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Abstract—This paper presents a unified criterion, Fisher +
kernel criterion (FKC), for feature extraction and recognition.
This new criterion is intended to extract the most discriminant
features in different nonlinear spaces, and then, fuse these features
under a unified measurement. Thus, FKC can simultaneously
achieve nonlinear discriminant analysis and kernel selection.
In addition, we present an efficient algorithm Fisher + kernel
analysis (FKA), which utilizes the bilinear analysis, to optimize
the new criterion. This FKA algorithm can alleviate the ill-posed
problem existed in traditional kernel discriminant analysis (KDA),
and usually, has no singularity problem. The effectiveness of our
proposed algorithm is validated by a series of face-recognition
experiments on several different databases.

Index Terms—Bilinear analysis, discriminant analysis, face
recognition, feature extraction, Fisher criterion, kernel selection.

I. INTRODUCTION

F ISHER criterion has been widely used in the field of pat-
tern recognition [37]. Recently, kernel-based methods have

been introduced in Fisher criterion to form various kernel Fisher
methods [1], [7], [20], [21], [24], [44]. These methods are usu-
ally called kernel Fisher discriminant analysis (KFD) or kernel
discriminant analysis (KDA) [28]. Generally speaking, KDA
first maps the original data into a higher dimensional feature
space via a nonlinear mapping, and then, applies linear dis-
criminant analysis (LDA) [8] in this higher dimensional feature
space. In KDA, we do not need to know explicitly the nonlinear
mapping; the kernel function, i.e., inner product of the data pairs
in feature space, is enough to derive final solution [29], [31].
Due to the capability of being able to extract the most discrim-
inant features [26] from the nonlinear data and the feasibility
in computation, KDA and its refined versions have been widely
applied in computer vision, especially for face-recognition tasks
[18], [19], [39].
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However, in real-world applications, these KDA algorithms
always encounter two following problems: 1) the ill-posed
problem [22], [14], [41] and 2) the selection of the kernel
function under a given data set [4], [15]. Moreover, these two
problems usually interwind, which greatly limits the effective-
ness of KDA.

For the ill-posed problem, there have been a number of
regularization techniques and matrix-based methods that might
alleviate the problem [1], [40], [20], [22], [19], [39]. While
these methods can alleviate or even solve the singular problem
in theory, they still cannot be successfully integrated into the
process of kernel selection.

In addition, the problem of kernel selection itself does not
have a satisfactory solution yet. In general, the methods for
finding the optimal kernel [38] can be classified into two cat-
egories: one is independent of the subsequent learning algo-
rithm and the other is not. For the first category, new kernels
are the refined ones of the traditional kernels with special moti-
vations, such as Bhattacharyya point set kernel in [11] and the
cosine kernel in [17]. These methods are not always effective
for specific problems in practice. For the second category, such
as boosting kernel for support vector machine (SVM) [3] and
radial basis function (RBF) kernel parameter selection for KDA
[10], the procedure for kernel selection is often time consuming
and usually restricted to a certain kind of kernels.

Due to these two problems, it is even more difficult to conduct
kernel selection and at the same time to prevent the ill-posed
problem. As discussed later in this paper, we prove that the
ill-posed problem of KDA brings about a special form of over-
fitting, in which the data of the same class are mapped onto the
same point. Under this condition, traditional KDA cannot tell
which kernel is better, so it is not feasible to conduct kernel se-
lection using the traditional Fisher criterion. To address such an
issue, there are some methods which carry out kernel selection
after adding a regularization term [6], [12]. Though some of the
methods [12] provide convex optimization solution, there is still
no method that can find an optimal regularization term and op-
timal kernel simultaneously.

Based on the previous considerations, we try to find a new
criterion which helps overcome the two disadvantages of KDA
algorithm. However, our aim is not at finding an optimal pa-
rameter for the kernel functions or selecting a specific kernel
function from a function set. Denote the set constructed by both
the training and testing samples as . In KDA
and many other kernel related classification algorithms, we only
need the inner product between every two samples

and in the higher dimensional feature
space. According to the kernel trick [29], we have the kernel
matrix , which is also known
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as Gram matrix [29]. Therefore, what we need is a final kernel
matrix , with the element of , which is
optimal for a given data set. Besides, we realize that an optimal
combination of various kernels [5], [6] may be a proper way
for kernel selection. Therefore, we propose a novel criterion,
called Fisher kernel criterion (FKC) for discriminant analysis,
in which kernel selection and nonlinear discriminant analysis
problem are simultaneously solved by optimizing a single ob-
jective function. Specifically, each sample of the original input
data is mapped to a feature matrix through a compound map,
which is constructed by combining several different nonlinear
mappings. Then, with the new criterion, the feature matrix is
projected into a lower dimensional space through a left- and a
right-projection space; and thus, we find a projection matrix as
the final kernel matrix. This projection matrix is optimal under
the overall consideration of the classification ability within var-
ious kernel spaces. Accordingly, we propose an iterative op-
timization procedure Fisher kernel analysis (FKA) for ob-
taining the solution to FKC.

The remainder of this paper is organized as follows. An
overview of the KDA algorithm is provided in Section II. In
Section III, we analyze the ill-posed problem existed in KDA
and present a special form of overfitting along with the con-
strained solution as a counter method to this ill-posed problem.
FKC and its optimization procedure FKA are presented in
Section IV. Validation experiments and conclusions are pre-
sented in Sections V and VI.

II. REVIEW OF KERNEL DISCRIMINANT ANALYSIS

Assume that we are given a collection of training image sam-
ples denoted as ; the sample
belongs to the th class, where , and is the
number of the samples belonging to the th class.

Given a nonlinear mapping , the original input space is
mapped into a higher dimensional feature space 1

Define the inner product in the feature space as
, where is known as a kernel function.

Taking to be an ordinary vector, we define scatter ma-
trices of the samples in as follows. The intraclass scatter ma-
trix and the interclass scatter matrix are

(1)

(2)

where is the mean of the mapped samples belonging to the
th class, is the number of samples in th class, and is the

mean of all mapped samples. Similar to the scatter matrices in
LDA, measures the dispersion of the samples from different

1Actually, F is a so called reproducing kernel Hilbert space.

classes in the feature space , while denotes the dispersion
of the samples within the same class.

Using the scatter matrices, the main idea of KDA is to apply
the Fisher criterion in the higher dimensional feature space .
The criterion for KDA algorithm can be given as follows.

Criterion 1:

where with superscript means the transposition of
matrix and

.
The value of is usually unknown and is a vector in

form whose dimension may be infinite. Therefore, we rewrite
the KDA’s criterion with new representation of the scatter
matrices and solve it by using the kernel trick [29]. Denote

. As shown in the Appendix I, we can
define the scatter matrices in the feature space directly as

and (3)

where and are two constant matrices which only de-
pend on the label of the data. With the form of the scatter ma-
trices in (3), we can see that the information in and is
separated into two groups: The distribution information of the
data is contained in while the class information of the label is
represented by the matrices and .

Recalling that the elements of kernel matrix are defined as
, we denote the kernel matrix .

Then, Criterion 1 can be rewritten as

where . Similar with the solution of tradi-
tional discriminant analysis [8], the optimal solution of Criterion
1 can be obtained from the generalized eigenvalue decomposi-
tion [8], and thus, we have

(4)

If is invertible, (4) can be solved directly and
Fisher criterion can be directly employed to extract the optimal
discriminant features in the feature space. However, as shown
in the Appendix II, the matrix does not have full rank
which makes not invertible. Thus, there always
exists a vector satisfying , which means there
is a vector such that . Thus, the optimal problem
for Criterion 1 is an ill-posed one under this condition. In
Section III, we present a special form of overfitting resulting
from this ill-posed problem. We also propose a regularization
method as a solution to this ill-posed problem.

III. OVERFITTING IN KDA AND COUNTER METHOD

Notice that , and
hence, the dimension of the null space of is no less
than . Define as the vectors mentioned in Criterion 1 which
satisfy . The number of
these is at least . With , the scatter distance of the same
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Fig. 1. Illustration of overfitting with three-classes toy data. (a) Original data of three classes in 2-D space. (b) The transformed results with KDA. (c) The corre-
sponding original data for the first class.

class after being projected onto that direction is zero, i.e., all the
samples from the same class are mapped to a same point in the
projection dimension. We prove rigorously in the Appendix II
how this can introduce a special form of overfitting. To make it
easier to understand here, we use a toy data with three classes
to illustrate this special overfitting in Fig. 1. With the projection
direction calculated in the Appendix II, the original data of the
same class are mapped onto the same point in the projection
space.

Generally, various regularization methods are adopted to
overcome this ill-posed problem. The most popular regulariza-
tion method [22] is to use a penalized term
instead of in (4), where is the identity matrix.
Although this method can solve the ill-posed problem in theory,
regularization in this way also brings an extra parameter ,
which is rarely known as a priori, to be optimized. If we use the
previous regularization, we first need to optimize the parameter

. Denote the optimal parameter as . We select a kernel
function , which only guarantees to be optimal under this

. However, since we aim to process the kernel selection
and avoid the overfitting problem simultaneously, we may not
get the best classification result if we choose to introduce the
penalized term first. Therefore, in our paper we do not adopt
such regularization in our kernel selection process.

According to Tikhonov’s theory [32], we can restrict the so-
lution in a constrained subspace of the whole solution space so
as to obtain a stable solution as in the aforementioned penal-
ized method. Therefore, in our algorithm, we apply the idea of
constrained solution space to alleviate the ill-posed problem and
help select a good kernel matrix. Admittedly, it is difficult to find
a general constrained method for all the learning algorithms. We
can still design a constrained solution space for a specific algo-
rithm, such as for the KDA. Note that in the LDA, this space
can be simply found by constraining the projection space, e.g.,
using the centroid space as the solution space [8], [9]. Similarly,
we could design a constrained projection space to obtain a stable
solution in KDA. This idea is adopted in our FKA to find a stable
solution for the FKC introduced later.

IV. FKC AND OPTIMIZATION

From the kernel trick [29] and the definition of kernel func-
tion , we can see that the kernel function

is determined by the nonlinear mapping . Moreover, for the
kernel matrix to be a valid kernel function, it
should satisfy the Mercer conditions [33]. Since and

is a reproducing kernel Hilbert space, the kernel matrix
is also decided by the inner product of the reproducing kernel
Hilbert space .

In traditional methods, kernel selection is actually processed
in . To combine the merits of various kernel functions,
we define a new reproducing kernel Hilbert space. Denote a
collection of nonlinear mapping functions as ,
where and each is a reproducing kernel
Hilbert space. Construct a compound mapping as

such that . Using a
proper definition of inner product, we prove in the Appendix III
that is a reproducing Hilbert space.

Our criterion is based on the whole reproducing kernel
Hilbert space , so the inner product should be defined
between any two vectors in as a similarity measure. For sim-
plicity, we assume that the feature vectors mapped by different

are independent, that is

and

(5)

Specifically, we define

(6)

Similar to the case of mentioned previously, we have that
.

For each kernel function , there exists a function such
that , which implies that the selec-
tion of a nonlinear mapping is equivalent to the selection of
the kernel function . Note that in our new reproducing kernel
Hilbert space , every element is constructed from the non-
linear mapping . Therefore, the task of ex-
tracting different feature vectors in is equivalent to finding a
good combination of the kernel functions.
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A. FKC

First, we map the th original sample to a so-called fea-
ture matrix . It is
clear that is constructed by vectors from . Then, for all
the feature matrices , we try to find at the same time an
optimal combination of the different nonlinear feature and
good projection directions such that the distances of samples
in the same class are minimized while the distances of samples
between different classes are large after the projection, which is
just the Fisher discriminant criterion.

The previous optimal combination is achieved through
multiplying the feature matrix by a right matrix ; then,
the projection space is a subspace of the linear space spanned
by . Denote by the pro-
jection matrix; under the aforementioned projection directions,
the projection of the feature matrix is , called
projection matrix . Define

as the Frobenius norm of the matrix . Under this norm, the
interclass distance and the intraclass for the projection
of can be computed as

and

where denotes the class label of the th projection matrix,
is the mean of the projection matrices from the class , and

is the mean of all the projection matrices. Following Fisher
criterion, the optimal projection matrices
satisfy the following: , the distance between the projection
matrices in the different classes, is as large as possible, while

, the distance within the projection matrices of the same
class, is as small as possible. This process can be illustrated by
the following optimization problem:

Replace and with the feature matrix ; we have
our FKC as follows.

Criterion 2:

where
and ( is the final dimension given by the user),

is the total average matrix of all the feature matrices
and is the average matrix of the which belongs to th
class, and so .

In Criterion 2, we use the right matrix to search for a better
combination of , hence, the right-projection
space is a finite dimensional Euclidean space. In contrast, the
left matrix is used to find the most discriminative subspace in

; therefore, the left-projection space is a subspace of .

B. Two Algorithms

Conventionally, we can search the left-projection subspace
of . However, a
comprehensive search will result in a very large scale optimiza-
tion problem. To cut the calculational overhead and present a
regularized solution to the optimal problem, we propose two
methods to constrain the left-projection space, which lead to
the following two algorithms, FKA01 and FKA02, respectively.
As discussed in Section III, we could also avoid the ill-posed
problem by using this kind of constrained solutions, which will
not bring about extra regularization parameter for selection.

FKA01: Assume that the left-projection space is constrained
in , where .
Denote

Suppose that the projection of in left-projection space is
; then, the element of , i.e., , has the form

Different types of kernel functions are chosen from the kernel
bank , which can be obtained from prior
knowledge or simply defined by users. Basically, the larger is the
kernel bank, the heavier the computational cost, yet the greater
the potential for algorithmic classification capability. Hence, the
selection of the kernel bank depends on the balance of compu-
tational cost and potential algorithmic classification capability.

FKA02: As discussed in Section III, we could also use the
mapping of class centroids to approximate

. Then, the left-projection space is the
constrained space of
and is the centroid of th class. Then, we define

Denote the projection of in the left-projection space as
; then, the element of , i.e., , has the form

where .
These two methods have different left-projection spaces, but

both of them can be solved in the following form. Denote that

(7)

Then, the Criterion 2 can be simplified to Criterion 3.
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Fig. 2. Procedure for FKA.

Criterion 3:

The kernel matrices defined in (7) can be directly computed
from the kernel bank . Thus, the solution
of Criterion 3 can be obtained by using general matrix analysis
techniques. In our paper, we use an iterative procedure to find
the optimal solution for Criterion 3.

C. Iterative Optimization Procedure

We implement the optimization procedure in two steps. First,
-step is to find an optimal matrix and -step to obtain the

optimal matrix. In the -step, we fix the right matrix to get
the optimal . Then, in the -step, we fix as the one computed
in the -step, and calculate the optimal . The two steps are
iterated for a certain number of times until converged. The two
steps are as follows.

1) L-step: For a given , the objective function of
Criterion 3 can be rewritten as

Since Trace , we have

Trace

Trace

where

(8)

Similarly, we have

Trace

where

(9)

Then, the optimal can be computed by solving

Trace

Trace
(10)

Unlike in KDA, the matrix is generally nonsingular
here. Commonly, this problem is transformed into the form
Trace , and solved with the eigenvalue
problem as in traditional LDA [8].

2) V-step: Consider the computation of for a fixed . This
step is similar to the -step and we rewrite Criterion 3 as

Trace

Trace
(11)

where

(12)

In addition, similar to the -step, the optimal solution of can
be calculated as traditional LDA [8].

Those two steps of iterative solution are widely used to solve
the optimal problem which has the following form:

where and are two given matrices. In dimen-
sionality reduction, Ye [42] first used this method to solve the
problem known as “2-D LDA.” To the best of our knowledge,
though this iterative solution works well in practice, there is
still no theoretical discussion concerning the convergence issue
in this context.

The so-called FKA procedure is developed using the iterative
optimization method provided previously, and the whole proce-
dure is shown in Fig. 2.

The parameter defines the number of the selected combina-
tions of the kernels in the kernel bank. The parameter actually
defines the dimension of projection space as in the traditional
KDA algorithm, i.e., the number of discriminant features used
for classification. However, the here is much smaller than the
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corresponding feature number in KDA, since we have se-
lected combinations of kernels and each have features. Thus,
using the projection matrices found by our algorithms, we map
each data sample to a feature matrix which is used in the
classification. Such a feature matrix can be seen to be composed
of feature vector of dimension , while in KDA, we only have

feature point for each sample. In the real problem of applica-
tion, we can choose and using crossing validation. Besides,
from the result in Section V, we can also see that the algorithm
is not sensitive to and within a considerable area.

D. Algorithmic Analysis

Using two projection spaces, our FKC carries out kernel se-
lection and discriminant analysis at the same time. These two
projections not only facilitate the computation of the final op-
timal projection matrix but also provide a unified framework
that can be applied to other kernel algorithms such as kernel
principle component analysis (KPCA) [24]. Besides, since our
algorithm finds all the projection directions at the same time,
it is optimal according to our criterion, while in most other al-
gorithms [10], only the first dimension of the projection matrix
can be guaranteed to be optimal. On the other hand, our kernel
selection is a combination of various different kinds of kernel
functions, so it can be regarded as a synthesis of several dif-
ferent classifiers.

Moreover, our proposed solution FKA with FKC could avoid
the ill-posed problem in traditional KDA and is easy to imple-
ment. Take FKA01 for example; suppose that is the optimal

matrix. Note that and
. Therefore, is

approximately . When using multiple ker-
nels, we always have , and hence, often .
Under such a condition, matrix is usually of full rank and
the problem is not ill-posed.

In addition, the computational complexity of our algorithms
is almost the same as the traditional KDA. In FKA01, we need to
calculate two kinds of matrix decomposition. In the left step, we
compute the decomposition of an matrix for times, and
therefore, the computational complexity is , while
in the right step, the size of right matrix is and the com-
putational complexity of right step is . Since mostly

, the whole process of FKA01 is . As for
FKA02, the left step has a decomposition of a matrix
for times and the right step of FKA02 is the same with that
of FKA01. Therefore, the whole process of FKA02 also has a
computational complexity of . In KDA algorithm
with a given kernel function, the size of a kernel matrix is ,
and it needs a time complexity of to find the projection
matrix. Hence, to find an optimal kernel function out of kernel
functions for KDA, the time complexity is .

In this paper, the number of iterations in our algorithms is
set as 100. Though our algorithms may be more time-consuming
than selecting a single best kernel from the kernel bank, they can
still be done rather quickly in practice. Moreover, since even
the number of kernels for a given group of function is usually
infinite, to find the optimal kernel out of several predetermined
kernels is not a convincing kernel selection method. By contrast,

our methods2 aim to find an optimal combination of different
kernels by using the whole kernel bank. From the experiments
in Section V, we see that the result of our method is always better
than that of using a single optimal kernel in the kernel bank.

V. EXPERIMENTS

In this section, several experiments are presented to evaluate
the performance of the proposed FKA algorithm. We choose
the face data to verify the stability of our algorithm. The face
databases include the benchmark face databases such as Olivetti
and Oracle Research Laboratory (ORL, Cambridge, U.K.) data-
base [25], face recognition technology (FERET) database [27],
and Carnegie Mellon University (CMU, Pittsburgh, PA) pose il-
lumination and expression (PIE) database [30]. For simplicity,
each experiment is named as , which denotes that
images per person are randomly selected as the gallery set and
other for the probe set. In our experiment, histogram equilib-
rium is applied as preprocessing, and then, nearest neighbor is
used as the final classifier.

In all the experiments, we first construct the so-called kernel
bank, which is a set of various kernel functions. Specifi-
cally, we use two different kernel banks: for experiments in
Sections V-A–V-C, we adopt Gaussian kernel to construct the
Gaussian kernel bank

and set the parameter , where is
the standard deviation of the training data; as for experiments in
Section V-D, we employ two kinds of different kernel functions
to construct the multikernel bank

where . Although decision of the range of
used in the Gaussian kernel is still an open problem, we may

define some reasonable values for . In Gaussian kernel, if the
value of is very small, then is very large, so we
have ; if the value of is very large,
then will be very small and

. Therefore, we can first identify a lower bound and an upper
bound for and select between these two values. The kernel
functions with these parameters are used to construct the kernel
bank. One may also construct the kernel bank according to some
prior knowledge.

In our experiments, we compare the classification result of
our FKA with the traditional KDA using the kernel functions in
the kernel bank. Though, in general, FKA is unable to decide
which kernel to incorporate into the initial kernel bank, as long
as the kernel bank has enough kernel functions, the final result
of FKA will usually be satisfactory. More importantly, our FKA
should perform better than or at least equal to the performance
of traditional KDA using only a single kernel from the kernel

2If we constrain the right matrix to be a vector with only one nonzero element,
our method shall equal to select a single kernel out of the kernel bank. Therefore,
we regard our method as a kernel selection method in general.
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Fig. 3. Five images of one person in the ORL face database.

Fig. 4. Error rate of FKA02 versus KDA on the ORL database, using Gaussian
kernel bank. The numbers 1–10 represent the result of traditional KDA in the
kernel bank and 11 is the result of FKA02.

bank, which shows that the idea of combining various kernels is
rather promising in kernel selections.

A. Experiment of Face-Recognition on the ORL Database

The ORL database contains 400 images of 40 individuals.
Five sample images of one person in the ORL database are
shown in Fig. 3. The images were taken with a tolerance for
some tilting and rotation of the faces up to 20 . Some images
were captured at different times and had different variations in-
cluding expression and facial details. All images are grayscale
and normalized to a resolution of 46 56 pixels.

The whole database is divided into gallery and probe sets as:
test A G3/P7, test B G2/P8, and test C G5/P5. Our comparison
result between KDA and FKA on the ORL data is presented in
Figs. 4 and 5. These two figures display the error rates of the
three sets tests: tests A, B, and C. The vertical axis represents
error rate of different algorithms. The horizontal axis represents
different algorithms, where the numbers from 1 to 10 denote
KDA algorithms using ten different parameters while 11 and 12
represent FKA02 and FKA01 with ten kernels in KDA as the
kernel bank, respectively. From Fig. 4, we can see that FKA02
has a much lower error rate than the KDAs with different kernels
in both cases.

In Fig. 5, we show the results of both FKA01 and FKA02 in
test C to compare with ten KDAs with different kernels. It also
confirms that both FKA algorithms outperform all the KDAs.

Fig. 6 displays recognition rates of FKA02 on different di-
mensions and the results are from test C. The horizontal axes
represent the row and column dimensions of the final low di-
mensional matrix used for face recognition.

From Fig. 6, we can see that for a sensible area where and
are chosen, the slight change of and will not greatly

influence the performance of our FKA algorithm.

Fig. 5. Error rate of FKA02 and FKA01 versus KDAs on the ORL database,
using Gaussian kernel bank. Note that on the horizontal axis, numbers 1–10
represent the result of KDA using individual kernel in the kernel bank, while
number 11 represents FKA02 and 12 represents FKA01.

Fig. 6. Accuracy of FKA02 versus number of eigenvectors in test C on the ORL
database, using Gaussian kernel bank. The horizontal axes represent the value
of the parameter q and f , while the vertical axis represents the recognition rate
of FKA02.

Fig. 7. Images of one subject in the FERET database.

B. Experiment of Face Recognition on the FERET Database

The FERET [27] face image database is a standard database
for testing and evaluating the state-of-the-art face-recognition
algorithms. In our experiment, we use a subset of the FERET
database. The subset includes 70 persons and each person has
six different facial images. All the images are aligned by fixing
the locations of the two eyes and resized to 46 56 pixels. Fa-
cial expressions, illumination, pose, and facial details vary in the
images. Fig. 7 displays six examples of one person in FERET.

We randomly partition the database into G4/P2 as test A and
G2/P4 as test B. Fig. 8 presents the results of these two experi-
ments, which also demonstrates that the algorithm FKA02 out-
performs the traditional KDA algorithms with different kernel
parameters.

C. Experiment of Face Recognition on the PIE Database

The CMU PIE database contains more than 40 000 facial im-
ages of 68 people. The images were acquired with different
poses, under various illumination conditions, and with different
facial expressions.
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Fig. 8. Error rate of FKA02 versus KDA on the FERET database, using
Gaussian kernel bank. The numbers 1–10 represent the result of KDA using
individual kernel in the kernel bank, while the number 11 represents the result
of FKA02.

Fig. 9. Five images of one person in the PIE database.

Fig. 10. Error rate of FKA01 versus KDA on the PIE database, using Gaussian
kernel bank. The numbers 1–10 represent the result of KDA using individual
kernel in the kernel bank, while the number 11 represents the result of FKA01.

Fig. 9 shows five images of one person without preprocessing.
In our used database of PIE, five near frontal poses (C27, C05,
C29, C09, and C07) and illumination 08 and 11 are chosen. The
flash 08 and 11 are placed near the center and the illumination
can be considered as the nearly frontal illumination. Each person
has ten images and all the images are aligned by fixing the loca-
tions of two eyes, and the images are resized to 64 64 pixels.

Similar to the previous experiments, the data set is randomly
partitioned into gallery and probe sets with G4/P6 in test A and
G3/P7 in test B. We compare FKA01 with KDA in this experi-
ment.

The result in Fig. 10 again shows that FKA01 improves face-
recognition accuracy compared to traditional KDA with dif-
ferent kernel parameters.

D. Experiment of Multikernel Functions on the ORL and the
FERET Database

In this section, we use two kinds of kernel functions in our
multikernel bank in order to justify that our FKA is an effective

Fig. 11. Error rate of FKA01 and FKA02 versus KDAs using the multikernel
bank. The numbers 1–4 represent the results of KDAs using individual kernel
functions in multikernel bank. The number 5 represents the result of FKA01 and
6 represents the result of FKA02.

Fig. 12. Error rate of FKA01 and FKA02 versus KDAs and RKDA using the
multikernel bank. The numbers 1 and 2 represent the results of KDAs using
Gaussian kernel functions, the numbers 3 and 4 represent the result of RKDA
using the same Gaussian kernel, and the numbers 5 and 6 represent the result of
FKA01, 02 using the whole multikernel bank.

kernel selection method among different kernels. We present
two sets of experiments using the subset of ORL, which is par-
titioned as G2/P8, and a subset of FERET database, which is
partitioned as G4/P2.

Fig. 11 is the results of experiment on the FERET and ORL
database, showing the comparison between the results of FKA
and KDA. Test A is the result on the G4/P2 subset of the FERET
database, while test B is the result on the G2/P8 subset of the
ORL database. From Fig. 11, we can see that the results of our
FKA are better than those of the KDAs.

We also compare our FKA algorithm with the method in
[16]. In Fig. 12, we compare our FKA algorithm with KDA and
RKDA using the kernel in the multikernel bank on the PIE data-
base. Test A is the result on the G2/P8 subset of the ORL data-
base and test B is the result on G4/P2 FERET.

From all the previous experiments, we find that the param-
eter for KDA to obtain the best performance is different on dif-
ferent data set, and the same kernel function may have different
performance on different data sets. Hence, it is difficult and un-
reasonable to select kernels empirically as in traditional KDA.
While our algorithms can effectively combine different kernels
and derive elegant representation for classification, thus are su-
perior to the traditional KDA in almost all cases.
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For KDA, there are some methods [6], [12] that process
kernel selection under the framework of adding a penalized
term for regularization. Although these methods can be solved
efficiently by using convex optimization, there is still problem
on how to optimize the regularization term and kernel function
simultaneously. Rather than using penalized term, we directly
restrict the projection space to avoid overfitting, which can also
be viewed as a kind of regularization in general. By using that
restriction, we can successfully avoid overfitting and at the
same time provide a feasible framework for kernel selection.

VI. CONCLUSION AND DISCUSSION

In this paper, we have proposed a novel FKC to fuse kernel
selection into the process of discriminant analysis. This crite-
rion automatically combines different types of kernels to search
for the most discriminating features. We also propose two iter-
ative algorithms called FKA01 and FKA02 to optimize the new
criterion. In the two algorithms, we use the constrained solu-
tion rather than the traditional regularization methods to solve
the ill-posed problem. On one hand, the constrained solution re-
duces the overhead of computation; on the other hand, although
the constrained solution cannot solve the ill-posed problem in
theory, it alleviates the ill-posed problem to some extent. Ex-
tensive experiments on different databases show the superiority
of the proposed FKA.

One shortcoming of FKA is that it is iterative and may suffer
from the local minima. Future research projects could study how
to use the stimulated annealing method [2] to search for the
global optimum. In addition, the methods can also be combined
with other linear subspace methods [35], [36].

APPENDIX I
SCATTER MATRIX

Denote and the scatter matrices
given in (2) can be rewritten as

(13)

where

if i=j

else

and is an -dimensional vector with . Let be
the total scatter matrix as

Then, can be written as

(14)

APPENDIX II
PROOF OF OVERFITTING

Lemma 1: The rank of matrix is .
Example: In KDA algorithms, when is a nonsingular ma-

trix, there exist basis vectors that map the original data of the
same class to the same point.

Solution: When is nonsingular, (4) can be simplified as
. Set that . Using

Lemma 1, we conclude that has only zero eigenvalues.
Define

and we have

(15)

This means that are the eigenvectors corre-
sponding to ’s zero eigenvalues. Recalling the matrices
defined in (13) and (14), we can obtain

(16)

Choose as the eigenvectors, and we have .
The image of in higher dimensional feature space is

projected to . Note that

where denotes the th entry of the vector . Let
be a set of basis vectors of the feature space,

where the vector corresponds to . Note that when
are two different samples from the same class (for ex-

ample, class ) in the original data set, they are projected to the
coordinate 0 under the basis and the coordinate 1
under the basis . Under this set of the basis, the data
of the same class is mapped to the same data point in the re-
duced-dimension subspace.

APPENDIX III
PROOF OF REPRODUCING HILBERT SPACE

Define the addition of two vectors

and

in as
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and the scalar multiplication between an element and
a scalar as

The inner product between and is given as

First, we prove that is a Hilbert space by showing
that the induced metric is complete in . Now, suppose
that is a sequence of elements in which satisfies

Since

we have

for each

Recall that each is a Hilbert space, thus we know that there
exists an element in satisfying

Now, let be an element in .
From previous deduction, we immediately know

which proves that is a Hilbert space.
Denote , where each is the kernel

function corresponding to , now enough to justify the
reproducing property of . Notice that and we
can denote , where and

are arbitrary. We have

which proves that is a reproducing kernel Hilbert space.
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