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Abstract

In this paper, we study the problem of subspace-based
face recognition under scenarios with spatial misalign-
ments and/or image occlusions. For a given subspace, the
embedding of a new datum and the underlying spatial mis-
alignment parameters are simultaneously inferred by solv-
ing a constrained �1 norm optimization problem, which
minimizes the error between the misalignment-amended
image and the image reconstructed from the given sub-
space along with its principal complementary subspace.
A byproduct of this formulation is the capability to detect
the underlying image occlusions. Extensive experiments on
spatial misalignment estimation, image occlusion detection,
and face recognition with spatial misalignments and im-
age occlusions all validate the effectiveness of our proposed
general formulation.

1. Introduction
Subspace learning techniques for face recognition have

experienced a dramatic growth over the past decade.

Among them, some popular ones are Principal Component

Analysis (PCA) [10], Linear Discriminant Analysis (LDA)

[3], Random Subspace [14], Unified Subspace [15], Lapla-

cianFaces [5], Marginal Fisher Analysis [12], Kernel LDA

[13], Probabilistic LDA [7], and the recently proposed ex-

tensions for handling tensor data [12] [16].

In subspace learning, explicit semantics is assumed for

each feature. But for computer vision tasks, e.g., face recog-

nition, the explicit semantics of the features may be de-

graded by spatial misalignments. Face cropping is an in-

evitable step in an automatic face recognition system, and

the success of subspace learning for face recognition re-

lies heavily on the performance of the face detection and

face alignment processes. Practical systems, or even man-

ual face cropping, may bring considerable image misalign-

ments, including translations, scaling and rotation, which

consequently change the semantics of two pixels with the

same index but in different images. Figure 1 demon-
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Figure 1. Euclidean distance variations caused by image misalign-

ments: a) example gallery images, b) Euclidean distances between

the probe image and the gallery samples indexed from 1 to 15.

1st row: original image, 2nd row: vertical translation, 3rd row:

horizontal translation, 4th row: scaling, 5th row: rotation, and

6th row: occlusion. The statistics are computed within the LDA

subspace of the YALE database, and the right column is obtained

from our proposed misalignment robust algorithm, which effec-

tively overcomes the influence of spatial misalignments and image

occlusions.

strates that these spatial misalignments and image occlu-

sions may greatly affect image similarity measurement, and

consequently degrade classification performance. Hence it

is desirable to have a general solution for misalignment-

robust face recognition that is applicable for all the above-

mentioned subspace learning algorithms.

In the literature, there exist some attempts to tackle this

issue, e.g., in [8], the effect of spatial misalignments was

alleviated to some extent by adding virtual training samples
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with manual spatial misalignments. But the spatial mis-

alignment issue is still far from being solved, since 1) in

the training stage, usually all samples have been cropped

out, thus it is impossible to synthesize virtual samples with-

out the original larger-size samples; 2) the added virtual

samples will make the data much more inseparable; and 3)

the number of virtual samples is limited compared with the

huge amount of possible spatial misalignments.

In this paper, we propose a principled solution to the

face recognition problem under scenarios with spatial mis-

alignments and/or image occlusions. A unified constrained

�1 norm optimization formulation, generally applicable for

any learnt subspace, is proposed to infer the embedding of

a new datum in the learnt subspace and at the same time

estimate the spatial misalignment parameters as well as the

possible image occlusions. Consequently we achieve algo-

rithmic robustness to spatial misalignment and image oc-

clusion for face recognition. The constraints of the �1 norm

optimization problem impose the feasibility of obtaining the

misalignment parameters. The objective function measures

the difference between the misalignment-amended image

and the image reconstructed from the learnt subspace as

well as its principal complementary subspace. The mini-

mization of the �1 norm of this difference ensures that the

border areas and the possibly occluded area of the new da-

tum will have less effect on the estimation of the parameters

for the subspace and spatial misalignments.

2. Background and Motivation
Face recognition, as a classic multi-class pattern recog-

nition problem, has been very popular for validating the ef-

fectiveness of newly proposed subspace learning algorithms

and classification approaches. In this section, we first give

a brief overview of subspace learning, and then introduce

the spatial misalignment issue specifically suffered by vi-

sual classification tasks.

2.1. Subspace Learning Overview

For face recognition, let the training data be {xi|xi ∈
R

m}N
i=1, where N is the number of training samples and

the data are assumed to be zero centered. The correspond-

ing subject indices of the samples are denoted as {ci|ci ∈
{1, 2, ..., Nc}}N

i=1, where Nc is the number of subjects. In

practice, dimensionality reduction is in great demand owing

to the fact that the effective information for classification of-

ten lies within a much lower dimensional feature space.

A simple but effective approach to dimensionality reduc-

tion is to find a matrix W = [w1, w2, ..., wd] ∈ R
m×d

(Rank(W ) =d, ‖wk‖=1, k=1, 2,. . ., d) to transform the orig-

inal high-dimensional data x into a low-dimensional form

y ∈ R
d (usually d � m) as

y = WT x, (1)

where the column vectors of the matrix W constitute a sub-

space for data representation. Subspace learning algorithms

are designed to search for such a matrix.

2.2. Motivation

Assume that a projection W has been derived from a

certain subspace learning algorithm. When a new datum x
comes, generally it is directly projected into the learnt sub-

space spanned by the column vectors of W as in (1). How-

ever, for computer vision tasks, e.g., face recognition, the

face image needs first to be cropped out from the original

whole image which possibly contains background. A naive

way to perform this is to fix the locations of the two eyes

in the cropped rectangle [12]. But for practical systems, the

positions of the two eyes need be automatically located by

a face alignment algorithm [4] or eye detector [11], so it is

inevitable that there may exist localization errors, namely

spatial misalignments. Generally, the spatial misalignments

include four components, translations in horizontal and ver-

tical directions (Tx, Ty), scaling (r), and rotation (α). Math-

ematically, the underlying face image x̂ without spatial mis-

alignments can be considered as the transformed face image

by a matrix P from the cropped face image x, and then the

exact low-dimensional representation is

WT x̂ = WT Px, (2)

which is not exactly the same as WT x. Their difference is

ε̂ = WT x̂ − WT x = WT (P − I)x. (3)

Here, an empirical evaluation of the effect from ε̂ to the data

metric measurement is presented in Figure 1. We can see

that the spatial misalignments may greatly affect the metric

measurement within the learned subspace. This motivates

the need for a general procedure to infer the representation

of a new datum within a certain learnt subspace in a way

robust to spatial misalignments.

3. Misalignment Robust Face Recognition
In this section, we present our solution to misalignment-

robust face recognition. More specifically speaking, when

a new datum comes, its embedding in the subspace spanned

by W and the underlying image misalignment parameters

are simultaneously inferred, and consequently the datum is

essentially projected from the misalignment-amended im-

age.

3.1. Problem Formulation

Image reconstruction from W and its principal com-
plementary subspace. Let x be a new datum, which may

contain image misalignments. We use the generative model



to estimate the parameters describing the spatial misalign-

ments. As the matrix W may be learnt for various pur-

poses, such as discriminating power [3][12] and locality

preservation [5], it may be unnecessary to be best at gen-

erating the original datum. To reconstruct the underlying

misalignment-amended image of x, we introduce another

subspace spanned by W � ∈ R
r, called the principal com-

plementary subspace of W .

The matrix W � is learnt as follows. First, we remove

the information covered by the matrix W for all the training

data as

xr
i = xi − W †WT xi, (4)

where W † is the pseudo-inverse of the matrix W and used

to transform the low-dimensional representation back to the

original feature space. Note that the training data are as-

sumed to be zero centered, and hence the above equation

does not include the data mean term. Then, the column vec-

tors of W � are computed as the principal components of the

covariance matrix Cr from the remainder data xr
i ’s, where

Cr =
1
N

N∑
i=1

xr
i x

r
i
T . (5)

Finally, the misalignment-amended version x̂ of the da-

tum x is set to be reconstructed from these two subspaces

as

x̂ = [W, W �]
[

y
y�

]
+ ε, (6)

where y ∈ R
d and y� ∈ R

r are the coefficient vectors for

the two basis matrices W and W �, and ε represents noise.

Our task is to infer the vector y and then use it for final face

recognition.

Discussion: Although PCA is theoretically optimal in

data reconstruction, we do not directly use PCA in this

work because the column vectors of W may not lie within

the subspace spanned by PCA, and the reconstructed image

from PCA then loses the information useful for the specific

purpose characterized by the learnt W .

Misalignment-amended image. As mentioned above,

the underlying misalignment-amended image of x can be

considered as the image transformed by matrix P from the

observed image x. In this work, we do not explicitly use

the four parameters θ=(Tx, Ty, r, α) to model the spatial

misalignments. Instead we simplify this model to assume

that each pixel within the misalignment-amended image is

the nonnegative linear combination of its neighboring pixels

within the observed image x. More specifically, we assume

that the misalignment only affects a ks-by-ks local neigh-

borhood for each pixel. We divide the face image plane

into n blocks of size k-by-k with m = n × k2, and assume

that the same linear combination coefficients apply to all the

pixels within each block. We arrange the elements of the

image vector x block by block, and then the misalignment-

amending process can be defined as

Tθ(x) = diag{(Pθ ⊗ ek2)Nx}, (7)

where Pθ ∈ R
n×k2

s and each row of Pθ represents a set of

linear combination coefficients for a block; ek2 is a k2 di-

mensional column vector with all ones; ⊗ is the Kronecker

Product, defined as A⊗B = [AijB] where A = {Aij} and

B are two arbitrary matrices; Nx ∈ R
k2

s×m, with each col-

umn vector representing the gray level values (in image x)

of the k2
s nearest neighbors of a pixel; and diag{·} denotes

a vector consisting of the diagonal elements of a square

matrix. Then, we have the misalignment-amended image

x̂ = Tθ(x), i.e.,

[W, W �]
[

y
y�

]
+ ε = diag{(Pθ ⊗ ek2)Nx}. (8)

Parameter estimation from the �1 norm minimiza-
tion formulation. In (8), there exist three sets of param-

eters to estimate, namely, subspace coefficients (y and y�),

noise vector (ε), and spatial misalignment parameters (Pθ).

Eqn. (8) itself is insufficient for inferring the solution of the

subspace and the spatial misalignment parameters, and the

scaling of the solution will again be the solution of (8). To

derive a feasible and reasonable solution, on the one hand,

the misalignment parameters should be non-negative, that

is,

Pθ ≥ 0, (9)

and the linear combination coefficients for a certain pixel

should sum up to one, namely,

Pθ ek2
s

= en, (10)

where ek2
s

and en are k2
s and n dimensional column vectors

respectively with all ones.

On the other hand, when the neighboring pixels are out

of the image plane for a certain pixel, we generally use zero

values to fill in these areas, and consequently, there may ex-

ist very large errors within ε for the pixels near the bound-

ary. Moreover, the image occlusions and noises may also

result in large values for the elements of ε.

A natural way to obtain a solution robust to the above

factors is to minimize the �1 norm of the error term ε,

such that the large errors only appear on the pixels near the

boundary or with possible occlusions/noise.

To sum up the above objective function and all con-

straints, we have the formulation for the subspace and mis-

alignment parameter estimation as listed in Algorithm 1.

It is a general �1 norm optimization problem with vari-

ables (y, y�, ε, Pθ). This problem is convex and can be

transformed into a general linear programming problem by

adding extra auxiliary coefficients. Hence there exists a



Algorithm 1 Procedure for simultaneously inferring sub-

space and misalignment parameters

Minimize: ||ε||1, s.t.

1: [W, W �]
[

y
y�

]
+ ε = diag{(Pθ ⊗ ek2)Nx};

2: Pθ ek2
s

= en;

3: Pθ ≥ 0.

globally optimal solution. In practice we drop the last non-

negative constraint and incorporate the second constraint

into the objective with a large penalty coefficient. Then the

optimization is solved efficiently using the general linear

programming toolbox or �1 norm optimization toolbox as

in [1].

Byproduct: Occlusion Detection. A byproduct of this

formulation is that, when there exist image occlusions in

the observed face image x, the �1 norm minimization of the

error vector ε can also recover these areas as the pixels with

large errors in ε. For the case with image occlusions, after

we detect the occlusion area, the subspace parameters y and

y� can be further refined by replacing the occluded pixels

with the values from the reconstructed image based on the

subspaces spanned by W and W �.

3.2. Discussions

In this subsection, we discuss the relationship between

our proposed general formulation for misalignment-robust

face recognition and two related works [8][9].

3.2.1 Relationship with [8] using virtual samples

Shan et al. [8] proposed to add virtual training samples with

manual misalignments for bridging the distribution gap be-

tween training data without spatial misalignments and test-

ing data with spatial misalignments. Our formulation in this

work is different from [8] in several aspects: 1) the work

[8] cannot handle image occlusion; 2) the work [8] cannot

work under scenarios where the training images are already

cropped; 3) the virtual samples essentially make the classi-

fication hyperplane more nonlinear and thus maybe beyond

the capability of linear subspace techniques; 4) it cannot

estimate the exact spatial misalignment parameters or oc-

cluded areas; and 5) our proposed formulation is general

and can be used under scenarios with both spatial misalign-

ments and image occlusions, and it can also be used for both

misalignment and occlusion estimation. Moreover, our for-

mulation can also work on the derived subspace from the

training set with virtual samples to further improve algo-

rithmic performance on testing data with unforeseen spatial

misalignments.

Figure 2. Demonstration of occlusion detection on the CMU PIE

database. Original samples are displayed in the first row. An 18-

by-18 occlusion is randomly generated as shown in the second

row. The third row shows the error maps derived from our algo-

rithm, and the recovered images are demonstrated in the bottom

row.

3.2.2 Relationship with the shift invariant PCA [9]

Tu et al. [9] proposed a shift invariant probabilistic PCA

for alleviating the influence of image shifts, namely spatial

translations, on PCA based face recognition. This algorithm

is specific to PCA and limited in the following aspects com-

pared with our formulation: 1) the work can only handle im-

age translations, while cannot handle other types of spatial

misalignments; 2) the work is specific to generative algo-

rithms, and cannot be used for discriminative algorithms,

such as LDA and MFA; 3) similar to [8], it cannot handle

the cases with image occlusions. Our experiments are de-

signed for supervised subspace learning, which generally

can provide better results than unsupervised algorithms.

Since the methods in [8] and [9] are too limited to han-

dle the cases in our experiments, we do not compare our

formulation with them in the experimental section.

4. Experiments
In this section, we systematically evaluate the effective-

ness of our general formulation for misalignment-robust

(MAR) face recognition, and here we take two popular sub-

space learning algorithms, LDA [3] and MFA [12], as exam-

ples for the evaluation. The evaluation consists of three as-

pects: 1) occlusion detection and recovery, 2) face recogni-

tion on testing data with synthesized spatial misalignments

or image occlusions, and 3) face recognition under the sce-

nario with automatic image cropping.

4.1. Data Sets

Four benchmark face databases, i.e., ORL, CMU PIE,

YALE databases1, and the Face Recognition Grand Chal-

lenge database (FRGC version 1.0) [2] are used in our ex-

periments. The ORL database contains 400 images of 40
persons, where each image is manually cropped and nor-

malized to the size of 32-by-28 pixels. The CMU PIE (Pose,

1Available at http://www.face-rec.org/databases/.



Table 1. Recognition accuracy rates (%) on the three databases: manually aligned images vs. images with mixed misalignments.

Configuration Baselines LDA Related Algorithms MFA Related Algorithms

YALE w/o DR PCA Ori-LDA MAR-LDA Ori-MFA MAR-MFA

N6T5 78.7/56.0 82.7/60.0 89.3/68.0 94.6/78.7 90.7/68.0 93.3/81.3
N5T6 72.2/52.2 72.2/53.3 82.2/63.3 90.0/73.3 82.2/62.2 92.2/72.2

N4T7 72.4/54.3 72.4/53.3 82.9/61.0 88.6/75.2 83.8/61.9 88.6/73.3

ORL w/o DR PCA Ori-LDA MAR-LDA Ori-MFA MAR-MFA

N4T6 87.9/64.2 88.0/63.2 88.3/51.7 89.6/65.7 89.2/51.2 90.0/69.6
N3T7 81.4/52.9 81.8/53.9 84.3/50.4 85.0/65.7 83.6/48.9 86.1/64.6

N2T8 71.6/46.9 68.8/49.1 71.3/45.3 75.6/54.4 72.2/45.9 76.3/55.0
PIE w/o DR PCA Ori-LDA MAR-LDA Ori-MFA MAR-MFA

N4T6 84.4/62.2 87.8/65.9 92.9/54.0 94.2/78.8 93.9/55.0 94.4/79.6
N3T7 80.7/54.2 83.5/55.9 94.1/50.3 94.1/72.6 95.0/51.5 95.0/73.7
N2T8 78.8/51.8 81.8/51.6 84.7/46.2 89.1/69.6 86.7/46.4 89.9/70.8

Illumination, and Expression) database contains more than

40, 000 facial images of 68 people. In our experiment, a

subset of five near frontal poses (C27, C05, C29, C09 and

C07) and illuminations indexed as 08 and 11 are used and

manually normalized to the size of 32-by-32 for the face

recognition experiments. The Yale face database contains

165 grayscale images of 15 individuals with 11 images per

subject, one per different facial expression or configuration:

center-light, with/without glasses, happy, left-light, normal,

right-light, sad, sleepy, surprised, and wink. The images are

also manually cropped and normalized to the size of 32-by-

32 pixels. The FRGC database consists 5658 images of 275
subjects. The number of facial images of each subject varies

from 6 to 48. For the FRGC database, we randomly select

half of the images of each person for model training, and the

left half for testing. No information for manual cropping is

available for FRGC database, and hence instead the images

are automatically cropped and then normalized to the size

of 32-by-32 pixels in the experiments.

4.2. Occlusion Detection

For facial images with occlusions, the occluded parts

can be revealed by detecting the elements of ε with rela-

tively large reconstruction errors. In this subsection we ex-

amine the occlusion detection capability of our MAR for-

mulation on the CMU PIE database. We randomly pick 4
images of each subject for training the subspace to derive

W and W �. The remaining 6 images of each person serve

as probe images. Similar to the spatial misalignment esti-

mation experiments, we normalize the images to a larger

size of 64-by-64 pixels and then an 18-by-18 artificial oc-

clusion is generated at a random position. Correspondingly,

we select 18 × 18 = 324 pixels with the largest ε’s as the

occluded pixels. Eight images are randomly selected from

the probe set and the occlusion detection results are shown

in Figure 2, from which we observe that the positions of

the occluded parts are generally recognized. Consequently,

the facial images without occlusions can be further recon-

structed from Eqn.(6), which is demonstrated in Figure 2.

The configuration for the subspace learning algorithm is the

same as that for the spatial misalignment estimation.

4.3. Face Recognition with Misalignments

In this subsection, face recognition experiments are con-

ducted on three benchmark face databases with spatial mis-

alignments for the testing data. Our MAR framework is

evaluated based on two popular subspace learning algo-

rithms, LDA and MFA. For the MFA related algorithms,

the number of intra-class nearest neighbors of each sample

is fixed as 3, and the number of closest inter-class pairs for

each class is set to 40 for CMU PIE and ORL. For the Yale

database, the latter number is set to 10 since the class num-

ber is comparably smaller for this database. To speed up

model training and avoid the singularity problem, PCA is

conducted as a preprocessing step for the original LDA and

MFA. Similar to the Fisherface algorithm [3], the PCA di-

mension is set to N -Nc, where N is the sample number and

Nc is the class number.

For comparison, the classification results on the origi-

nal gray-level features without dimensionality reduction are

also reported as the baseline, denoted as ‘w/o DR’ in the re-

sult tables. In all the experiments, the Nearest Neighbor

method is used for final classification. All possible dimen-

sions of the final low-dimensional representation are eval-

uated, and the best results are reported. For each database,

we test various configurations of training and testing sets

for the sake of statistical confidence, denoted as ‘NxTy′

for which x images of each subject are randomly selected

for model training and the remaining y images of each sub-

ject are used for testing. We used the mixed spatial mis-

alignments to simulate the misalignments brought by the

automatic face alignment process. In the mixed spatial mis-

alignment configuration, a rotation α ∈ [−5o, +5o], a scal-

ing r ∈ [0.95, 1.05], a horizontal shift Tx ∈ [−1, +1] and



Table 2. Recognition accuracy rates (%) on automatically cropped images (for both training and testing data).

Configuration Baselines LDA Related Algorithms MFA Related Algorithms

FRGC w/o DR PCA Ori-LDA MAR-LDA Ori-MFA MAR-MFA

50%:50% 57.4 57.5 86.0 90.0 86.0 89.5

YALE w/o DR PCA Ori-LDA MAR-LDA Ori-MFA MAR-MFA

N6T5 80.0 78.7 89.3 89.3 85.3 85.3
N5T6 72.2 68.9 78.9 82.2 78.9 82.2
N4T7 74.3 70.5 79.1 84.8 80.0 83.8

a vertical shift Ty ∈ [−1, +1] are randomly added to the

original image.The detailed results with mixed spatial mis-

alignments is demonstrated in Table 1 compared with the

performance on manually cropped images. From the table,

we can have the observations: 1) for all the experiments,

the MAR framework combined with LDA and MFA both

greatly improve the face recognition accuracy; 2) the MFA

based algorithms generally outperform the LDA based al-

gorithms, the performance of which greatly relies on the

assumption of the Gaussian distribution for the data; 3) the

unsupervised learning algorithm PCA is more robust to spa-

tial misalignments than the supervised algorithms LDA and

MFA, especially on the ORL and PIE databases; and 4) un-

der the manual cropping scenario, the recognition rate on

the YALE gets a dramatic increase from the MAR frame-

work, while for the other two databases, the improvement

is not so obvious. An explanation of which is that the spa-

tial misalignments exist in the YALE database even though

they are manually cropped.

4.4. Scenario with Automatic Cropping

Finally, we examine the performance of the MAR frame-

work under the scenario with automatic cropping. We uti-

lized the Active Appearance Model [4] as the face align-

ment algorithm for automatically locating the key points on

the face, and then cropped the face based on the detected

key points. The face alignment was conducted on the YALE

and FRGC databases for automatic cropping, while for the

PIE and ORL databases, automatic face alignment is un-

available since the faces have been cropped out for the ORL

database and the face alignment results are unacceptable on

the PIE database due to the influence of illuminations.

Detailed results are listed in Table 2, from which the ob-

servations can be made: 1) the recognition accuracies un-

der the scenario with automatic cropping are decreased for

almost all the algorithms on the YALE database compare

with the scenario with manual cropping; and 2) the MAR

framework can greatly compensate the effect of spatial mis-

alignments caused by the automatic cropping process.

5. Conclusions and Future Work
In this paper, a general �1 norm minimization formula-

tion has been proposed for misalignment-robust face recog-

nition based on subspace learning techniques. In this for-

mulation, the embedding of a new datum in the learnt sub-

space and the spatial misalignment parameters are simulta-

neously estimated, and the image occlusion areas may also

be detected based on the �1 norm minimization of the dif-

ference between the misalignment-amended image and the

reconstructed image from the learnt subspace along with its

principal complementary subspace. In the future, we plan

to take pose variation as a type of specific spatial misalign-

ment, and propose a more general formulation to handle

face recognition with pose variations.
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