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Abstract

Detecting underlying clusters from large-scale data playsa central role in machine
learning research. In this paper, we tackle the problem of clustering complex data
of multiple distributions and multiple scales. To this end,we develop an algo-
rithm named Zetal-links (Zell) which consists of two parts: Zeta merging with
a similarity graph and an initial set of small clusters derived from locall-links
of samples. More specifically, we propose to structurize a cluster using cycles in
the associated subgraph. A new mathematical tool, Zeta function of a graph, is
introduced for the integration of all cycles, leading to a structural descriptor of a
cluster in determinantal form. The popularity character ofa cluster is conceptu-
alized as the global fusion of variations of such a structural descriptor by means
of the leave-one-out strategy in the cluster. Zeta merging proceeds, in the hierar-
chical agglomerative fashion, according to the maximum incremental popularity
among all pairwise clusters. Experiments on toy data clustering, imagery pattern
clustering, and image segmentation show the competitive performance of Zell.
The98.1% accuracy, in the sense of the normalized mutual information(NMI), is
obtained on the FRGC face data of 16028 samples and 466 facialclusters.

1 Introduction

Pattern clustering is a classic topic in pattern recognition and machine learning. In general, algo-
rithms for clustering fall into two categories: partitional clustering and hierarchical clustering. Hi-
erarchical clustering proceeds by merging small clusters (agglomerative) or dividing large clusters
into small ones (divisive). The key point of agglomerative merging is the measurement of struc-
tural affinity between clusters. This paper is devoted to handle the problem of data clustering via
hierarchical agglomerative merging.

1.1 Related work

The representative algorithms for partitional clusteringare the traditional K-means and the latest
Affinity Propagation (AP) [1]. It is known that the K-means issensitive to the selection of initial
K centroids. The AP algorithm addresses this issue by that each sample is initially viewed as an
examplar and then examplar-to-member and member-to-examplar messages competitively transmit
among all samples until a group of good examplars and their corresponding clusters emerge. Besides
the superiority of finding good clusters, AP exhibits the surprising ability of handling large-scale
data. However, AP is computationally expensive to acquire clusters when the number of clusters is
set in advance. Both K-means and AP encounter difficulty on multiple manifolds mixed data.

The classic algorithms for agglomerative clustering include three kinds of linkage algorithms: the
single, complete, and average Linkages. Linkages are free from the restriction on data distributions,
but are quite sensitive to local noisy links. A novel agglomerative clustering algorithm was recently
developed by Maet al. [2] with the lossy coding theory of multivariate mixed data. The core of
their algorithm is to characterize the structures of clusters by means of the variational coding length
of coding arbitrary two merged clusters against only codingthem individually. The coding length



Figure 1: A small graph with four vertices and five edges can bedecomposed into three cycles. The
complexity of the graph can be characterized by the collective dynamics of these basic cycles.

based algorithm exhibits the exceptional performance for clustering multivariate Gaussian data or
subspace data. However, it is not suitable for manifold-valued data.

Spectral clustering algorithms are another group of popular algorithms developed in recent years.
The Normalized Cuts (Ncuts) algorithm [3] was developed forimage segmentation and data clus-
tering. Nget al.’s algorithm [4] is mainly for data clustering, and Newman’swork [5] is applied for
community detection in complex networks. Spectral clustering can handle complex data of multiple
distributions. However, it is sensitive to noise and the variation of local data scales.

In general, the following four factors pertaining to data are still problematic for most clustering al-
gorithms: 1) mixing distributions such as multivariate Gaussians of different derivations, subspaces
of different dimensions, or globally curved manifolds of different dimensions; 2) multiple scales; 3)
global sampling densities; and 4) noise. To attack these problems, it is worthwhile to develop new
approaches that are conceptually different from existing ones.

1.2 Our work

To address issues for complex data clustering, we develop a new clustering approach called Zeta
l-links, or Zell. The core of the algorithm is based on a new cluster descriptor that is essentially
the integration of all cycles in the cluster by means of the Zeta function of the corresponding graph.
The Zeta function leads to a rational form of cyclic interactions of members in the cluster, where
cycles are employed as primitive structures of clusters. With the cluster descriptor, the popularity
of a cluster is quantified as the global fusion of variations of the structural descriptor by the leave-
one-out strategy in the cluster. This definition of the popularity is expressible by diagonals of matrix
inverse. The structural inference between clusters may be performed with thispopularity character.
Based on the novel popularity character, we propose a clustering method, namedZeta mergingin the
hierarchical agglomerative fashion. This method has no additional assumptions on data distributions
and data scales. As a subsidiary procedure for Zeta merging,we present a simple method calledl-
links, to find the initial set of clusters as the input of Zeta merging. The Zell algorithm is the
combination of Zeta merging andl-links. Directed graph construction is derived froml-links.

2 Cyclizing a cluster with Zeta function

Our ideas are mainly inspired by recent progress on study of collective dynamics of complex net-
works. Experiments have validated that the stochastic states of a neuronal network is partially mod-
ulated by the information thatcyclically transmits [6], and that proportions of cycles in a network
is strongly relevant to the level of its complexity [7]. Recent studies [8], [9] unveil that short cycles
and Hamilton cycles in graphs play a critical role in the structural connectivity and community of a
network. These progress inspires us to formalize the structural complexity of a cluster by means of
cyclic interactions of its members. As illustrated in Figure 1, the relationship between samples can
be characterized by the combination of all cycles in the graph. Thus the structural complexity of the
graph can be conveyed by the collective dynamics of these basic cycles. Therefore, we may charac-
terize a cluster with the global combination of structural cycles in the associated graph. To do so,
we need to model cycles of different lengths and combine themtogether as a structural descriptor.

2.1 Modeling cycles of equal length

We here model cycles using the sum-product codes to structurize a cluster. Formally, letC =
{x1, . . . , xn} denote the set of sample vectors in a clusterC. Suppose thatW is the weighted
adjacency matrix of the graph associated withC. A vertex of the graph represents a member in
C. For generality, the graph is assumed to be directed, meaning thatW may be asymmetric. Let
γ` = {p1 → p2 → · · · → p`−1 → p`, p` → p1} denote any cycleγ` of length ` defined on
W. We apply the factorial codes to retrieve the structural information of cycleγ`, thus defining
νγ`

= Wp`→p1

∏`−1
k=1 Wpk→pk+1

, whereWpk→pk+1
is the(pk, pk+1) entry of W. The valueνγ`



provides a kind of degree measure of interactions amongγ`-associated vertices. For the setK` of
all cycles of length̀ , the sum-product codeν` is written as:

ν` =
∑

γ`∈K`

νγ`
=
∑

γ`∈K`

Wp`→p1

`−1
∏

k=1

Wpk→pk+1
. (1)

The valueν` may be viewed as the quantified indication of global interactions amongC in the `-
cycle scale. The structural complexity of the graph is measured by these quantities of cycles of all
different lengths, i.e.,{ν1, . . . , ν`, . . . , ν∞}. Further, we need to perform the functional integration
of these individual measures. The Zeta function of a graph may play a role for such a task.

2.2 Integrating cycles using Zeta function

Zeta functions are widely applied in pure mathematics as tools of performing statistics in number
theory, computing algebraic invariants in algebraic geometry, measuring complexities in dynamic
systems. The forms of Zeta functions are diverse. The Zeta function we use here is defined as:

ζz = exp

(

∞
∑

`=1

ν`

z`

`

)

, (2)

wherez is a real-valued variable. Hereζz may be viewed as a kind of functional organization of all
cycles in{K1, . . . ,K`, . . . ,K∞} in a global sense. What’s interesting is thatζz admits a rational
form [10], which makes the intractable manipulations arising in (1) tractable.
Theorem 1. ζz = 1/det(I − zW), wherez < ρ(W) andρ(W) denotes the spectral radius of the
matrix W.

From Theorem 1, we see that the global interaction of elements inC is quantified by a quite simple
expression of determinantal form.

2.3 Modeling popularity

The popularity of a group of samples means how much these samples in the group is perceived to
be a whole cluster. To model the popularity, we need to formalize the complexity descriptor of the
clusterC. With the cyclic integrationζz in the preceding section, the complexity of the cluster can
be measured by the polynomial entropyεC of logarithm form:

εC = ln ζz =
∞
∑

`=1

ν`

z`

`
= − ln det(I − zW). (3)

The entropyεC will be employed to model the popularity ofC. As we analyze at the beginning
of Section 2, cycles are strongly associated with structural communities of a network. To model
the popularity, therefore, we may investigate the variational information of cycles by successively
leaving one member inC out. More clearly, letχC denote the popularity character ofC. ThenχC is
defined as the averaged sum of the reductive entropies:

χC =
1

n

n
∑

p=1

(

εC − εC\xp

)

= εC −
1

n

n
∑

p=1

εC\xp
. (4)

Let T denote the transpose operator of a matrix andep is thep-th standard basis whosep-th element
is 1 and0 elsewhere. We have the following theorem.

Theorem 2. χC = 1
n

ln
∏n

p=1 eT
p (I− zW)−1ep.

By analysis of inequalities , we may obtain thatχC is bounded as0 < χC ≤ (εC/n). The popularity
measureχC is a structural character ofC , which can be exploited to handle problems in learning
such as clustering, ranking, and classification.

The computation ofχC is involved with that of the inverse of(I − zW). In general, the complexity
of computing(I − zW)−1 is O(n3). However,χC is only related to the diagonals of(I − zW)−1

instead of a full dense matrix. This unique property leads the computation ofχC to the complexity
of O(n1.5) by a specialized algorithm for computing diagonals of the inverse of a sparse matrix [11].

2.4 Structural affinity measurement

Given a set of initial clustersCc = {C1, . . . , Cm} and the adjacency matrixP of the corresponding
samples, the affinities between clusters or data groups can be measured via the corresponding pop-
ularity characterχC . Under our framework, an intuitive inference is that the twoclusters that share
the largestreciprocal popularity have the most consistent structures, meaning the two clusters are
most relevant from the structural point of view. Formally, for two given data groupsCi andCj from
Cc, the criterion of reciprocal popularity may be written as



δχCi∪Cj
= δχCi

+ δχCj
= (χCi|Ci∪Cj

− χCi
) + (χCj |Ci∪Cj

− χCj
), (5)

where the conditional popularityχCi|Ci∪Cj
is defined asχCi|Ci∪Cj

= 1
|Ci|

ln
∏

xp∈Ci
eT
p (I −

zPCi∪Cj
)−1ep andPCi∪Cj

is the submatrix ofP corresponding to the samples inCi andCj . The
incremental popularityδχCi

embodies the information gain ofCi after being merged withCj . The
larger the value ofδχCi∪Cj

is, the more likely the two data groupsCi andCj are perceived to be one
cluster. Therefore,δχCi∪Cj

may be exploited to measure the structural affinity between two groups
of samples from a whole set of samples.

3 Zeta merging

We will develop the clustering algorithm using the structural characterχC . The automatic detection
of the number of clusters are also taken into consideration.

3.1 Algorithm of Zeta merging

With the criterion of structural affinity in Section 2.4, it is straightforward to write the procedures of
clustering in the hierarchical agglomerative way. The algorithm may proceed from the pair{Ci, Cj}
that has the largest incremental popularityδχCi∪Cj

, i.e.,{Ci, Cj} = arg max
i,j

δχCi∪Cj
. We name the

method byZeta merging, whose procedures are provided in Algorithm 1. In general, Zeta merging
will proceed smoothly if the damping factorz is bounded as0 < z < 1

2‖P‖
1.

Algorithm 1 Zeta merging

inputs: the weighted adjacency matrixP, the m initial clustersCc = {C1, . . . , Cm}, and the
numbermc (mc ≤ m) of resulting clusters. Sett = m.
while 1 do

if t = mc then break;end if
Search two clustersCi andCj such that{Ci, Cj} = arg max

{Ci,Cj}∈Cc

δχCi∪Cj
.

Cc ← {Cc \ {Ci, Cj}} ∪ {Ci ∪ Cj}; t← t− 1.
end while

The merits of Zeta merging are that it is free from the restriction of data distributions and is less
affected by the factor of multiple scales in data. Affinity propagation in Zeta merging proceeds on
graph according to cyclic associations, requiring no specification on data distributions. Moreover,
the popularity characterχC of each cluster is obtained from the averaged amount of variational
information conveyed byεC . Thus the size of a cluster has little influence on the valueδχCi∪Cj

.
What’s most important is that cycles rooted at each point inC globally interact with all other points.
Thus, the global descriptorεC and the popularity characterχC are not sensitive to the local data scale
at each point, leading to the robustness of Zeta merging against the variation of data scales.

3.2 Number of clusters in Zeta merging

In some circumstances, it is needed to automatically detectthe number of underlying clusters from
given data. This functionality can be reasonably realized in Zeta merging if each cluster corresponds
to a diagonal block structure inP, up to some permutations. The principle is that the minimum
δχCi∪Cj

will be zero when a set of separable clusters emerges, behindwhich is the mathematical
principle that inverting a block-diagonal matrix is equivalent to inverting the matrices on the diagonal
blocks. In practice, however, the minimumδχCi∪Cj

has a jumping variation on the stable part of its
curve instead of exactly arriving at zero due to the perturbation of the interlinks between clusters.
Then the number of clusters corresponds to the step at the jumping point.

4 The Zell algorithm

An issue arising in Zeta merging is the determination of the initial set of clusters. Here, we give a
method by performing local single Linkages ( message passing by minimum distances). The method
of graph construction is also discussed here.



Figure 2: Schematic illustration ofl-links. From left to right: data with two seed points (red mark-
ers),2-links grown from two seed points, and2-links from four seed points. The same cluster is
denoted by the markers with the same color of edges.

4.1 Detectingl-links

Given the sample setCy = {y1, . . . , ymo
}, we first get the setS2K

i of 2K nearest neighbors for
the pointyi. Then fromyi, messages are passed amongS2K

i in the sense of minimum distances
(or general dissimilarities), thus locally forming an acyclic directed subgraph at each point. We call
such an acyclic directed subgraph byl-links, wherel is the number of steps of message passing
amongS2K

i . In general,l is a small integer, e.g.,l ∈ {2, 3, 4, . . . }. The further manipulation is to
mergel-links that share common vertices. A simple schematic example is shown in Figure 2. The
specific procedures are provided in Algorithm 2.

Algorithm 2 Detectingl-links

inputs: the sample setCy = {y1, . . . , ymo
}, the numberl of l-links, the numberK of nearest

neighbors for each point, wherel < K.
Initialization: Cc = {Ci|Ci = {yi}, i = 1, . . . ,mo} andq = 1.
for i from 1 tomo do

Search2K nearest neighbors ofyi and formS2K
i .

Iteratively performCi ← Ci ∪ {yj} if yj = arg min
yj∈S2K

i

min
y∈Ci

distance(y, yj), until |Ci| ≥ l.

PerformCj ← Ci ∪ Cj , Cc ← Cc \ Ci, andq ← q + 1, if |Ci ∩ Cj | > 0, wherej = 1, . . . , q.
end for

4.2 Graph construction

The directional connectivity ofl-links leads us to build a directed graph whose vertexyi directionally
points to itsK nearest neighbors. The method of graph construction is presented in Algorithm 3.
The free parameterσ in (6) is estimated according to the criterion that the geometric mean of all
similarities between each point and its three nearest neighbors is set to bea, wherea is a given
parameter in(0, 1]. It is easy to know thatρ(P) < 1 here.

Algorithm 3 Directed graph construction

inputs: the sample setCy, the numberK of nearest neighbors, and a free parametera ∈ (0, 1].
Estimate the parameterσ by σ2 = − 1

mo lna

∑

yi∈Cy

∑

yj∈S3
i
[distance(yi, yj)]

2.
Define the entry of thei-th row andj-th column of the weighted adjacency matrixP as

Pi→j =

{

exp (− [distance(yi, yj)]
2

σ2 ), if yj ∈ S
K
i ,

0, otherwise.
(6)

Perform the sum-to-one operation for each row, i.e.,Pi→j ← Pi→j/
∑mo

j=1 Pi→j .

4.3 Zetal-links (Zell)

Our algorithm for data clustering is in effect to performZeta mergingon the initial set of small
clusters derived froml-links. So, we name our algorithm byZeta l-links, or Zell. The complete
implementation of the Zell algorithm is to consecutively perform Algorithm 3, Algorithm 2, and Al-
gorithm 1. In practice , the steps in Algorithm 3 and Algorithm 2 are operated together to enhance

1Interested one may refer to the full version of this paper for proofs.
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Figure 3: Clustering on toy data. (a) Generated data of 12 clusters. The number of each cluster is
shown in the figure. The data are of different distributions,consisting of multiple manifolds (two
circles and a hyperbola), subspaces (two pieces of lines anda piece of the rectangular strip), and
six Gaussians. The densities of clusters are diverse. The differences between the sizes of different
clusters are large. The scales of the data vary. For each cluster in the manifold and subspace data, the
points are randomly generated with different deviations. (b) Clusters yielded by Zell (given number
of clusters). The different colors denote different clusters. (c) Clusters automatically detected by Zell
on the data composed by six Gaussians and the short line. (d) Curve of minimum Delta popularity
(δχ). (e) Enlarged part of (d) and the curve of its first-order differences. The point marked by the
square is the detected jumping point. (f) The block structures ofP corresponding to the data in (c).

the efficiency of Zell. Zeta merging may also be combined withK-means and Affinity Propaga-
tion for clustering. These two algorithms work well for producing small clusters. So, they can be
employed to generate initial clusters as the input of Zeta merging.

5 Experiment

Experiments are conducted on clustering toy data, hand-written digits and cropped faces from cap-
tured images, and segmenting images to test the performanceof Zell. The quantitative performance
of the algorithms is measured by the normalized mutual information (NMI) [12] which is widely
used in learning communities. The NMI quantifies the normalized statistical information shared
between two distributions. The larger the NMI is, the betterthe clustering performance of the algo-
rithm is.

Four representative algorithms are taken into comparison,i.e., K-centers, (average) Linkage, Affinity
Propagation (AP), and Normalized Cuts (Ncuts). Here we use K-centers instead of K-means because
it can handle the case where distances between points are notmeasured by Euclidean norms. For
fair comparison, we run Ncuts on the graph whose parameters are set the same with the graph used
by Zell. The parameters for Zell are set asz = 0.01, a = 0.95, K = 20, andl = 2.

5.1 On toy data

We first perform an experiment on a group of toy data of diversedistributions with multiple densi-
ties, multiple scales, and significantly different sizes ofclusters. As shown in Figures 3 (b) and (c),
the Zell algorithm accurately detects the underlying clusters out. Particularly, Zell is capable of si-
multaneously differentiating the cluster with five membersand the cluster with 1500 members. This
functionality is criticallyimportant for finding genesfrom microarray expressions in bioinformatics.
Figures 3 (d) and (e) show the curves of minimum variationalδχ (for the data in Figure 3 (c)) where
the number of clusters is determined at the largest gap of thecurve in the stable part. However, the
method presented in Section 3.2 fails to automatically detect the number of clusters for the data in
Figure 3 (a), because the correspondingP matrix has no clear diagonal block structures.



Table 1: Imagery data. MNIST and USPS: digit databases. ORL and FRGC: face databases. The
last row shows the numbers of clusters automatically detected by Zell on the five data sets.

Data set MNIST USPS ORL sFRGC FRGC
Number of samples 5139 11000 400 11092 16028
Number of clusters 5 10 40 186 466
Average number of each cluster1027± 64 1100± 0 10± 0 60± 14 34± 24
Dimension of each sample 784 256 2891 2891 2891
Detected number of clusters 11 8 85 (K = 5) 229 511

Table 2: Quantitative clustering results on imagery data. NMI: normalized mutual information. The
‘pref’ means the preference value used in Affinity Propagation for clustering of given numbers.
K = 5 for the ORL data set.

Algorithm K-centers Linkage Ncuts Affinity propagation (pref) Zell
MNIST 0.228 0.496 0.737 0.451 (-871906470) 0.865

NMI USPS 0.183 0.095 0.443 0.313 (-417749850) 0.772
ORL 0.393 0.878 0.939 0.877 (-6268) 0.940
sFRGC 0.106 0.934 0.953 0.899 (-16050) 0.988
FRGC 0.187 0.950 0.924 0.906 (-7877) 0.981

5.2 On imagery data

The imagery patterns we adopt are the hand-written digits inthe MNIST and USPS
databases and the facial images in the ORL and FRGC (Face Recognition Grand Challenge,
http://www.frvt.org/FRGC/) databases. The MNIST and USPSdata sets are downloaded from Sam
Roweis’s homepage (http://www.cs.toronto.edu/˜roweis). For MNIST, we select all the images of
digits from 0 to 4 in the testing set for experiment. For FRGC,we use the facial images in the target
set of experiment 4 in the FRGC version 2. Besides the whole target set, we also select a subset from
it. Such persons are selected as another group of clusters ifthe number of faces for each person is no
less than forty. The information of data sets is provided in Table 1. For digit patterns, the Frobenius
norm is employed to measure distances of digit pairs withoutfeature extraction. For face patterns,
however, we extract visual features of each face by means of the local binary pattern algorithm. The

Chi-square metric is exploited to compute distances, defined as distance(ŷ, y̌) =
∑

i
(ŷi−y̌i)

2

ŷi+y̌i
.

The quantitative results are given in Table 2. We see that Zell consistently outperforms the other
algorithms across the five data sets. In particular, the performance of Zell is encouraging on the
FRGC data set which has the largest numbers of clusters and samples. As reported in [1], AP does
significantly outperform K-centers. However, AP shows the unsatisfactory performance on the digit
data where the manifold structures may occur due to that the styles of digits vary significantly. The
average Linkage also exhibits such phenomena. The results achieved by Ncuts are also competitive.
However, Ncuts is overall unstable, for example, yielding the low accuracy on the USPS data. The
results in Tabel 3 confirms the stability of Zell over the variations of free parameters. Actually,l
affects the performance of Zell when it is larger, because itmay incur incorrect initial clusters.

5.3 Image segmentation

We show several examples of the application of Zell on image segmentation from the Berkeley

segmentation database. The weighted adjacency matrixP is defined asPi→j = exp(− (Ii−Ij)
2

σ2 )

if Ij ∈ N
8
i and0 otherwise, whereIi is the intensity value of an image andN 8

i denotes the set of
pixels in the8-neighborhood ofIi. Figure 4 displays the segmentation results of different numbers of
segments for each image. Overall, attentional regions are merged by Zell. Note the small attentional
regions take the priorities of being merged than the large ones. Therefore, Zell yields many small
attentional regions as final clusters.

6 Conclusion

An algorithm, named Zell, has been developed for data clustering. The cyclization of a cluster is the
fundamental principle of Zell. The key point of the algorithm is the integration of structural cycles
but Zeta function of a graph. A popularity character of measuring the compactness of the cluster
is defined via Zeta function, on which the core of Zell for agglomerative clustering is based. An



Table 3: Results yielded by Zell over variations of free parameters on the sFRGC data. The initial
set is{z = 0.01, a = 0.95,K = 20, l = 3}. When one of them varies, the other keep invariant.

Parameter z a K l

Range 10−{1,2,3,4} 0.2× {1, 2, 3, 4, 4.75} 10× {2, 3, 4, 5} {2, 3, 4}
NMI 0.988± 0 0.988± 0.00019 0.987± 0.0015 0.988± 0.0002

Figure 4: Image segmentation by Zell from the Berkeley segmentation database.

approach for finding initial small clusters is presented, which is based on the merging of local links
among samples. The directed graph used in this paper is derived from the directionality ofl-links.
Experimental results on toy data, hand-written digits, facial images, and image segmentation show
the competitive performance of Zell. We hope that Zell brings a new perspective on complex data
clustering.
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