential
technique suffers from accumulated drift which limits their ef-
fectiveness when dealing with long sequences. So key-frames
are used to reduce the motion drift [8]. More recently, Vacchetti
et al. [9] proposed an algorithm which fuses the online and of-
fline key-frame information to achieve stable real-time tracking
which achieves state-of-the-art performance. However there are
still some limitations. First, in the case of agile motion, feature
point matching between neighboring frames becomes unreli-
able and can thus cause the tracker to fail. Second, when the
key-frames are also obtained on-line, they can also have drift
that can possibly propagate. Third, the fusion of the prior on-
line information with that of one key-frame is performed in a
heuristic manner and cannot guarantee optimal performance in
the cases of image and model uncertainties. For example, such
a fusion technique becomes unstable when there is a consider-
able difference between the object’s real 3-D model and the 3-D
model used for tracking.

The above analysis motivates our work. We formulate the
key-frame based differential pose tracking problem in a general
Bayesian tracking framework. Our contribution lies in two
aspects. 1) Based on the Bayesian tracking framework, we
obtain a pose posterior distribution which fuses feature corre-
spondence information from both the previous frame and the
key-frame, where each feature correspondence pair contributes
independently to the posterior distribution and small errors in
each feature correspondence (due to image or model uncer-
tainty) can possibly reduce each other. Furthermore our new
posterior distribution can integrate multiple key-frames simul-
taneously, which is difficult for the fusion technique described
in [9]; we can efficiently get the maximum a posteriori (MAP)
estimation of pose from the proposed posterior distribution.
2) We also develop an inter-frame motion inference algorithm
which can get reliable feature correspondences and relative
pose estimation in difficult cases such as agile motion and
severe occlusion, and the algorithm can get reasonable results
even when only 10% of initial feature correspondences are
good. Extensive experiments clearly show the advantage of our
algorithm over another current state-of-the-art technique [9].

II. BAYESIAN DIFFERENTIAL POSE TRACKING
WITH KEY-FRAMES

In a dynamical system, the state of the object and image ob-
servation at time ¢ are represented as X; and I, respectively.
The sequence of states and observations up to time ¢ are denoted
by X; ={Xy,...,X¢}andl; = {I1,...,I;}, and the tracking

problem at time ¢ can be regarded as an inference problem of the
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Fig. 1. Graphical model at time ¢.

posterior distribution P(X¢|I;). In the differential pose tracking
problem, the incremental pose between the neighboring images
is measured by the relative motion between them. The advantage
of differential pose tracking is that it does not require semantic
point correspondences between the object 3-D model points and
their 2-D image projections. However, it is well known that the
differential techniques suffer from accumulated drift. The solu-
tion is to select some key-frames from the past estimated frames
and anchor the current frame to them. By fusing the key-frame
information and previous neighboring frame information, we
can obtain a pose estimate which exhibits much less drifting
error. In this paper, we formulate such a key-frame based dif-
ferential pose tracking problem in a Bayesian framework, and
the developed algorithm achieves real-time robust performance.

The Bayesian key-frame based differential pose tracking
problem could be represented by a graphical model as shown in
Fig. 1. At time ¢, a set of key-frames {Y7,...,Y,} is selected,
and {I;1,...,I;,} is its corresponding image observation.
For conciseness, we denote the previous neighboring frame as
the Oth key-frame and let Yy = X;_4, Iy o = I;_;, with the
posterior distribution of X; specified by

P(X:{Yi} {1ri} Ir)
_ P AL X Y ) P(X Y3 ) P({Yi })
P{Yi}, {11}, It)

In (1), we assume that the pose states of key-frames are de-
terministic since we select key-frames from those past frames
which have high confidence pose estimations. We will justify
this assumption in Section V. So (1) can be simplified as

.

P(Xo[{Yi} {1}, Ie) o< P(I, {11 1 X, {Yi ) P(X {5 })-
2
It is reasonable to assume the conditional independence be-
tween key-frames, so (2) becomes

[T;—o P(I+, I i| X:, Vi) P(X: {Y3 })
P(I;| X¢)™

P(Xe[{Yi}, {11,i}, It) o

3)

P(I;|X:) is the texture consistency likelihood which can be
evaluated given the known 3-D textured model, however it is
so unstable due to illumination change, partial occlusion, image
noise, motion blur, etc., that we simply assume that it has a uni-
form distribution. Let 6! = X; ~ Y; be the pose change be-
tween pose state Y; and X, where ~ is the pose difference op-
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erator whose form depends on the parameterization of the pose.
In this paper, we use the quaternion representation of rotation
and the details will be described in Section V. We also define
the pose composition operator o such that (X; ~ Y;)oY; = X,.
Since Y; is assumed deterministic, (3) can be written as

P(X[{Yi} ALit L) m e ] P (I, 116}, Y3) P(X{Y3Y)

i=0

“)

where c is a constant. From (4), we can see that the right side

has two terms: one is the product of pose likelihood functions,

and the other is the prediction density of X; given key-frame

pose Y;. We assume that the prediction density has a Gaussian

distribution, with its mean determined by the previous frame’s

pose estimate Y, and corresponding relative pose estimate 8¢,
and its covariance denoted as

POXGHY:}) = N (0 ¥0,3). )

The above model generalizes the pose tracking problem by
fusing the information from a previous frame and a key-frame
in a principled way. Now the problem is how to model the pose
likelihood function and how to get the relative pose estimate 8.
We will first introduce the pose likelihood model in Section III,
and then introduce the inter-frame motion inference algorithm
in Section IV. The whole Bayesian inference algorithm and im-
plementation will be introduced in Section V.

III. POSE LIKELIHOOD MODEL

We define the pose likelihood model P (I3, I, ;|6%,Y;) based
on the point matches between frame I; and I ;. First, we detect
a set of strongest interest points in frame I ; and denote it as
u; = {u},...u™}; its correspondence points in frame I; are
denoted as v; = {v},...v"}. Since we know the 3-D model
pose Y; in frame I ;, we can back project u; to the 3-D model
to get the corresponding 3-D points U; = {U},...U™}. Given
the 2-D-3-D correspondences between the point set U; and v,
the relative pose between frames I; and I;; can be calculated
[3], [4], thus we define the likelihood of the relative pose 6f as
follows:

m 2.
P (I, 1, 16!, Y;) ~ P (U;,v|6}) o exp —ZP (26;2>
=1
(6)

where p(+) is a robust function [10]

T
p(r) = {;’ﬂ S @

T isa threshold, and e;; is the position difference _between
2-D point v] and the image projection of 3-D point U}

e = |lv} — A[R|TIU||? (8)
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Fig. 2. (a) Relative pose from feature correspondence. (b) Geometrically constrained feature matching.

where A is the camera’s internal parameter matrix which can be
obtained offline in advance, and R, 7' is the rotation matrix and
translation vector of the relative pose é?, respectively.

The goodness of the likelihood model defined in (6) de-
pends on the correctness and accuracy of the correspondences
between U; and v;. There are two causes of correspondence
error: the error of the 2-D feature matches between I; and
1; ;, and the deviation between the provided 3-D object model
and the real object model. For the first error, we propose to
use an iterative inter-frame motion inference algorithm to get
refined matching and reject those features which violate the
3-D model constraint or are in the background scene; this will
be described in Section IV. For the second error, we can reduce
it by Bayesian fusing of multiple key-frames with many point
correspondences. Some related synthetic experiments will be
described in Section VI.

IV. INTER-FRAME MOTION INFERENCE

In this section, we will describe the algorithm to calculate
good 2-D feature matches between I; and I;;. We employ
the coupling effects of the inter-frame feature correspondence
and the relative pose, as shown in Fig. 2. Fig. 2(a) indicates
how to get the relative pose from feature correspondences and
Fig. 2(b) indicates that given a rough relative pose estimate, we
can narrow the baseline of the two feature windows and make
the feature matching easier and more reliable. The estimation
of inter-frame feature matching and relative pose is actually a
chicken-and-egg problem, so we will formulate this problem
and jointly estimate the feature correspondence and relative
pose iteratively. The key point is that through iterative estima-
tion, we can gradually get better relative pose estimation and
thus get more accurate 2-D feature correspondences.

A. Joint Distribution of Feature Correspondence
and Relative Pose

We consider the joint distribution of feature correspondence
and relative pose between frame I; ; and I;. It is denoted as

P(vi, R, T|I;, I, U;) &)

where the meaning of symbols v;, R, T, U; is as described in
Section III. The above joint distribution is difficult to directly
handle due to its high dimensionality and nonlinearity, but its
two conditional distributions can be effectively modeled.

The first conditional distribution for (9) is
P(R,T\I;;,1;,U;,v;), which is the distribution of rel-
ative pose given the 2-D-3-D correspondences between
matched image features and model points. We ignore its prior
distribution and keep the likelihood since we do not have any
prediction on the relative pose, so it can be written as

P(R7 T|It,i*, It7 Ui7 Vi)

~ P(U;,v;|R,T) x exp

Zp 20

(10)

where the right side of (10) has the same form as that in (6).

The second conditional distribution for (9) is
P(v;|I;;,I;:,U;,R,T), which is the distribution of
feature correspondences v; in image I; given its 3-D model
points U; and relative pose estimation R, T'. It can be modeled
as

P(vi|I;;,I;,U;, R, T) x exp

m
Z e =AY _f}
j=1
(11
The above distribution accounts for both the geometric con-
straint from the 3-D model and the appearance constraint from
image intensity consistency. e;; is the geometric constraint term
as defined in (8), and ) is a weight coefficient. In practice, we
tune A to balance the appearance constraint to be about five
times larger than the geometric reprojection error constraint. f;
is the appearance constraint term defined as follows:

ol (o () = ()]

(12)

W;(+) is a 2-D projective warping which can be directly de-
termined by the relative pose R, T, 3-D points U f and its cor-
responding mesh normal [11]. U(J oF is the coordinate of the kth
pixel in a window centered at vi . This window is used for image



1536

feature matching. cgj ) and céj ) are, respectively, the averaged
intensity level of correlation windows in I; ; and I, for illumi-
nation compensation.

Given the above two modeled conditionals, we propose to get
the MAP estimation of v;, R, T via iterative conditional modes
(ICM), which is a flexible inference algorithm. The framework
of the algorithm is as follows.

1) Initialize v; through generic feature matching, set { = 1
2) (RV, TO) — argmaxp 1 P (R T\Is, I, Us, ng>)
3) v — argmax,, P (vi|L;, I, Us, RO, T®)

4) If not converged, setl = [ + 1, go to 2.

The ICM iteration starts with an initial guess of feature
matching obtained by a multiscale block matching with illu-
mination compensation. We do not require such matching to
be good since the iteration step of relative pose estimation can
get an approximately good pose even if only 10% of feature
matches are good. Given this approximately good pose, we
can warp frame I;; to more closely match frame I;, then
the iteration step of feature matching on the warped image
can be improved significantly. The ICM iteration improves
feature matching performance especially in the cases of large
inter-frame motion which include translation and rotation. In
the cases of feature matching between key-frame and current
frame, since we already have an inter-frame motion estimation
result, we can use a technique as that described in [9] for
key-frame image warping: we warp the key-frame image to
the position at the estimated current frame position to replace
the image I; ; and do multiscale block matching to get feature
matches between the key-frame and current frame. The details
on how to perform the two ICM estimation steps are described
in Section IV-B and C.

B. Relative Pose Optimization

Maximizing the probability in (10) (step 2 of ICM) is equiva-
lent to minimizing a cost function which is simply the negative
log of the posterior in (10)

(13)

m ezzj

C(R,T) = ;p <202) .

We employ a stochastic optimization approach extended from
RANSAC [12] to optimize (13). Note the relationship between
v;, U;, R, and T as specified in (8); we generate a number of
samples from the feature pairs set v;, U;, where each sample is
generated by randomly selecting a minimum set of feature pairs
that can recover the relative pose 12, T'. The cost function in (13)
can thus be evaluated and the [R|T] associated with the sample
of minimum cost is the optimization result. The POSIT algo-
rithm [3] can be used to recover the relative pose from 2-D-3-D
feature pairs. The minimum number of feature pairs is 4 in order
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to recover the pose. Now we discuss some issues in relative pose
estimation.

Convergence of POSIT: It has been pointed out in [3] that the
POSIT algorithm is not guaranteed to be convergent. Although
it converges extremely fast in many camera-object configura-
tions, we did observe that it may converge very slowly or even
diverge in some real cases. Since the convergence depends on
the camera-object configuration, in our algorithm implementa-
tion we choose to first transform object coordinates to a ref-
erence coordinate system centered at one of the object points.
Then we apply the POSIT algorithm to obtain the transforma-
tion between the camera coordinate system and the reference
coordinate system, and then compensate back the first transfor-
mation to get the result. Although we still cannot guarantee the
convergence of this modified algorithm, for example in the case
of erroneous 2-D-3-D feature correspondences, we did achieve
much faster and more stable convergence compared with the
original algorithm in all experiments.

Combination of Pose Estimation Algorithms: Although we
cannot guarantee the convergence of the modified POSIT algo-
rithm, we want to utilize its extremely fast convergence speed in
most cases, SO we propose to use a combination of the pose es-
timation algorithms: we first minimize the cost function in (13)
based on the modified POSIT algorithm, then we obtain all the
inlier feature pairs given the estimated pose; the final pose is
then estimated by applying the orthogonal iteration method [4]
on all the inlier feature pairs, which is guaranteed to converge.

Rejection of Bad Feature Matches: The robustness of rela-
tive pose estimation depends on the percentage of out-lier fea-
ture matches. If we can reject as many bad feature matches
as possible, we can increase the possibility of getting a reli-
able relative pose estimate. We reject the bad feature matches
by the following steps. 1) Reject feature matches which are
not consistent with the image intensity constraint, such feature
matches with large intensity error as specified in (12). 2) Re-
ject feature matches which lie in the background scene; since
the background features normally appear at positions near the
object boundary, they can easily get matched since the back-
ground usually does not move. The acquired background fea-
ture matches have very high intensity consistency and they are
structured outliers, which can significantly decrease the robust-
ness and accuracy of the pose estimation. We propose to reject
background features as follows: first we calculate the average
feature motion between u; and v;. If there is enough motion,
then for each feature, we calculate the block difference between
the position uf in image I, ; and the same position uf in image
I;. Again if such block difference is small, then jth feature is
regarded as a background feature and can be rejected. The basic
idea of the above process is that if we conclude that the object
moves across frames, then the image window intensity at an ob-
ject feature position should change, otherwise the feature lies in
the background.

This stochastic optimization approach is very robust with re-
spect to feature correspondence outliers, and can even recover
an approximately good pose when initially 90 of 100 feature
pairs are outliers.
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C. Geometrically Constrained Feature Matching

Maximizing the probability in (11) (step 3 of ICM) is equiva-
lent to minimizing a cost function which is simply the negative
log of the posterior in (11)

(14)

C(v;) = Ze?j + /\Z fJ2

J=1 Jj=1

The above minimization can be viewed as a constrained fea-
ture matching process, as shown in Fig. 2(b). With known pose
R, T, the first image I; ; can be prewarped to the position of
the second image [, then block matching starting from 17{ is
performed using (12) as the matching cost. Since the multi-
scale block matching can be done approximately over integer
image coordinates, no image interpolation is required and the
resulting matching algorithm is extremely efficient especially
for real-time processing.

V. BAYESIAN ESTIMATION OF POSE

In this section, we will describe the inference of the current
pose for the model specified by (4). In Section IV, we have de-
scribed a method to obtain a set of good 2-D-3-D point matches
between a key-frame and current frame pair, and thus the pose
likelihood model can be constructed. In the same time, the rel-
ative pose 8¢ is also estimated and can be used to specify the
prediction prior of the current pose. In this section, we will de-
scribe how to select key-frames from past frames for the current
frame’s pose estimation and how to get the MAP estimation of
the current pose.

A. Selection of Key-Frames

The selection of key-frames is important since it directly af-
fects the pose likelihood model. Remember the assumption that
we made in Section II: the key-frame’s pose state is determin-
istic at current time ¢ and its distribution is a delta function.
So we should pick key-frames from previously tracked frames
which have sharp posterior distributions specified by (4). How-
ever, such an assumption still causes some deviation since even
a sharp posterior distribution is not actually a delta function.
As a result, if we always choose the most recently acquired
key-frames as the key-frames for the current pose estimation,
the deviation on key-frame poses will accumulate and finally
corrupt the tracking. Fig. 3 shows the pose trajectory during
tracking. On one hand we should choose a key-frame which
is far away from current frame along the time axis, because
such a key-frame’s deviation is unlikely to be cumulative and
is likely to be independent of the estimated previous frame’s
deviation due to the long time interval. On the other hand, we
should choose a key-frame which has similar pose as the current
frame’s pose, because when the pose difference is very large, the
observed object images have little overlap and feature matching
between them is impossible. As an example, in Fig. 3, the best
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Fig. 3. Key-frame selection during tracking.

two key-frames for the current frame should be I 1, I; ». We
define a measure to reflect the above requirements

9) o (S o ()

5)
where d(-,-) is a distance function defined in pose space and
will be described in Section V-B, Xt is the estimated pose of
current frame, n, and n, are the temporal frame index of the
current frame and the key-frame, respectively, and ng is a pa-
rameter to control the temporal difference between the selected
key-frame and the current frame. We first construct a set which
contains key-frames with largest measures or key-frames which
is within the specified pose distance from current pose, then we
select several key-frames from the above set which have max-
imal temporal distance to the current frame. In our synthetic
experiment, the key-frames number varies and in the real ex-
periment, the key-frame number is set to 1 for computational
efficiency.

B. MAP Estimation of Current Pose

Before introducing the inference algorithm, we first de-
fine the pose difference operator, composition operator,
and the distance measure on pose. Suppose that we use
a quaternion representation of rotation [13], and denote
X1 = (q,t) = (90,91,02,q3,t1,l2,13), Xo = (r,8) =
(ro,r1,72,73, 81, S2, 83), Where q, r is the quaternion repre-
sentation of rotation and t, s is the translation vector. Then we
define

X10Xes=(qAr,R(q) -s+t) (16)

X1~ Xy, =(qAT,t — R(QAT)s) a7
y” | It = sl

d(XlaXQ):?‘FG—tQ (18)

r

where A is the quaternion multiplication operator, r is the conju-
gate of r, R(q) is the rotation matrix represented by the quater-
nion q, +y is the vector part of g A r and o,, 0, are parame-
ters to normalize the dimension size of rotation and translation,
respectively.

Then based on (4)—(6), we use stochastic sampling style op-
timization [14] to get the MAP estimate of X} in (4). First we
generate samples of X from distribution P(X;|{Y;}) which is
a Gaussian centered at (S(t) 0 Yp), then (4) can be evaluated and
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Fig. 4. Error on each pose parameter. The top row is rotational error in degrees; from left to right are errors in roll, yaw, and pitch angles. The middle row is
translational error; from left to right are translational errors in X, Y, and Z axis. The bottom row is the average and maximum error with different number of

key-frames; from left to right are rotation angle errors and translation errors.

each sample can get a weight proportional to the probability
[Iio P(I:, I, ;|6%, Y;). The sample with the highest weight is
output as the MAP estimation result. Since each term in the eval-
uation function has a very simple form, the estimation process
is quite efficient for real-time processing.

VI. EXPERIMENTS AND RESULTS

To test the validity of our proposed approach, both synthetic
data and live captured real video were used. The tracking on
both faces and a general object such as a toy car are performed.
For synthetic data, we can compare the result with the ground
truth. The live tracking result reflects the robustness and gener-
ality of the algorithm.

A. Synthetic Experiment

In this experiment, we use a generic head model to generate
the synthetic test sequence. Since we simulate the feature se-
lection and the point matching process, the main objective of
the experiment is to evaluate the Bayesian online key-frame fu-
sion process. The size of the generic model is about 100 (unit)

and it contains about 180 vertices and 306 triangles in its mesh.
Three kinds of noise are used to simulate real scenarios: the
model error, the Gaussian point matching error, and the point
mismatching error. We add Gaussian noise of s.t.d 2 (unit) to
each model vertex. For point matching, we randomly select 100
model vertices as features, among which 80% have matches
with a Gaussian noise of s.t.d 0.5 pixel, and the other 20% are
modeled as mismatches which are added with uniform random
noise in the range of [0, 50] pixels. The synthetic sequence is
generated by rotating the generic face model from frontal view
to profile view, and then rotating back. The motion is uniform
so the inter-frame motion is 1 degree in yaw angle and there are
totally 180 frames. The result is shown in Fig. 4. We can observe
that the error accumulation is quite large during online tracking
if there is no key-frame constraint. The drift error can be signif-
icantly reduced by introducing key-frame constraints.

Another thing observed from Fig. 4 is that the error drift de-
pends on the direction of motion. For example, in the left figure
of the top row of Fig. 4, the error in roll angle peaks at the profile
view and decreases as the head rotates back. However, it starts
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Fig. 5. Result comparison on agile rotation. From left to right: frame 156, 159, 160, 161, and 170. The top row is the Bayesian inter-frame motion estimation.
The bottom row is the cross correlation point matching based inter-frame motion estimation as used in [9].

=

e

Fig. 6. Results on various situations. The first and second rows are extracted from a captured face tracking sequence. From left to right is frame 13, 35, 65, 133,
144,158, 166, 189, 205, 225. There are severe occlusions, large object scale change and the motion is agile. The third row is extracted from a standard test sequence
“jal8” from Boston University [6]. From left to right is frame 18, 72, 105, 122, and 139. Note that there is significant illumination change and we do not need the

trained illumination basis as used in [6].

accumulating again after frame 120. The translational error in
the z axis is much larger than that in the = and y axes.

B. Live Captured Video

In this experiment, we track a face captured by a USB
camera. The whole tracking process is automatic: in the first
frame, the approximately frontal face is automatically detected
by a face detector [15] and facial features are automatically ex-
tracted using the face alignment algorithm [16]. Then the initial
pose in the first frame is estimated using the POSIT algorithm
[3] to initialize the pose tracker. Note that the face detector
and alignment is never used again in the following tracking
process. In all the face tracking experiments, we use the same
generic face model as the one used in Section V-A. The USB
camera’s resolution is set to 320 %240 and is calibrated with
focal length. 100 feature points are used to achieve the results
in this paper and the algorithm’s speed is about 30 fps on
a P-IV2.8G computer. Fig. 5 compares the performance of

the traditional correlation-based feature matching with pose
estimation [9] and the proposed Bayesian inter-frame motion
estimation algorithm in the case of agile motion. The key-frame
fusion part is kept the same in order to make a fair comparison.
It shows the advantage of the proposed Bayesian inter-frame
motion estimation algorithm. More head tracking results are
shown in Fig. 6 where there are severe occlusions, large object
scale change, and drastic illumination changes. Note that for
the first sequence in Fig. 6, we run the program in debug mode
and save the captured video and the online tracking result video
to hard disk simultaneously. As a result the video frame-rate
is only about 10 fps, which is a more challenging case since
the motion between two adjacent frames can be quite large.
However, the algorithm still achieves stable result. For the
second sequence shown in Fig. 6, we do not need the trained
illumination basis and get a result comparable to that in [6].
Finally, we compared our real-time face tracking result sub-
jectively with the state of the art method in [9]. When using a
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Fig. 7. Result on toy car tracking. The top row is the original image and the bottom row is the tracking result. From left to right is frame 1, 70, 149, 203, and 251.

Note that during rotation, there is significant changes in specular reflection.

normal USB camera, the image quality is relatively low and the
illumination may change. Under these conditions, [9] becomes
less stable especially for agile motion, large object scale change
and the pose may significantly drift when the yaw and tilt
angle is large than about 45 deg or more. In addition, when the
tracker loses track, it cannot recover the correct pose again.
The proposed method has significantly improved performance
under the above difficult conditions.!

C. Toy Car Tracking

In this experiment, we show the ability of the proposed ap-
proach to handle general objects. Fig. 7 shows the results of
tracking a toy car. The car model was created according to the
photos taken at approximately frontal, top, and side views. It has
1937 vertices and 2532 triangles in its mesh. In the first frame,
we need to manually select six points for estimating the car’s
initial pose, then the subsequent tracking is automatic.

VII. DISCUSSION

In this section, we discuss some issues which can affect the
3-D pose tracking result. The first issue is the camera focal
length. The pose error induced by inaccurate focal length de-
pends on the position and shape of the object. This kind of error
can be neglected in face tracking but becomes significant if the
object’s perspective effect is obvious. In our synthetic test for
a 3-D cube, doubling the focal length can cause about a 10 deg
rotational error in a normal configuration. The second issue is
the model error. The algorithm is quite robust to local model
error. However the significant error in aspect ratio for a model
region with many features can degrade the pose estimation re-
sult, while for faces, the aspect ratio between eye—eye distance
and eye-mouth distance is almost a constant across different
people, so a generic model is enough for face tracking. The third
issue is about motion ambiguity from noisy, locally aggregated
point matches, in which case the change of 3-D pose does not
have significant effects on 2-D point projections. For example,
when we use a partial face model and the main observed re-
gion is a cheek with little texture, the reliable point matches

More result tracking video sequences can be found at http://research.mi-
crosoft.com/~qgiangwa/3DPoseTracking/index.htm.

will be located around the side view eye region. Such ambiguity
may sometimes occur but can be immediately corrected in a few
frames by using the Bayesian online key-frame fusion approach.

VIII. CONCLUSION

A novel approach for real-time 3-D tracking of object pose
from a single camera is proposed. The method is based on
the probabilistic generative graphical model for pose tracking
which can merge the information from 2-D point matching,
relative pose estimation, and key-frame pose constraints with
uncertainty. The combinatorial representation and inference
approach results in an efficient algorithm which can stably
track object pose in real-time from videos captured by a low
cost camera, especially in the cases of agile motion, significant
occlusion, large object scale changes, and drastic illumination
changes which cannot be well handled by existing algorithms.
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