
Plane-Based Optimization for 3D Object
Reconstruction from Single Line Drawings

Jianzhuang Liu, Senior Member, IEEE, Liangliang Cao, Zhenguo Li, and

Xiaoou Tang, Senior Member, IEEE

Abstract—In previous optimization-based methods of 3D planar-faced object reconstruction from single 2D line drawings, the missing

depths of the vertices of a line drawing (and other parameters in some methods) are used as the variables of the objective functions. A

3D object with planar faces is derived by finding values for these variables that minimize the objective functions. These methods work well

for simple objects with a small number N of variables. As N grows, however, it is very difficult for them to find the expected objects. This is
important research topic for machine vision. Its applications
include flexible sketching input for conceptual designers who
tend to prefer pencil and paper over mouse and keyboard in
current CAD systems, conversion of existing industrial
wireframe models to solid models, interactive generation of
3D objects from images, and user-friendly query input
interface for 3D object retrieval from large 3D object databases
and the Web.

Interpretation of line drawings has spanned more than
three decades. The earliest work is about line labeling and
testing the correctness/realizability of a line drawing [1], [2],
[3], [4], [5], [6], [7]. It does not give explicit 3D reconstruction
from a line drawing. More recently, symbolic computation
with the Grassmann-Cayley algebra is used to analyze the
[31]. These methods are most related to the work in this paper
and will be reviewed in more detail in the next section. In
these optimization-based methods, the variables of the
objective functions are the missing depths of the vertices in
a line drawing (plus other parameters in some methods). A
3D planar object (that is, an object with planar faces only) is
recovered by deriving the values for these variables that
minimize the objective function. In general, these methods
work well for simple objects with a small number N of the
variables. As N grows, however, it is very difficult for them to
find the expected objects. This is because with the nonlinear
objective function in a high-dimensional space R

N , the search
for optimal solutions can easily get trapped into local
minima. Fig. 1b shows an example that the method in [21]
cannot handle.

In this paper, we tackle the reconstruction problem in
another way. Instead of the depths of the vertices, we use only
the parameters of the planes that pass through the planar
faces of an object as the variables of the objective function.
This method leads to a set of linear constraints, resulting in a
much lower dimensional null space where optimization is
easier to achieve. We prove a theorem that shows that the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 2, FEBRUARY 2008 315

. J. Liu, Z. Li, and X. Tang are with the Department of Information
Engineering, The Chinese University of Hong Kong, Hong Kong.
E-mail: {zliu, zgli5, xtang}@ie.cuhk.edu.hk.

. L. Cao is with the Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, Urbana, IL 61801.
E-mail: cao4@uiuc.edu.

Manuscript received 13 July 2006; revised 21 Jan. 2007; accepted 13 Mar.
2007; published online 3 May 2007.
Recommended for acceptance by R. Basri.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0518-0706.
Digital Object Identifier no. 10.1109/TPAMI.2007.1172.

0162-8828/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Marill [18] presented his method based on a simple
criterion: minimizing the standard deviation of the angles
in the reconstructed object, which is called the MSDA
principle. Motivated by MSDA, Brown and Wang [19]
proposed to minimize the standard deviation of the segment
magnitudes (MSDSM), and Shoji et al. [20] presented the
criterion of minimizing the entropy of angle distribution
(MEAD). MSDA, MSDSM, and MEAD can only recover
simple objects from line drawings. Leclerc and Fischler’s
method considers not only MSDA but also the planarity
constraint on the faces of the object [9]. This method performs
better than MSDA, MSDSM, and MEAD. Later, Lipson and
Shpitalni [21] extended Leclerc and Fischler’s method by
adding more constraints such as line parallelism, line
verticality, isometry, corner orthogonality, skewed facial
orthogonality, and skewed facial symmetry. This method can
reconstruct more complex objects than Leclerc and Fischler’s.
Piquer et al. focused on recovering mirror symmetry objects
using a symmetry constraint [22]. Based on the work in [18],
[9], and [21], Turner et al. recovered simple planar 3D objects
from scenes [28]. Shesh and Chen applied Lipson and
Shpitalni’s algorithm to their sketching system in [23]. Cao
et al. focused on the 3D reconstruction of trihedral polyhedra
from line drawings without hidden lines [24].

Among these previous methods [9], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], Lipson and Shpitalni’s [21]
can handle the widest range of planar objects. Our method in
this paper is most related to Leclerc and Fischler’s [9] and
Lipson and Shpitalni’s [21] methods because 1) the three
methods all use MSDA and planarity to formulate the
reconstruction problem, 2) they neither need to label a line
drawing nor use shading information, and 3) the original
2Dvertexpositionsarenotchanged in therecovered3Dobject.

3 ASSUMPTIONS

In this paper, a line drawing is assumed to be an orthogonal
projection of a 3D planar object in a generic view, with or
without hidden lines and vertices. A line drawing in a generic
view means that no two vertices appear at the same position
and no two lines overlap in the 2D projection plane. If a line
drawing is drawn with a mouse or tablet PC pen on the screen,
the hidden lines and vertices can also be given, which allows
the reconstruction of complete and more complex objects.
When a recovered 3D object looks reasonable to human
observers, the reconstruction is considered successful. Fig. 1c
is a successful result obtained from the line drawing in Fig. 1a,
but Fig. 1b is not.

Given a line drawing, its face topology is assumed to be
known before the reconstruction of its 3D geometry. Here,
the face topology denotes the set of circuits that represent
all the faces of the 3D object. The line drawing in Fig. 1a has
15 faces, as shown in Fig. 1d. Finding the face topology from
a line drawing is not a trivial problem due to the fact that
the number of circuits is exponential in the number of edges
in a general line drawing [16]. Fortunately, our previous
work [15], [16] can be used for this purpose.

4 FORMULATIONS IN THE MOST RELATED

METHODS

In this section, we briefly review the formulations of the
reconstruction problem in the most related methods. These

methods inflate a flat 2D line drawing by searching for
suitable depths (z-coordinates) for all the vertices of the line
drawing. These z-coordinates are obtained by minimizing an
objective function that consists of some constraints such as
MSDA, face planarity, and line parallelism. These constraints
try to emulate the human perception of a 2D line drawing as a
3D object. The objective functions to be optimized take the
following form:

� ðz1; z2; . . . ; zNvÞ ¼
XNc

i¼1

wi � i ðz1; z2; . . . ; zNvÞ; ð1Þ

where Nv denotes the number of the vertices of a line
drawing, z1; z2; . . . ; zNv are the Nv z-coordinates to be deter-
mined, � i , 1� i � Nc, are the Nc constraints used, and wi ,
1� i � Nc, are weighting factors that give different weights
to the constraints.

After z1; z2; . . . ; zNv are obtained by minimizing � , a
3D object is completely defined if the face topology is known
and the line drawing is an orthogonal projection of the
3D object. The assumption of orthogonal projection makes the
x and y-coordinates of the vertices of the 3D object available
from the line drawing.

From our experiments, we consider that MSDA and face
planarity are the two most important constraints for
3D object reconstruction from line drawings. Let � 1 be the
standard deviation of the angles in the reconstructed object:

� 1ðz1; z2; . . . ; zNvÞ ¼ SDð� 1; � 2; . . . ; � kÞ; ð2Þ

where � 1; � 2; . . . ; � k are all the angles formed by every two
adjoining lines in the 3D object, and SD denotes the
standard deviation. Minimizing � 1 is the MSDA.

Let constraint � 2 be the total distance of the vertices from
their corresponding planes that pass through the faces of
the 3D object. Minimizing � 2 forces face planarity. Given the
3D coordinates of all the vertices, the parameters represent-
ing these planes can be obtained by a least square best fit
plane algorithm [21]. Other constraints can be found from
[19], [20], [21], [22], and [24].

From the definitions of � 1 and � 2, we can see that
� ðz1; z2; . . . ; zNvÞ is nonlinear. Minimizing it is carried out in
the spaceRNv. Our experiments show that this optimization
can easily get trapped into local minima when Nv is large
with these formulations.

5 OUR FORMULATION

We first define a new term and then present a new
formulation of the reconstruction problem.

Definition 1. Let a line drawing be a projection of a 3D object.
The minimum number of depths (z-coordinates) that can
uniquely define this 3D object is called the degree of
reconstruction freedom (DRF) for the line drawing.

Now, let us analyze the DRF for a simple line drawing
shown in Fig. 3. In the previous depth-based optimization
methods, the dimension of the search space is six since there
are six vertices in the line drawing. 1 However, the DRF for
this line drawing can be less than six with new geometric
constraints taken into account.

LIU ET AL.: PLANE-BASED OPTIMIZATION FOR 3D OBJECT RECONSTRUCTION FROM SINGLE LINE DRAWINGS 317

1. In an implementation, we can arbitrarily specify the depth of one
vertex, making the dimension of the search space be five. For simplicity of
the description, we assume that the values of all the vertices can vary.

Here, we assume that the line drawing is a precise
orthogonal projection of a truncated pyramid. Thus, all the
3D vertices on the same face are coplanar. For example, all
the four vertices v3� 6 are on the plane defined by
a4x þ b4y þ c4 � z ¼ 0, which passes through the face
f 4 ¼ f v3; v4; v5; v6g. Next, we can show that the 3D object
is defined if z3, z4, z5, and z1 are given.

When z3, z4, and z5 are known, the 3D plane a4x þ b4y þ
c4 � z ¼ 0 is defined. Then, z6 can be calculated by
z6 ¼ a4x6 þ b4y6 þ c4. Since v1, v3, and v6 are known now,
v2 is determined because it is on the plane defined by v1, v3,
and v6. Thus, all the 3D vertices of the object are derived.

On the other hand, it is obvious that any three known
depths cannot define a unique 3D object whose projection is
this line drawing. Therefore, the DRF for this line drawing is
four, which is smaller than six, the number of vertices. This
example suggests that other formulations of the reconstruc-
tion problem in a lower space for optimization are possible.

In our formulation, instead of the depths of the vertices,
we use the faces of a line drawing to be the variables of the
objective function. More exactly, we use the parameters ai ,
bi , and ci defining plane i by ai x þ bi y þ ci � z ¼ 0 to be the
variables of the objective function, where plane i passes
through face i . We call this formulation a plane-based
optimization formulation.

In what follows, for simplicity, if a plane is defined by
ax þ byþ c � z ¼ 0, we may use the triple ða; b; cÞto denote
the plane. If this plane passes through a face, we may also
use ða; b; cÞto denote the face. Besides, a face may also be
represented by the vertices it passes through, such asf 5 ¼
f v2; v5; v6g in Fig. 3.

Now, we show how to formulate the geometric constraints
with the linedrawinggiven inFig.3. In this linedrawing, three
faces, f 1, f 2, and f 3, pass through vertex v1 ¼ ½x1; y1; z1�T .
Thus, we have these linear constraints z1 ¼ a1x1 þ b1y1 þ c1,
z1 ¼ a2x1 þ b2y1 þ c2, and z1 ¼ a3x1 þ b3y1 þ c3, which can be
reduced to two equations by eliminating z1:a1x1 þ b1y1 þ c1�
a2x1 � b2y1 � c2 ¼ 0 and a2x1 þ b2y1 þ c2 � a3x1 � b3y1 �
c3 ¼ 0. For other vertices v2� 6, we can obtain similar
constraints without the z-coordinates. Rewriting all these
linear equations in matrix form, we have

Pf ¼ 0; ð3Þ

where P is a 12� 15 matrix in this example, and f ¼
½a1; b1; c1; a2; b2; c2; a3; b3; c3; a4; b4; c4; a5; b5; c5�T consists of all
the parameters of the five faces of the truncated pyramid.

For a general line drawing with Nv vertices and Nf faces,
we can obtain the same matrix representation as in (3), with
f ¼ ½a1; b1; c1; a2; b2; c2; � � � ; aNf ; bNf ; cNf �T , and P being a
matrix of size M � ð 3Nf Þ, where M depends on the
structure of the line drawing. If only one face passes

through a vertex, this vertex contributes nothing to P; if
n faces pass through it, it contributes n � 1 rows to P. We
call P and f the projection matrixand face parameter vectorof
the line drawing, respectively.

Usually, there are an infinite number of solutions to (3).
However, the number of the independent solutions is limited.
All the solutions to (3) compose a null space, denoted by
Null ðPÞ, with a dimension DNull ðPÞ ¼ 3Nf � RankðPÞ, where
Rankð�Þdenotes the rank of the matrix [32]. We will see later
that DNull ðPÞ � Nv for a complex line drawing. This suggests
that searching for the optimal f in Null ðPÞwould be much
easier than the searching for the optimal z1; z2; . . . ; zNv in RNv.

Given a line drawing, now, our target is to find the
optimal f � 2 Null ðPÞ such that f � minimizes an objective
function � ðf Þ, which is modified from � ðz1; z2; . . . ; zNvÞ
defined in (1). Let

� 0ðz1; z2; . . . ; zNvÞ ¼� ðz1; z2; . . . ; zNvÞ � w2� 2ðz1; z2; . . . ; zNvÞ;

ð4Þ

where � 2ðz1; z2; . . . ; zNvÞ is the constraint of face planarity.
Since all the depths can be calculated by zp ¼ ai xp þ bi yp þ
ci if vertex vp ¼ ½xp; yp; zp�T is on the plane ðai ; bi ; ci Þ, we can
convert the depth-based representation � 0ðz1; z2; . . . ; zNvÞ
into a plane-based representation by

� ðf Þ ¼� 0ðz1ðf Þ; z2ðf Þ; . . . ; zNvðf ÞÞ: ð5Þ

The optimization problem is now to

minimize � ðf Þ; ð6Þ

subject to f 2 Null ðPÞ: ð7Þ

In � 0ðz1; z2; ::; zNvÞ(also � ðf Þ), the constraint � 2 is removed
because� 2 ¼ 0 when f 2 Null ðPÞ.

Given a line drawing, it is straightforward to obtain P
and Null ðPÞ, from which it seems that the problem defined
in (6) and (7) can be solved easily. However, a practical line
drawing is usually not a precise projection of a 3D object,
causing the Null ðPÞobtained from this line drawing to be
smaller than the null space of the projection matrix of a
corresponding ideal line drawing. Thus, the search in this
smaller space may miss the expected solutions.

Let us analyze this problem in more detail. In what
follows, a line drawing that is exactly the projection of a
3D object is called an ideal line drawing. A practical line
drawing is not necessarily an ideal line drawing.

Suppose that LD 0 is an ideal line drawing of a 3D object
and LD is a practical line drawing representing the same
object but with some vertices deviating a little from their
corresponding vertices in LD 0. Let P0 and P be the two
projection matrices of LD 0 and LD , respectively. The
dimension DNull ðP0Þ of Null ðP0Þand the dimension DNull ðPÞ
of Null ðPÞcan be obtained by

DNull ðPoÞ ¼ 3Nf � RankðPoÞ; ð8Þ

DNull ðPÞ ¼ 3Nf � RankðPÞ ð9Þ

with Nf being the number of faces of LD 0 (or LD).
We have found that the ranks of the projection matrices of

most practical line drawings are larger than those of their
corresponding ideal line drawings. Fig. 2 shows an example
with the ideal line drawing LD 0 and the practical line

318 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 2, FEBRUARY 2008

Fig. 3. The line drawing of a truncated pyramid with six verticesv1� 6 and

five faces f 1� 5.

drawing LD representing a truncated pyramid. Both P0 and
P are of size 12� 15, and we have RankðP0Þ ¼ 11 and
RankðPÞ ¼ 12. The constraint that the three lines v2v1, v5v4,
and v6v3 meet exactly at a point v in LD 0 implies that the
12 vectors, each of which is a row in P0, are not independent.
When this constraint is not imposed as in LD , the 12 row
vectors in P become independent, making the rank of P
larger by one.

Another example is given in Fig. 4a. If the line drawing is
an ideal one, the rank of its projection matrix will be 14. The
constraint that all the six faces are planar in a 3D space
implies that some of the row vectors of the projection matrix
are dependent. However, if it is a practical line drawing,
usually, this constraint cannot be satisfied, causing the rank
to increase by one. In all the examples given in Section 9, the
ranks increase.

There are line drawings for which the ranks of their
projection matrices remain unchanged. Figs. 4b and 4c
show two examples. They are always ideal line drawings,
the projections of an infinite number of 3D objects, with the
ranks being 5 and 8, respectively.

We have not found that the rank of the projection matrix
of a line drawing representing an object in a generic view
may reduce, but we do find that if a line drawing is the
projection of an object in a special view, the rank may
reduce. For example, if the two line drawings in Figs. 4b
and 4c are degraded into the two shown in Figs. 4d and 4e,
the ranks will reduce to 2 and 0, respectively. Since we
consider line drawings that are the projections of 3D objects
in generic views, it is our belief that the ranks of the
projection matrices of these line drawings do not reduce.
Although we have not been able to prove this observation,
the reduction of the rank for a line drawing in a generic
view, if it is indeed possible, does not affect our approach to
3D reconstruction (see Section 8 for the explanation).

Now, the questions are “What is the dimension of
Null ðP0Þ when we do not have an ideal line drawing LD 0

but only a practical line drawing LD ?” and “How can we
find a space, from which an expected 3D object with respect
to LD can be obtained?” We will answer these questions in
the next three sections.

6 RELATION BETWEEN THE DIMENSION OF THE

NULL SPACE AND THE DRF

In Section 5, we can find the DRF for the line drawing
shown in Fig. 3 no matter whether it is an ideal line drawing
of a 3D object or not. Let P0 be the projection matrix of an
ideal line drawing LD 0. We will prove that the dimension of
Null ðP0Þ is equal to the DRF for LD 0, which implies that
even if we do not have this ideal line drawing LD 0 (but a
practical line drawing LD), it is still possible to find the

dimension of Null ðP0Þ from LD . This is the key to finding a
space for the search for the expected 3D objects. Before
giving the proof, we consider a lemma first.

Lemma 1. Let P0 be the projection matrix of an ideal line drawing
of a 3D object. Then, 1) some of the vertices of the 3D object
satisfy P0Q

�1z ¼ 0, where z is formed by the z-coordinates of
these vertices, and Q is formed by the x and y-coordinates of these
vertices; and 2) the dimensions of Null ðP0Þ and Null ðP0Q

�1Þ
are the same.

Proof.

1. Suppose that the 3D object has Nf faces. From
face i , we can find three noncollinear vertices
vij ¼ ½xij ; yij ; zij �T , j ¼ 1; 2; 3, which define the
plane ðai ; bi ; ci Þ passing through this face. Thus,
we have

zij ¼ ai xij þ bi yij þ ci ; j ¼ 1; 2; 3 ð10Þ

or

zi1

zi2

zi3

2
4

3
5 ¼ xi1 yi1 1

xi2 yi2 1
xi3 yi3 1

2
4

3
5 ai

bi

ci

2
4

3
5 ¼ Qi

ai

bi

ci

2
4

3
5: ð11Þ

The vertices vi 1, vi 2, and vi 3 are not collinear,
neither are their projections on the plane where
the line drawing is shown in a generic view. Thus,
it holds that detðQi Þ 6¼ 0.

From each of the Nf faces, we can obtain an
equation similar to (11). Combining all these
Nf equations, we have

z ¼
½z11; z12; z13; z21; z22; z23; � � � ; zNf 1; zNf 2; zNf 3�T ¼ Qf ;

ð12Þ

where f¼½a1;b1;c1;a2;b2; c2; � � � ; aNf ; bNf ; cNf �
T , and

Q ¼
Q1 0 � � � 0
0 Q2 � � � 0
0 0 � � � QNf

2
4

3
5:

The fact that detðQi Þ 6¼ 0, 1� i � Nf , implies that
detðQÞ 6¼ 0 and f ¼ Q�1z. Hence, from P0f ¼ 0 in
(3), we have

P0Q
�1z ¼ 0: ð13Þ

2. Since Q is invertible, it holds that RankðP0Þ ¼
RankðP0Q

�1Þ [32], which indicates that the
dimensions of Null ðP0Þ and Null ðP0Q

�1Þ are
both equal to 3Nf � RankðP0Þ. tu

It is worth noting that in general, the z in (12) and (13) does
not include all the z-coordinates of the vertices of the object.
However, if z is a solution of (13), all the other z-coordinates
not in z can be derived from their x and y-coordinates and z,
because all the 3D faces have been determined byz. It also
should be emphasized that some of the z-coordinates in z
may be chosen more than once. In this case, (13) can be
represented in another form:

P0Q
�1Mz0 ¼ 0; ð14Þ

LIU ET AL.: PLANE-BASED OPTIMIZATION FOR 3D OBJECT RECONSTRUCTION FROM SINGLE LINE DRAWINGS 319

Fig. 4. Line drawings used to explain the changes of the ranks of their

projection matrices.

where z ¼Mz0, all the z-coordinates in z0 represent
different vertices, and the elements in M are either 1 or 0.
This can be clear after the explanation with a line drawing
given in Fig. 5. If v1, v2, and v3 are chosen to define facef 1
and v4, v1, and v3 are chosen to define face f 2, then
z ¼ ½z1; z2; z3; z4; z1; z3�T , z0 ¼ ½z1; z2; z3; z4�T , and

M ¼

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 0 1 0

2
6666664

3
7777775

:

Theorem 1. Let P0 be the projection matrix of an ideal line drawing
of a 3D object. The dimension of Null ðP0Þ equals the DRF for
this line drawing.

Proof. If z is a solution of (13), then z0 is also a solution of (14);
if z0 is a solution of (14), then z ¼Mz0 is also a solution of
(13). This equivalence between (13) and (14) indicates
that the dimensions of Null ðP0Q

�1Þ and Null ðP0Q
�1MÞ

must be the same. By Lemma 1, the dimensions of
Null ðP0Q

�1MÞ and Null ðP0Þ are also the same.
Let D be the dimension of Null ðP0Þ (or Null

ðP0Q
�1MÞ). Then, there are D free variables in z0, and

the other variables in z0 can be derived from these free
variables [32]. From the discussion in the paragraph
following the proof of Lemma 1, we know that the
z-coordinates of all the vertices of the object can be
obtained from these D free variables. Therefore, by
definition, the DRF for the line drawing is equal to the
dimension D of Null ðP0Þ. tu

7 FINDING THE DRF

Given a practical line drawing LD with its projection
matrix P, Null ðPÞ is often shrunk as discussed in Section 5.
From Theorem 1, we further know that the dimension of the
shrunk Null ðPÞ is less than the DRF for the line drawing. For
such a null space, it is probable that the expected 3D objects
will not be contained in this space. An example is given in
Fig. 2b, where no 3D truncated pyramids are available in that
Null ðPÞ. However, if we can find the DRF for the line
drawing, we can expand Null ðPÞ to a space with a dimension
not less than the DRF so that the expected 3D objects can be
obtained. In the following, we first define two terms, partial
line drawings and neighboring faces, and then develop an
algorithm to find an upper bound of the DRF.

Definition 2. Denote a line drawing by LD ¼ ðV; EÞ, where V
and E are the sets of the vertices and edges of LD , respectively.
A partial line drawing of LD is denoted by LD p ¼ ðVp; EpÞ,
with Vp 	 V, and Ep 	 E. A neighboring face of LD p is a face
that has only one edge or has two or more collinear edges in Ep.

By definition, a neighboring face of LD p has not been
defined completely by LD p, but its degree of freedom is
only one since it passes through one edge (or more than one
collinear edge) in LD p. Figs. 6b and 6c show two partial line
drawings LD p1 and LD p2 of the line drawing LD in Fig. 6a.
The face fv3; v4; v5; v6g is a neighboring face of LD p1, but
the face f ¼ fv3; v6; v7; v8; v9; v10; v11; v12g is not since it has
two noncollinear edges v10v11 and v11v12 in LD p1. However,
f is a neighboring face of LD p2 because all its edges inLD p2,
v6v7 and v10v11, are collinear.

The intersection of two planar faces in the 3D space is a
line or collinear lines. The projections of these collinear lines
are also collinear in the 2D line-drawing plane. However,
two lines that should be collinear may not be exactly
collinear in a practical line drawing. We have to allow some
degree of inaccuracy for the detection of collinearity. Let the
two vertices of edge vavb be va and vb and the two vertices
of edge vcvd be vc and vd, as shown in Fig. 7. Suppose that
va and vd are the two farthest vertices between the two
edges. Then, we have two vectors vavd

��! and vbvc
��!. The two

edges are considered as collinear if � 1 < � 1 and � 2 < � 2,
where � 1 and � 2 are two angle thresholds, � 1 is the smaller
angle between vavb and vcvd, and � 2 is the angle between
vavd
��! and vbvc

��!. In our experiments, � 1 and � 2 are chosen to
be 8 degrees and 5 degrees, respectively.

Algorithm 1 . (Finding an upper bound ub of the DRF for a
line drawing LD ¼ ðV; EÞ. Let LD p ¼ ðVp; EpÞ be a partial
line drawing of LD .)
1. Initialization:

(a) F all the faces of LD ;
(b) Select randomly one face f 0 2 F ; F F n ff 0g;
Vp all the vertices of f 0; Ep all the edges of f 0;

(c) ub 3;

320 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 2, FEBRUARY 2008

Fig. 5. A line drawing with two faces.

Fig. 6. (a) A line drawing LD . (b) A partial line drawing LD p1 of LD .

(c) Another partial line drawing LD p2 of LD .

Fig. 7. Detection of collinearity.

jV j, jF j, and jRj denote the numbers of vertices, faces, and
incidence pairs of the line drawing, respectively. However,
many common objects (such as a hexahedron) are not
regarded as generically reconstructible. For most of the line
drawings in this paper, this formula jV j þ 3jF j � jRj cannot
be used to obtain the degrees of freedom because they are
considered as nongenerically reconstructible by Sugihara
and Whiteley’s scheme.

To finish this section, we analyze the computational
complexity of Algorithm 1. Let a line drawing LD have
Nv vertices, Ne edges, andNf faces. Assume that every face
has less thank edges. The main computation is carried out by
Steps 2 and 3. In Step 2, the algorithm tests whether a given
face is a neighboring face ofLD p by looking for an edge in LD p

that is also an edge in the face, which is bounded by OðkNeÞ.
Thus, the computation at this step is OðkNf NeÞ. In Step 3a, to
test if f 2 has three noncollinear vertices in Vp, we first find all
the vertices in f 2 that are also in Vp and then check if there are
three noncollinear vertices among them. The former and the
latter are bounded by OðkNvÞ and OðkÞ, respectively. There-
fore, Step 3a takes less thanOðkNvÞ time. Step 3b needs less
than OðNf þ kÞ time. Then, the computation of one execution
of Step 3 is bounded by OððkNv þ Nf þ kÞNf Þ ¼ OðkNf NvÞ.
Note that when Step 2 or 3 is passed once, one face is deleted
from F . Therefore, the complexity of the algorithm is
bounded by Oðl1kNf Neþ l2kNf NvÞ, where l1 and l2 are the
numbers of times Steps 2 and 3 are visited, respectively, with
l1 þ l2 ¼ Nf � 1. Here, l1 þ l2 equals Nf � 1 instead of Nf

because Step 1b already removes one face fromF . Assume
that Ne
 Nv, and k is a constant. Then, the complexity of the
algorithm is bounded by OðN 2

f NvÞ.

8 FINDING A SPACE FOR OPTIMIZATION

It has been emphasized that a practical line drawing LD is
usually not a precise projection of a 3D object, and the
solutions to Pf ¼ 0 may not contain one corresponding to an
expected 3D object, whereP is the projection matrix of LD ,
and f is the face parameter vector. This is becauseNull ðPÞhas
been shrunk compared with Null ðP0Þ, that is, DNull ðPÞ <
DNull ðP0Þ, where P0 is the projection matrix of an ideal line
drawing LD 0 representing the same object asLD does, and
DNull ðPÞ and DNull ðP0Þ denote the dimensions of Null ðPÞ and
Null ðP0Þ, respectively.Since theobjectswhoseprojectionsare
LD 0 exist in Null ðP0Þ with a dimension DNull ðP0Þ, it is quite
reasonable to search for an expected object in a space with a
dimension equal to DNull ðP0Þ or larger. Although we do not
have an ideal line drawing in general, fortunately, we have
proved that DNull ðP0Þ equals the DRF for LD 0, and developed
Algorithm 1 to find an upper bound of the DRF from LD . By
running Algorithm 1 n (say, 10) times, the minimum upper
bound ubisoftenequal to DNull ðP0Þ.Given LD only,whetheror
not it is an ideal line drawing, we believe that searching for an
expected object in a space spanned fromNull ðPÞ is the best
way for 3D reconstruction, and the dimension of the space
� ubis necessary.

As discussed in Section 5, it is possible that RankðPÞ ¼
RankðP0Þ for some line drawings (say, the two in Figs. 4b and
4c), resulting in DNull ðPÞ ¼ DNull ðP0Þ. When LD represents an
object in a generic view, we have not found that RankðPÞ <
RankðP0Þ leads to DNull ðPÞ > D Null ðP0Þ by (8) and (9). If it did
happen that DNull ðPÞ > ub � DNull ðP0Þ, we would not expand
Null ðPÞ but search for a 3D object in Null ðPÞ directly. In

Sections 8.1 and 8.2, we first discuss how to find the optimal
spaces under the condition that DNull ðPÞ � ub and then give
the algorithm for 3D reconstruction.

8.1 Spaces Obtained by SVD

Now, we want to find a space with a dimension � ub, which
is expanded from Null ðPÞ. This space can be obtained with
the help of the SVD of P. By SVD, we obtain

P ¼ USVT ; ð15Þ

where U ¼ ½u01; u02; � � � ; u03Nf
� is a column-orthogonal matrix,

S ¼ diagð� 1; � 2; � � � ; � 3Nf Þ is a diagonal matrix with � 1 �
� 2 � � � � � � 3Nf � 0, V ¼ ½u1; u2; � � � ; u3Nf � is an orthogonal
matrix, and Nf is the number of faces of LD . Furthermore, it
follows from [32] that

P½u1; u2; � � � ; u3Nf � ¼ ½� 1u
0
1; � 2u

0
2; � � � ; � 03Nf

u03Nf
�; ð16Þ

� 1 � � 2 � � � � � � RankðPÞ > 0; ð17Þ
� RankðPÞþ1 ¼ � RankðPÞþ2 ¼ � � � ¼ � 3Nf ¼ 0; ð18Þ
Null ðPÞ ¼ spanfuRankðPÞþ1; uRankðPÞþ2; � � � ; u3Nf g; ð19Þ
DNull ðPÞ ¼ 3Nf � RankðPÞ; ð20Þ

where spanfuRankðPÞþ1; uRankðPÞþ2; � � � ; u3Nf g denotes the
space spanned by the set of vectors:

fuRankðPÞþ1; uRankðPÞþ2; � � � ; u3Nf g:

Let

SNull ðPÞ ¼ fuRankðPÞþ1; uRankðPÞþ2; � � � ; u3Nf g; ð21Þ
H1 ¼ spanffuRankðPÞg [SNull ðPÞg; ð22Þ
H2 ¼ spanffuRankðPÞ�1; uRankðPÞg [SNull ðPÞg; � � � ; ð23Þ
Hi ¼ spanffuRankðPÞ�iþ1; uRankðPÞ�iþ2; � � � ;

uRankðPÞg [SNull ðPÞg; � � � ; ð24Þ
HRankðPÞ ¼ spanffu1; u2; � � � ; uRankðPÞg [SNull ðPÞg: ð25Þ

Sincefu1; u2; � � � ; u3Nf g is a set of orthogonal vectors, we have

Null ðPÞ � H1 � H2 � � � � � HRankðPÞ ¼ R3Nf ð26Þ

and the dimension of Hi

DHi ¼ DNull ðPÞ þ i; 1� i � RankðPÞ: ð27Þ

Now, if we want to expand Null ðPÞ to a larger space with a
dimension equal to DNull ðPÞ þ i , 1� i � RankðPÞ, we can
choose theHi defined in (24).

An infinite number of spaces of a fixed dimension can be
chosen to search for 3D objects from a given line drawing.
The question is “Which space is the best one?” We claim
that the space spanned as in (24) is the best when the
dimension of Hi is fixed.

Without loss of generality, suppose that DNull ðPÞ ¼ ub� 1,
and we want to expand Null ðPÞ to a spaceHk1;k2;...;kRankðPÞ of
dimension DNull ðPÞ þ 1. An infinite number of such spaces
can be obtained by setting different values of ki , 1� i �
RankðPÞ,

PRankðPÞ
i¼1 k2

i ¼ 1, ki 2 R, in

Hk1;k2;...;kRankðPÞ ¼ spanffk1u1 þ k2u2 þ � � � þ
kRankðPÞuRankðPÞg [SNull ðPÞg:

ð28Þ

322 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 2, FEBRUARY 2008

Searching for f � in (29) is then transformed to searching for
a set f k�

3Nf � ub� 1; k�
3Nf � ub; � � � ; k�

3Nf
g such that

f k�
3Nf � ub� 1; k�

3Nf � ub; � � � ; k�
3Nf

g ¼

arg min
ki 2R

3Nf � ub� 1� i � 3Nf

�
� X3Nf

i¼3Nf � ub� 1

ki ui

�
:

ð32Þ

Many optimization algorithms can be used to find f k�
3Nf � ub� 1;

k�
3Nf � ub; � � � ; k�

3Nf
g, such as the hill-climbing algorithm in [9],

the quasi-Newton search algorithm [33], and genetic algo-
rithms [34]. Algorithm 2 works well using any of them. It is
not guaranteed that a global optimal solution can be found. In
fact, it is possible that there are an infinite number of expected
3D objects in Hub� DNull ðPÞþ 2. If the 3D object found is the one
expected, the algorithm is considered successful in dealing
with the line drawing.

From this algorithm, we see that the 2D coordinates of
the line drawing are not changed. As a result, the faces of
the reconstructed object are not required to be strictly
planar (see Step 7). Two remarkable points in our method
are that 1) the dimension of Hub� DNull ðPÞþ 2 is in general much
smaller than the number of vertices of the line drawing,
which is the dimension of the search space in the previous
most related methods and 2) even though the objective
function � ðf Þuses only one constraint (MSDA), our method
can perform very well when handling complex line
drawings (see the next section).

9 EXPERIMENTAL RESULTS

In this section, we illustrate 3D object reconstruction from a
number of line drawings and compare the results using
Algorithm 2, Leclerc and Fischler’s algorithm [9], and
Lipson and Shpitalni’s algorithm [21]. The three algorithms
are abbreviated to POA (plane-based optimization algo-
rithm), LFA, and LSA, respectively. All the algorithms are
implemented in Visual C++, running on a 2.5 GHz Pentium
IV PC. The line drawings are inputted using either a mouse
or the pen of a tablet PC.

LFA and LSA are most related to POA as explained in
Section 2. In POA, we use only one constraint, MSDA, in the
objective function � ðf Þ, but the constraint face planarity is
also implied since the search space is created based on it. In
LFA, the two constraints, MSDA and face planarity, are used
in the objective function. In LSA, more constraints, including
MSDA and face planarity, are combined in the objective
function. Of all the previous methods, LSA can handle the
widest range of objects. To find the optimal solutions to the
three objective functions, we tried using the hill-climbing
optimization in [9], the quasi-Newton search algorithm [33],
and genetic algorithms [34]. The quasi-Newton search
algorithm appears to work best as a whole for optimization
in POA, LFA, and LSA, so it is used in the experiments
described here.

We tested all the line drawings given in the experimental
sections in [9] and [21]. POA can successfully reconstruct the
3D objects from all these line drawings, some of which are
shown in Fig. 10 (line drawings a-d), together with two new
line drawings e and f. In Fig. 10, a1-f1, a2-f2, and a3-f3 are
the reconstruction results obtained by LFA, LSA, and POA,
respectively. The sign “

p
” or “ � ” in Fig. 10 under each

reconstruction result indicates whether the result is an

expected one or not. LFA can produce the expected objects
from only two line drawings: e and f. LSA is better than LFA
and is successful in the reconstruction for line drawings a-e,
but it fails when dealing with line drawing f. On the
contrary, POA can handle all these line drawings.

It should be mentioned that a result may be affected by
the initial settings of the z-coordinates of the vertices in LFA
and LSA and by the initial settings of the face parameter
vector f in POA. When we say that an algorithm fails in the
reconstruction from a line drawing, we mean that it cannot
generate an expected result with random initializations in
many trials (10 in this case).

Fig. 11 shows another set of more complex line drawings
and the reconstruction results by the three algorithms. Both
LFA and LSA fail in the reconstruction from these line
drawings. We have found that with random initializations,
LFA never generated one expected 3D object from this set of
line drawings and neither did LSA from the line drawings j-l.
However, POA is successful in reconstructing the 3D objects
from all these line drawings. The examples given in Figs. 10
and 11 clearly demonstrate that POA is more powerful than
LFA and LSA. In addition to these line drawings, we have

324 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 2, FEBRUARY 2008

Fig. 10. Reconstruction results from the line drawings a-f: a1-f1 by LFA,

a2-f2 by LSA, and a3-f3 by POA.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

