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Abstract. The formulation of trace quotient is shared by many computer vision 
problems; however, it was conventionally approximated by an essentially dif-
ferent formulation of quotient trace, which can be solved with the generalized 
eigenvalue decomposition approach. In this paper, we present a direct solution to 
the former formulation. First, considering that the feasible solutions are  
constrained on a Grassmann manifold, we present a necessary condition for the 
optimal solution of the trace quotient problem, which then naturally elicits an 
iterative procedure for pursuing the optimal solution. The proposed algorithm, 
referred to as Optimal Projection Pursuing (OPP), has the following character-
istics: 1) OPP directly optimizes the trace quotient, and is theoretically optimal; 
2) OPP does not suffer from the solution uncertainty issue existing in the quotient 
trace formulation that the objective function value is invariant under any non-
singular linear transformation, and OPP is invariant only under orthogonal 
transformations, which does not affect final distance measurement; and 3) OPP 
reveals the underlying equivalence between the trace quotient problem and the 
corresponding trace difference problem. Extensive experiments on face recog-
nition validate the superiority of OPP over the solution of the corresponding 
quotient trace problem in both objective function value and classification  
capability. 

1   Introduction 

In recent decades, a large family of algorithms [19]─supervised or unsupervised; 
stemming from statistical or geometry theory ─ has been proposed to provide different 
solutions to the problem of dimensionality reduction [2][4][12][15][16][19]. Many of 
them, such as Linear Discriminant Analysis (LDA) [1] and Locality Preserving Pro-
jection (LPP) [6], eventually come down to the trace quotient problem [17][20] as 
follows 

* ( )
( )W CW I

Tr W AW
Tr W BW

W arg max
Τ

ΤΤ =
= . (1) 

Here A, B, and C are all symmetric positive semidefinite; ( )Tr ⋅ denotes the trace of a 

matrix; I is an identity matrix and W is the pursued transformation matrix for dimen-
sionality reduction. Commonly, the null space of matrix C lies within the null space of 
both A and B, that is, ( ) ( ) ( )null C null A null B∈ I . Due to the lack of a direct efficient 
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solution for Eq. (1), the quotient trace problem 1(( ) ( ))Tr W BW W AWΤ − Τ is often dis-

cussed instead and the generalized eigenvalue decomposition (GEVD) [20] approach is 
applied for a direct closed-form solution. 

If W is a vector, it is theoretically guaranteed that the optimal solution of (1) is the 
eigenvector corresponding to the largest eigenvalue of GEVD by using the Lagrange 
Multiplier method. GEVD can provide an optimal solution to the quotient trace prob-
lem, yet it is not necessarily optimal for the trace quotient problem when W is in the 
form of a matrix. Moreover, the solution from GEVD is unstable when matrix B is 
singular; and Principal Component Analysis (PCA) [14] is often used beforehand to 
avoid the singularity issue. However, it is often observed that the algorithmic per-
formance is extremely sensitive to the retained dimension of PCA. All these motivate 
us to pursue an efficient and theoretically sound procedure to solve the trace quotient 
problem. 

More specifically, our contributions are as follows. First, we prove that GEVD 
cannot provide an optimal solution to the trace quotient problem. Then, we present a 
necessary condition for the optimal solution of the trace quotient problem by taking 
into account the fact that the feasible solutions are constrained to lie on a Grassmann 
manifold. Finally, by following the necessary condition, an efficient procedure is pro-
posed to pursue the optimal solution of the trace quotient problem. As a product, the 
necessary condition indicates the underlying equivalence between the trace quotient 
problem and the corresponding trace difference problem. 

The rest of the paper is organized as follows.  In section 2, we introduce the trace 
quotient problem and the corresponding quotient trace problem, and then discuss the 
infeasibility of the GEVD method in solving the trace quotient problem.  In Section 3, a 
necessary condition for the optimal solution of the trace quotient problem is presented, 
which naturally elicits an iterative procedure to pursue the optimal solution. Extensive 
experiments on face recognition are demonstrated in Section 4 to show the superiority 
of our proposed algorithm over GEVD.  Finally, in Section 5, we conclude the paper 
and provide discussions of future work. 

2   Trace Quotient Problem 

Denote the sample set as matrix 1 2[ , , , ], m
N iX x x x x= ∈L R  is an m-dimensional vector. 

For supervised learning tasks, the class label of the sample ix  is assumed to be 

{1,2, , }i cc N∈ L and cn  denotes the sample number of the c-th class.  

2.1   Trace Quotient Problem vs. Quotient Trace Problem 

A large family of algorithms for subspace learning [6] ends with solving a trace quo-
tient problem as in (1). Among them, the most popular ones are the Linear Discriminant 
Analysis (LDA) [17] algorithm and its kernel extension. LDA searches for the most 
discriminative directions that maximize the quotient of the inter-class scatter and the 
intra-class scatter  
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Here cm is the mean of the samples belonging to the c-th class and m is the mean of all 

samples; m kW ×∈R is the pursued transformation matrix for dimensionality reduction.  
The objective function of (2) has explicit semantics for both numerator and denomi-
nator and they characterize the scatters measured by the Euclidean distances in the low 
dimensional feature space 

1 1

2 2( ) || || , ( ) || ||
c

i

N N

i
c i

b c c w cxTr W S W n W m W m Tr W S W W W mΤ Τ Τ Τ

= =

Τ Τ −= − =∑ ∑ . (3) 

A direct way to extend a linear algorithm to a nonlinear case is to utilize the kernel 
trick [5][9][18]. The intuition of the kernel trick is to map the data from the original 
input space to a higher dimensional Hilbert space as : xφ →F  and then the linear 

algorithm is performed in this new feature space.  It can be well applied to the algo-
rithms that only need to compute the inner products of the data 
pairs ( , ) ( ) ( )k x y x yφ φ= ⋅ . For LDA, provided that 1 2[ ( ), ( ),..., ( )]NW x x x Mφ φ φ= , 

where N kM ×∈R and N NK ×∈R  is the kernel Gram matrix with ( , )ij i jK k x x= , we have  

* ( )

( )
b

w
M KM I

Tr M S
M arg max

S

K KM

Tr M K KMΤ

Τ

Τ=
= . (4) 

Obviously, LDA and its kernel extension both follow the formulation of trace quotient 
as in (1); generally, there is no closed-form solution for (2) and (4) when k >1. 

Instead of directly solving the trace quotient problem, many researchers study an-
other formulation, called the quotient trace problem here, to pursue the most dis-
criminative features as follows 

* 1(( ) ( ))T T

W
W arg maxTr W BW W AW−= . (5) 

Notice that commonly there is no constraint on matrix W in the quotient trace problem 
and it is solved by the generalized eigenvalue decomposition (GEVD) method 

, 1,...,i i iA w Bw i kλ= = . (6) 

Here iw is the eigenvector corresponding to the i-th largest eigenvalue iλ . Despite 

extensive study of the quotient trace problem, it suffers the following disadvantages: 
1) it is invariant under any nonsingular linear transformation, which results in the un-
certainty of the Euclidean metric on the derived low dimensional feature space; and 2) 
unlike the trace quotient problem, there does not exist explicit semantics for the ob-
jective function of quotient trace problem. Therefore, compared with the quotient trace 
formulation, the trace quotient formulation is more reasonable; and in the following, we 
study the problem of how to directly solve the trace quotient problem. 
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2.2    Is Generalized Eigenvalue Decomposition Approach Feasible? 

Based on the constraint on the transformation matrix and the Lagrange Multiplier 
method, the trace quotient problem (1) is equivalent to maximizing 

( , ) ( ) ( ( ) )F W Tr W AW Tr W BW cλ λΤ Τ= − − . (7) 

Here, c is a constant and λ is the Lagrange Multiplier. When W is a vector, i.e. k = 1, the 

problem (1) is simplified to maximizing ( , ) ( )F W W AW W BW cλ λΤ Τ= − − . It is easy 

to prove that the optimal solution is the eigenvector corresponding to the largest ei-
genvalue calculated from the generalized eigenvalue decomposition method as in (6). 
Yet, when W is a matrix, i.e. k > 1, the problem is much more complex, and intuitively 
it was believed that the leading eigenvectors from GEVD were more valuable in dis-
criminating power than the later ones, since the individual trace quotient, namely ei-
genvalue, from the leading eigenvector is larger than those from later ones. However, 
no theoretical proof was ever presented to justify using GEVD for solving the trace 
quotient problem. Here, we show that GEVD is infeasible for the following reasons. 
For simplicity, we discuss the LDA formulation with the constraintW W IΤ = . 

Orthogonality: The derived eigenvectors from GEVD are not necessarily orthogonal. 
Let the Singular Value Decomposition of the final projection matrix W be  

W U V Τ= Λ . (8) 

The right orthogonal matrix V is free for the trace quotient, thus the derived solution is 
equal to U Λ in the sense of rotation invariance. In this point, GEVD does not find a set 

of unit projection directions, but weighted ones. The left column vector of U maybe is 
more biased when the original feature is transformed to the low dimensional space, 
which conflicts with the unitary constraint.  

Theoretical Guarantee: There is no theoretical proof to guarantee that the derived 
projection matrix can optimally maximize the trace quotient. Actually, the projection 
vector from GEVD is evaluated in an individual manner and the collaborative trace 
quotient will be easily biased by the projection direction with larger values 

of ( , )w Bw w AwΤ Τ . For example, for projection directions 1 2 3, ,w w w , if their trace 

values are as follows (e.g. A=diag{10.0, 100.0, 2.0} and B=diag{1.0, 20.0, 1.0}) 
 

 1w  2w  3w  

w AwΤ  10.0 100.0 2.0   

w BwΤ  1.0 20.0  1.0  

then the combination of 1w and 3w  (with trace quotient 6) is better than that of 1w  and 

2w (with trace quotient 5.24) although the single trace quotient from 2w  is larger than 

that from 3w . Thus, it is not true that the eigenvector corresponding to the larger ei-

genvalue of GEVD is always superior to that from a smaller one in the trace quotient 
problem. 
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Necessary Condition: It was commonly believed that the optimal solution of (1) 
should satisfy 

( , ) 0F W Wλ∂ ∂ = . (9) 

Yet, the solution may not exist at all if directly setting the gradient as zero,  

( , ) 2( ) 0F W W A B Wλ λ∂ ∂ = − = . (10) 

It means W is the null subspace of the weighted difference of matrix B and A, i.e. 
A Bλ− . In the LDA formulation, when cm N N< − , matrix B is of full rank, and for 

most λ , A Bλ−  is also of full rank; consequently there does not exist matrix m kW ×∈R  
with independent columns that satisfies (7). As we will analyze later, the fundamental 
reason that GEVD fails to find the optimal solution is that it does not consider that the 
feasible solution of (1) is constrained to lie on a lower dimensional Grassmann mani-
fold (or a transformed one when matrix C is not equal to I), not the whole matrix space, 
and the derivative should also be constrained to lie on the Grassmann manifold, instead 
of the matrix space. 

All the above analyses show that the GEVD cannot provide an optimal solution  
for the trace quotient problem. In the following, we will present our solution to this  
problem.  

3   Optimal Solution to Trace Quotient Problem 

For the trace quotient problem (1), let the Singular Value Decomposition of matrix C be  

, ,m n
c c c cC U U U n kΤ ×= Λ ∈ ≥R . (11) 

Here cΛ only contains positive diagonal elements, and denote 1/ 2
c cQ U WΤ= Λ . As we 

have the assumption that ( ) ( ) ( )null C null A null B∈ I , we can constrain the matrix W in 

the space spanned by the column vectors of cU  and we have 1/ 2
c cW U Q−= Λ , then 

*
1/2 1/2

1/2 1/2
( )
( )Q Q I

c c c c

c c c c

Tr Q U AU Q

Tr Q U BU Q
Q arg max

Τ Τ

Τ ΤΤ =

− −

− −
Λ Λ
Λ Λ

= . (12) 

It is still a trace quotient problem, yet with the unitary and orthogonal constraints; 
hence in the following, we only discuss the trace quotient problem with the unitary and 
orthogonal constraints.  

3.1   Necessary Condition for Optimal Solution 

When the solution of the trace quotient problem is constrained to be columnly or-
thogonal and unitary, the solution space is not the whole matrix space any more, in-
stead, mathematically, all the feasible solutions constitute a Grassmann manifold [3]. 
Before describing the procedure to solve the trace quotient problem, we introduce the 
concepts of the Grassmann manifold and its tangent space.  
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Fig. 1. The illustration of the relationship between the original matrix space, Grassmann mani-
fold, and the projection to the tangent space. Note that it is unnecessary for gradient vector Z to be 
zero, instead, only its projection to the horizontal space of the tangent space is required to be zero 
for the trace quotient problem. 

Grassmann Manifold [3]: All feasible matrices m kW ×∈R with unit and orthogonal 

column vectors, i.e. W W IΤ =  , constitute a continuous curved hyper-surface in the 
original matrix space, namely a Grassmann manifold, as shown in Figure 1. Com-
monly, a Grassmann manifold is associated with an objective function ( )F W , such as 

the objective function in (7), yielding ( ) ( )F WR F W=  for any orthogonal ma-

trix k kR ×∈ R . 
If for two columnly orthogonal matrices 1W and 2W , there exists an orthogonal ma-

trix R so that 1 2W W R= , then we call 1W and 2W homogeneous, denoted as 1W ~ 2W . 

Thus, on the Grassmann manifold, the objective function ( )F W is invariant to all ma-

trices that are homogeneous.  

Projection on the Tangent Space [3]: As a curved hyper-surface, the movement of 
any point on the manifold always follows a direction in the tangent space as shown in 
Figure 1. All matrices M  in the tangent space at point W satisfy  

0W M M WΤ Τ+ = . (13) 

And for any matrix Z, its projection on the tangent space is defined as   

1
2( ) ( ) ( )TP Z W W Z Z W I WW ZΤ Τ Τ= − + − . (14) 

Considering the homogeneity condition, not all variations in tangent space will re-
sult in a change of the objective function. The tangent space is decomposed into the 
direct sum of a vertical space and a horizontal space, where only the directions in the 
horizontal space actually contribute to the change of the objective function. It is proved 
[3] that the projection of any vector Z on the horizontal space at W is  

( ) ( )HP Z I WW ZΤ= − . (15) 
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For the equivalent objective function (7) of the trace quotient problem, the gradient 
vector ( , ) / 2( )Z F W W A B Wλ λ= ∂ ∂ = − . Its projection on the tangent space directly 

lies within the horizontal space, since A and B are both symmetric and  

( ) ( ( ) ( ) ) ( ) 0 ( ) ( )T H H HP Z W W A B W W A B W P Z P Z P Zλ λΤ Τ Τ Τ= − − − + = + = . (16)  

Also, it is easy to prove that the function (7) satisfies the homogeneity condition  

  
( , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( , )

F WR Tr R W AWR Tr R W BWR Tr WRR W A Tr WRR W B

Tr WW A Tr WW B Tr W AW Tr W BW F W

λ λ λ
λ λ λ

Τ Τ Τ Τ Τ Τ Τ Τ

Τ Τ Τ Τ

= − = −
= − = − =

  

                                                                                                                                           (17) 
The second and fourth steps are derived from the fact that, for any two matri-
ces 1 2,m k k mM M× ×∈ ∈R R , we have 1 2 2 1( ) ( )Tr M M Tr M M= .  

As the solution space is constrained on a Grassmann manifold, the necessary condi-
tion for the optimality of the projection matrix is that the projection on the horizontal 
space at point W of the gradient vector ( , ) / 2( )F W W A B Wλ λ∂ ∂ = − is zero, i.e. 

( )( ) 0I WW AW BWλΤ− − = . (18) 

Then, the column vectors of the matrix AW BWλ− all lie in the space spanned by the 

column vectors of W, and there exists a matrix k kP ×∈R satisfying 

AW BW WPλ− = . (19) 

By multiplyingW Τ on the left side of (19), we have  

W AW W BW W WP PλΤ Τ Τ− = = . (20) 

Therefore, P is a symmetric matrix. Let its singular value decomposition be  

p p pP U U Τ= Λ . (21) 

Then, there exists a homogeneous solution p pW WU=  satisfying  

( ) p p pA B W Wλ− = Λ . (22) 

It means that the projection vectors are the eigenvectors of a weighted difference ma-
trix; consequently, we have the following claim. 

Theorem. (Necessary condition for the optimal solution) For the trace quotient prob-
lem, there exists an optimal solution whose column vectors are the eigenvectors of the 
corresponding weighted trace difference problem, i.e. ( ) p p pA B W Wλ− = Λ . 

The above theorem reveals a very interesting point that the trace quotient problem is 
equal to a properly weighted trace difference problem in objective function. However, 
these two problems are still different in some aspects. First, for the weighted trace 
difference problem, such as the work in MMC [8] for discriminant analysis, the solu-
tion is directly the leading eigenvectors, while in the trace quotient problem the optimal 
projection does not always consist of the leading eigenvectors. Secondly, there is no 
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criterion to guide selection of the weight in the trace difference problem; while in the 
trace quotient problem the weight can be determined by maximizing the trace quotient, 
which directly motivates our following procedure to pursue the optimal solution of the 
trace quotient problem. 

3.2   Procedure to Optimal Projection Pursuing 

From (22), the optimal solution can be directly determined by Lagrange Multiplier λ ; 

thus we can rewrite the optimal transformation matrix corresponding to λ as ( )W λ . 

Then, the objective function in (1) is changed to a function only related to λ , 

( ( ) ( ))
( ( ) ( ))( ) Tr W AW

Tr W BWG
λ λ
λ λλ

Τ

Τ= . (23) 

The objective function is nonlinear and it is intractable to directly compute the gra-
dient. However, the experiments show that the objective function is of a single peak, 
and some plots of the trace quotient distribution with respect to the Lagrange Multi-
plier λ are plotted in Figure 2. The observations encourage us apply multi-scale search 

to pursue the optimal weight. The details are listed in procedure-1.  
Note that in procedure-1, for each Lagrange Multiplier λ , the column vectors of the 

optimal projection matrix ( )W λ are not exactly the leading eigenvectors corresponding 

to the largest eigenvalues of (22). Thus we utilize a backward elimination method to 
search for the optimal solution for a given weight parameter, i.e. the eigenvector is 
omitted, if the remaining ones lead to the largest trace quotient, in each step until re-
duced to the desired feature dimension. 

Procedure to pursue optimal solution of trace quotient problem __________________________________________________________________ 

1. Set parameter range: Set a proper parameter range [ 0 0
,a b ] for parameter 

search. In this work, 
0a is set as 0, and 

0b  is experientially set as the quotient of the 

largest eigenvalue of A and the smallest positive eigenvalue of B, which makes most 

eigenvalues of (22) negative. 

2. Multi-scale search: For t = 1, 2, … , Tmax, Do 

a) Segment 
1 1

[ , ]
t ta b− −

into L parts by
1 1 1

( 1)( ) /( 1)
t t t t
i a i b a Lλ − − −= + − − − , i=1,.., L. 

b) Compute the optimal ( )
t
iW λ and the corresponding trace quotient

t
iTr . 

c) From the left side, if 
a

t
iλ is the first point satisfying

1a a

t t
i iTr Tr

+
< and 

1 2a a

t t
i iTr Tr

+ +
≥ , 

then set 
a

t t
ia λ= ; from the right side, if

b

t
iλ is the first point satisfying

1b b

t t
i iTr Tr

−
< and 

1 2b b

t t
i iTr Tr

− −
≥ , then set 

b

t t
ib λ= . 

d) If t tb a ε− < (= 0.1 in this work), then exit.  

3. Output the final optimal solution from (22) by setting ( ) / 2
a b

t t
i iTr Trλ = + . 

__________________________________________________________________  

Procedure-1. Optimal Solution Pursuing of Trace Quotient Problem 
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Fig. 2. The trace quotient vs. the Lagrange Multiplier ( λ ) in the databases XM2VTS, PIE and 
AR.  Note that we plot the trace quotient of PCA+LDA (plotted as Fisher in the legends) as a line 
as its trace quotient value is fixed and free to the Lagrange Multiplier.  We can find that the 
maximum trace quotient of OPP is consistently larger than that from PCA+LDA; while the trace 
quotient comparison between PCA+LDA and MMC (namely 1=λ ) is not so clear, neither one is 
consistently better than the other one. 

4   Experiments 

In this section, three benchmark face databases, XM2VTS [10], CMU PIE [13] and AR 
[11] are used to evaluate the effectiveness of the proposed procedure to solve the trace 
quotient problem. The objective function of Linear Discriminant Analysis (2) is applied 
owing to its popularity; and the new procedure, referred to as OPP (Optimal Projection 
Pursuing), is compared with the popular PCA+LDA [1] and MMC [8], i.e. OPP 
with 1=λ . In all the experiments, the nearest neighbor method is used as a classifier for 
final classification based on the Euclidian distance. The trace quotient distributions 
with respect to the Lagrange Multiplier on the three databases are plotted in Figure 2. 
The results show that the derived optimal trace quotient from OPP is consistently larger 
than that from GEVD. In all the experiments, the parameter L in the procedure to 
pursue the optimal solution of the trace quotient problem is set to 8 and generally we 
need about three iterations to converge. 
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XM2VTS Database [10]: The XM2VTS database contains 295 persons and each 
person has four frontal images taken in four sessions. All the images are aligned by 
fixing the locations of two eyes and normalized in size of 64*64 pixels. In our ex-
periments, we use 295*3 images from the first three sessions for model training; the 
first session is used as a gallery set and the probe set is composed of the 295 images 
from the fourth session. Three sets of experiments are conducted to compare the  
performances of OPP, PCA+LDA and MMC. In each experiment, we use different 
combinations of Principal Component Analysis (PCA) [7][14] dimension ( cN N− , 
moderate and small number) and final dimension, denoted as Pm/Fn in all experiments. 
Note that actually OPP and MMC need no PCA step, so for a fair comparison with 
PCA+LDA, PCA is conducted before both OPP and MMC. Table 1 shows the recog-
nition accuracies of the three algorithms. The comparison results show that OPP out-
performs MMC and PCA+LDA in all cases. 

Table 1. Recognition rates (%) of PCA+LDA, MMC and OPP on XM2VTS database 

 P590/F294 P450/F294 P300/F200 
PCA+LDA 79.0 75.3 84.4 
MMC 83.7 83.4 82.0 
OPP 94.2 88.8 88.8 

CMU PIE Database [13 ] : The CMU PIE (Pose, Illumination and Expression) 
database contains more than 40,000 facial images of 68 persons. In our experi-
ment, five near frontal poses (C27, C05, C29, C09 and C07) and illuminations 
indexed as 08, 10, 11 and 13 are used. 63 persons are used for data incompleteness. 
Thus, each person has twenty images and all the images are aligned by fixing the 
locations of two eyes and normalizing to size 64*64 pixels. The data set is ran-
domly partitioned into the gallery and probe sets. Six images of each person are 
randomly selected for training and also used for the gallery set, and the remaining 
fourteen images are used for testing. We also conduct three experiments on the PIE 
database. Table 2 lists the comparison results and it again shows that OPP is 
consistently superior to the other two algorithms.  

Table 2. Recognition rates (%) of PCA+LDA, MMC and OPP on PIE database 

 P315/F62 P200/F62 P100/F50 
PCA+LDA 88.9 88.0 87.6 
MMC 88.1 87.8 85.0 
OPP 92.1 94.1 91.6 

AR Database [11]: The AR face database contains over 4,000 frontal face images of 
126 people. We use 90 persons with three images from the first session and another 
three images from the second session. All the images are aligned by fixing the locations 
of two eyes and normalizing in size to 72*64 pixels. The data set is randomly parti-
tioned into gallery and probe sets. Three images of each person are randomly selected 
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Table 3. Recognition rates (%) of PCA+LDA, MMC and OPP on AR database 

 P180/F89 P150/F89 P100/F50 
PCA+LDA 94.1 90.7 95.2 
MMC 78.9 78.5 76.3 
OPP 98.2  95.9 96.7 

Table 4. Recognition rates (%) of KDA, kernel MMC and OPP on three databases 

 XM2VTXS CMU PIE AR 
KDA 92.2 87.8 94.4 

KMMC 86.4 88.3 81.5 
KOPP 97.0 93.1 98.5 

for training and as the gallery set; and the remaining three images are used for testing. 
The experimental details are listed in Table 3. The results show that MMC does not 
obtain satisfactory performance and OPP is the best.   

We also apply the OPP algorithm to optimize the objective function of Kernel Dis-
criminant Analysis, compared with the traditional method as reported in [18].  The 
Gaussian kernel is applied and the final feature dimension is set to 1cN −  in all the 

experiments. Table 4 lists all the experimental results on the three databases. From the 
results, we can see that the solution from OPP is much better than the other two algo-
rithms in classification capability. 

From the above experimental results, we can have some interesting observations: 

1. The quotient value derived from OPP is much larger than that from PCA+LDA 
and MMC; meanwhile, the comparison between PCA+LDA and MMC is un-
clear, neither one is consistently superior to the other one.  

2. In all the experiments, the recognition rate of OPP is consistently superior to 
that of PCA+LDA and MMC in all the cases. Similar to the trace quotient value, 
the performances of PCA+LDA and MMC are comparable. 

3. All the results show that the trace quotient criterion is more suitable than the 
quotient trace criterion for feature extraction owing to its explicit semantics of 
the numerator and denominator. 

4. Recently, many other formulations of matrices A and B in the trace quotient 
problem were proposed [19]; the advantage of the OPP solution can be easily 
generalized to these new algorithms.  

5   Conclusions 

In this paper, we studied the problem of directly solving the trace quotient problem. 
First, we derived a necessary condition for the optimal solution based on the fact that 
the feasible solution is constrained to lie on a Grassmann manifold and the final solu-
tion is rotation invariant. Then, we presented a procedure to pursue the optimal solution 
based on the necessary condition. An interesting point is that the necessary condition 
reveals the underlying equivalence between the trace quotient problem and the  
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corresponding trace difference problem, which provides theoretical guidance on how to 
select the optimal weight for the trace difference problem. Moreover, the study of how 
to pursue a solution on the Grassmann manifold is general, and can be easily extended 
to optimize general objective functions with solutions constrained on the Grassmann 
manifold. 
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