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Abstract

In this paper, we develop a geometric framework for lin-

ear or nonlinear discriminant subspace learning and clas-

sification. In our framework, the structures of classes are

conceptualized as a semi-Riemannian manifold which is

considered as a submanifold embedded in an ambient semi-

Riemannian space. The class structures of original sam-

ples can be characterized and deformed by local metrics

of the semi-Riemannian space. Semi-Riemannian metrics

are uniquely determined by the smoothing of discrete func-

tions and the nullity of the semi-Riemannian space. Based

on the geometrization of class structures, optimizing class

structures in the feature space is equivalent to maximiz-

ing the quadratic quantities of metric tensors in the semi-

Riemannian space. Thus supervised discriminant subspace

learning reduces to unsupervised semi-Riemannian mani-

fold learning. Based on the proposed framework, a novel

algorithm, dubbed as Semi-Riemannian Discriminant Anal-

ysis (SRDA), is presented for subspace-based classification.

The performance of SRDA is tested on face recognition

(singular case) and handwritten capital letter classification

(nonsingular case) against existing algorithms. The exper-

imental results show that SRDA works well on recognition

and classification, implying that semi-Riemannian geome-

try is a promising new tool for pattern recognition and ma-

chine learning.

1. Introduction

Classification is a fundamental task in pattern recogni-

tion. Linear discriminant analysis is a popular fashion of

performing classification, of which researchers are fond

due to its simplicity, principled treatment, and compara-

ble performance. We devote this paper to addressing the

linear classification issue from the perspective of semi-

Riemannian geometry [18].

∗The work was performed when Deli Zhao worked in Microsoft Re-

search Asia.

1.1. Fisher Criterion and Discrepancy Criterion

Fisher’s Linear Discriminant Analysis (LDA) [7] is well

known as the classic work on discriminant analysis. Fisher

performed the structural analysis of classes by maximiz-

ing the between-class scatter and simultaneously minimiz-

ing the within-class scatter via the ratio of them — known

as Fisher criterion. Fisher criterion now works as a funda-

mental way of integrating dual quantities between classes

and within classes in classification. However, the singular-

ity of the within-class scatter matrix (or its analogues) usu-

ally leads to the computational issue when performing the

generalized eigen-analysis.

In recent decades, a great deal of effort on quadratic or

linear discrimination has been devoted towards tackling the

singularity problem. Overall, there are mainly three types

of approaches: 1) the regularization of the within-class co-

variance matrix such as the work in [8, 9], 2) Principal

Component Analysis (PCA) based dimensionality reduc-

tion such as Fisherfaces [2], and 3) subspace-based vari-

ants of LDA such as [2, 5, 34, 29, 32, 28, 30]. There are

also matrix-decomposition-based approaches like [13, 33]

and the correlation-based methods such as [17]. However,

less attention has been paid to investigating class structures

since Fisher’s LDA. Most works for subspace-based classi-

fication can be traced back to LDA and Fisher criterion.

Recently, the development of manifold learning [23, 22]

leads researchers’ attention to the investigation of local

structures of data in the pattern recognition community.

Such kind of analysis is necessary in cases where data struc-

tures are complex. Linear methods related to manifold

learning have been proposed for subspace-based recogni-

tion [11, 31].

Another recent development on linear discrimination

is that discrepancy criterions took the role of integrating

(global or local) between-class scatters and (global or lo-

cal) within-class scatters instead of ratios like the traditional

Fisher criterion. Global methods include Maximum Margin

Criterion (MMC) [14] and Kernel Scatter-Difference Anal-

ysis (KSDA) [15, 16], and local ones include Stepwise Non-
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parametric Maximum Margin Criterion (SNMMC) [21],

Local and Weighted Maximum Margin Discriminant Anal-

ysis (LWMMDA) [26], and Average Neighborhood Mar-

gin Maximization (ANMM) [24]. A discrepancy criterion

is also implicitly contained in [25]. Such kinds of meth-

ods successfully avoid the generalized eigen-decomposition

problem, thereby are free from the computational dilemma

of singularity.

1.2. Our Work

1.2.1 From Data to Semi-Riemannian Manifold

Our motivations are two-fold: the viewpoint from manifold

learning and the success of discrepancy criterions in clas-

sification. The theory and the algorithm in this paper are

based on our perspective that the intrinsic structure of a

group of classes is, independent of ambient vector-valued

representations, a low-dimensional curved manifold which

is tightly related to structural associations between local

classes and within classes.

On one hand, the manifold-related manipulations are

only allowed on local neighborhoods, which drives us to

define the K nearest neighbor (KNN) classes of a sample

(the beginning of Section 3). Treating each class as a unit

and considering that discrimination relies on the relation-

ship between a sample and its KNN classes at the same

time, we introduce the concept of free degrees of discrim-

inability of a sample and naturally form a discriminant man-

ifold for class structures (Section 3.1.1). On the other hand,

to optimize class structures, we usually need to perform the

discrepancies of intra-class quantities and inter-class quan-

tities. To do so, we introduce semi-Riemannian metrics [18]

(Section 2) which are the unique tools to locally integrate

such kinds of dual quantities from the mathematical point

of view. Thus, the structure of classes is initially modeled

as a semi-Riemannian manifold (Section 3.1.1).

Furthermore, the computation on the discriminant man-

ifold is allowed when the coordinates of each point on it

are available. To this end, we represent the coordinate of

each dimension using the dissimilarities between the sam-

ple and several sampled points in each of its KNN classes

(see Figure 2). Thus we obtain an ambient space with

semi-Riemannian metrics where coordinates are character-

ized by dissimilarities between local sample pairs in intra

classes and in inter classes. The discriminant manifold is

considered as a semi-Riemannian submanifold of the am-

bient semi-Riemannian space and points on it are repre-

sented by the ambient coordinates. Thus, we complete the

semi-Riemannian manifold model of class structures (Sec-

tion 3.1.2).

1.2.2 Learning on Semi-Riemannian manifold

By virtue of the geometrization of class structures, learning

a discriminant subspace reduces to learning the geometry of

Table 1. Notations.
tr(A) The trace of the matrix A.

AT The transpose of A.

Ip×p The identity matrix of size p × p.

ep The all-one column vector of length p.

R
n The n-dimensional Euclidean space.

S
n
x The n-dimensional original sample space.

xi The i-th sample, xi ∈ S
n
x, i = 1, . . . , m.

Sx Sx = {x1, . . . ,xm}.

X X = [x1, . . . ,xm].

Cj The j-th class, j = 1, . . . , c.

x̄j The centroid of class j.

ω(xi) The label of class that xi belongs to.

x̂i
k̂

The k̂-th neighbor of xi in Cω(xi),

k̂ = 1, . . . , K̂ and K̂ ≤ |Cω(xi)| − 1.

x̌
j
i
ǩ

The ǩ-th neighbor of xi in Cj ,

ǩ = 1, . . . , Ǩ and Ǩ ≤ |Cj |.

Ŝxi
Ŝxi

= {x̂i
1̂
, . . . , x̂i

K̂
,xi}.

Šj
xi

Šj
xi

= {x̌j
i
1̌

, . . . , x̌
j
i
Ǩ

}.

Šxi
Šxi

= {Š1
xi

, . . . , ŠK
xi
}.

Sxi
Sxi

= {Šxi
, Ŝxi

}.

Ii The index set of elements in Sxi
.

Ŷi Ŷi = [ŷi
1̂
, . . . , ŷi

K̂
,yi].

Y̌
j
i Y̌

j
i = [y̌j

i
1̌

, . . . , y̌
j
i
Ǩ

].

Y̌i Y̌i = [Y̌1
i , . . . , Y̌K

i ].

Yi Yi = [Y̌i, Ŷi].

d̂xi,xi
k̂

The distance between x̂i and x̂i
k̂

.

ď
j
xi,xi

ǩ

The distance between x̂i and x̌
j
i
ǩ

.

d̂xi
d̂xi

= [d̂xi,xi
1̂

, . . . , d̂xi,xi
K̂

]T ,

ď
j
xi

ď
j
xi

= [ďj
xi,xi

1̌

, . . . , ď
j
xi,xi

Ǩ

]T .

ďxi
ďxi

= [(ď1
xi

)T , . . . , (ďK
xi

)T ]T .

dxi
dxi

= [ďT
xi

, d̂T
xi

]T .

D̂xi
D̂xi

= diag((d̂xi,xi
1̂

)2, . . . , (d̂xi,xi
K̂

)2).

Ďxi
Ďxi

= diag((ď1
xi,xi

1̌

)2, . . . , (ď1
xi,xi

Ǩ

)2,

. . . , (ďK
xi,xi

Ǩ

)2).

a semi-Riemannian manifold. Thus, classification is cou-

pled with semi-Riemannian manifold learning. Moreover,

we present an approach to optimize class structures in the

feature space using metric tensors learnt from the ambient

semi-Riemannian space (Section 3.2.1). Semi-Riemannian

metric learning is developed via the discretized Laplacian

smoothing of discrete functions and the nullity of the am-

bient space which is the special nature of semi-Riemannian

spaces (Section 3.2.2). In fact, the role of semi-Riemannian

metrics in semi-Riemannian manifold learning is equivalent

to the media of transferring geometry from the sample space

to the feature space (Section 3.2.3). Finally, a specific al-

gorithm, dubbed as Semi-Riemannian Discriminant Analy-

sis (SRDA), is presented for subspace-based classification

(Section 3.2.4).



Figure 1. Illustration of a space-time. The plane is the space-time

of the present. On the top is the future light cone and at the bottom

the past light cone. Inside the light cone is the time-like space-time

and outside the space-like space-time.

2. Fundamentals of Semi-Riemannian Spaces

Semi-Riemannian manifolds1 are smooth manifolds fur-

nished with semi-Riemannian metric tensors. The geometry

of semi-Riemannian manifolds is called semi-Riemannian

geometry. The semi-Riemannian geometry has been exten-

sively applied, due to the success of Einstein’s general rela-

tivity, as a basic geometric tool of modeling space-times in

physics. To the best of our knowledge, however, it has not

been explicitly applied in pattern recognition before. Here

we give a concise introduction to semi-Riemannian spaces.

One may refer to [18, 6] for more details.

Geometric spaces are specified by their metrics. The
metric matrix in the semi-Riemannian space N

n
ν is of form

G =

[

Λ̌p×p 0

0 −Λ̂ν×ν

]

, (1)

where Λ̌p×p and Λ̂ν×ν are diagonal and their diagonal en-
tries are positive, and p + ν = n. With G, the space-time
interval ds2 in N

n
ν can be expressed as

ds
2 =

∑p

i=1
Λ̌(i, i)dx

2
i −

∑p+ν

i=p+1
Λ̂(i − p, i − p)dx

2
i , (2)

where ν is called the index of N
n
ν . N

n
ν is a semi-Euclidean

space if Λ̌p×p = Ip×p and Λ̂ν×ν = Iν×ν , and a Lorentz

(Minkowski) space if Λ̌p×p = Ip×p and ν = 1. The space-

time in Einstein’s relativity theory is the case of n = 4 and

ν = 1. N
n
ν degenerates to the Euclidean space R

n if ν = 0.

Semi-Riemannian spaces are more general curved spaces

with many special properties in their own right than Rie-

mannian spaces.

Suppose that r = [řT , r̂T ]T is a vector in N
n
ν . Then a

metric tensor g(r, r) with respect to G is expressible as

g(r, r) = r
T
Gr = ř

T
Λ̌ř − r̂

T
Λ̂r̂. (3)

The vector r is called space-like if g(r, r) > 0 or r = 0,

time-like if g(r, r) < 0, and null (or light-like, isotropic) if

g(r, r) = 0 and r 6= 0. Figure 1 illustrates a space-time.

1Semi-Riemannian manifolds are also called pseudo-Riemannian man-

ifolds.

3. Classification via Semi-Riemannian Spaces

What our framework differs from traditional ones on

classification is that class structures are modeled as a semi-

Riemannian submanifold embedded in an ambient semi-

Riemannian space. As a result, learning a discriminant sub-

space for classification reduces to learning the geometry of

the semi-Riemannian submanifold. Therefore, classifica-

tion is coupled with manifold learning in semi-Riemannian

spaces.

In our framework, the K nearest neighbor (KNN) classes

of a sample xi are involved.

Definition 1. KNN Classes. For a sample xi, its KNN
classes are defined as:

{i1, . . . , iK} = arg min
j

‖x̄j − xi‖Sn
x

, j = 1, . . . , c. (4)

The distance ‖x̄j − xi‖Sn
x

depends on the attributes of

the sample space S
n
x. It may be the Euclidean distance, one

of statistical distances like the Chi-square [10], or the ap-

proximated geodesic distance [23].

It suffices to emphasize that the original motivation of

the definition of KNN classes comes from the surprising ef-

fectiveness of discriminant subspaces learnt only from sev-

eral nearest neighbor classes of a query sample in some re-

sulting feature spaces [27]2. Readers may refer to [27] for

more details.

3.1. Modeling Class Structures as a Semi-
Riemannian Submanifold

3.1.1 Associating Class Structures with a Semi-

Riemannian Manifold

First, let us introduce the concept of “degrees of discrim-
inability” of a sample. We contend that what is crucial to the
discrimination of a sample is its KNN classes rather than all
the involved classes. Namely, only KNN classes of the sam-
ple dominate the capability of discriminating it. Therefore,
our concerns are only focused on mining the structural re-
lationship between the sample and its related KNN classes.
For a specific sample xi, one of its KNN classes accounts
for one degree of discriminating it from other samples in
different classes. So KNN classes account for K degrees
of the discriminability. On the other hand, class ω(xi) in
question accounts for one degree of associating xi with its
own class. Putting the inter-class degrees and the intra-class
degree together, we say that the discriminability of the sam-
ple is of degree K + 1. Furthermore, suppose that spanning
axes are constructed from xi to class ω(xi) and each of its
KNN classes. Therefore, the discrimination admits a space
that is supported by K +1 spanning axes. Denote this space

by M
K+1
1 . From the above analysis, we know the discrim-

inant space M
K+1
1 has K + 1 free degrees and thus is a

manifold of dimension K + 1. The left part in Figure 2 il-

lustrates a toy example of M
K+1
1 . For each point on M

K+1
1 ,

2Note that the content related to KNN classes in [27] was not presented

in the journal version [29].



Figure 2. Schematic illustrations of the semi-Riemannian subman-

ifold M
K+1
1 and the ambient semi-Riemannian space N

KǨ+K̂

K̂
.

Here K = 3, Ǩ = K̂ = 2. The dots with the same color belong

to the same class. The left figure depicts the abstract discriminant

manifold M
4
1 and the right figure depicts the ambient N

8
2.

we may endow the i-th axis a coordinate si. Thus, the vector
s = [s1, . . . , sK , sK+1]

T is the coordinate representation of

a point on M
K+1
1 . Furnishing M

K+1
1 with a metric of form

G
M =

[

ΛK×K 0

0 −φ

]

, (5)

then M
K+1
1 is a semi-Riemannian manifold with the index

one, i.e., a Lorentz manifold. Thus, on the tangent space

TM
K+1
1 , the quadratic form of the vector, with respect to

GM, is measured by g(s, s) =
∑K

i=1 Λ(i, i)s2
i − φs2

K+1.

Intuitively, the positive definite part of GM measures the

inter-class quantity and the negative definite part of GM

measures the intra-class quantity. To make the concept eas-

ily understandable, let us relate the semi-Riemannian man-

ifold M
4
1 with the space-time in the relativity theory. The

role of the first three inter-class degrees of discriminability

corresponds to that of dimensions of spatial location in the

space-time and the role of the intra-class degree is equiva-

lent to that of the dimension of time. Hence, we construct a

semi-Riemannian manifold for the discrimination problem.

3.1.2 Embedding Discriminant Manifolds into Ambi-

ent Semi-Riemannian Spaces

Questions naturally arise from the conceptualization of

class structures as a semi-Riemannian manifold: how to

form the coordinates of M
K+1
1 and how to parameterize it

for computation?

The structural relationship in pattern analysis is in gen-

eral characterized by distances or more general dissimilar-

ities between samples. We may apply dissimilarities from

each sample to its KNN classes as the coordinates of rep-

resentation. Each of the degrees of discriminability is rep-

resented by the corresponding sample-to-class dissimilar-

ity. The problem is, however, that it is unclear how to

determine the sample-to-class dissimilarity. Hopefully, it

can be handled by sampling points in KNN classes. More

specifically, we sample Ǩ points in each KNN class of

xi. Thus, we exploit the distances between xi and its Ǩ

points in each KNN class as an ambient representation of

the general sample-to-interclass dissimilarity, denoting it

by (ďj
xi,xi

1̌

, . . . , ďj
xi,xi

Ǩ

)T . Similarly, we employ the dis-

tances between xi and K̂ points in class ω(xi) to repre-

sent the sample-to-intraclass dissimilarity, denoting it by

(d̂xi,xi
1̂

, . . . , d̂xi,xi
K̂

)T . Putting them together, we even-

tually get an explicit coordinate representation of a point on

M
K+1
1 induced at the sample xi, i.e., dxi

= [ďT
xi

, d̂T
xi

]T .

The above manipulations of up-sampling (enlarging di-

mension) are essentially to explicate one intrinsic coordi-

nate with more extrinsic parameters (or ambient representa-

tion), which is the process of embedding a low-dimensional

manifold into a high-dimensional ambient space whose

metrics and coordinates are non-ambiguous.

With the up-sampling, each point on M
K+1
1 is en-

dowed with a (KǨ + K̂)-tuple coordinate representation
dxi

. Henceforth, we obtain a new semi-Riemannian space

N
KǨ+K̂

K̂
furnished with the metric

G
N =

[

Λ̌(KǨ)×(KǨ) 0

0 −Λ̂K̂×K̂

]

. (6)

In the manifold language, N
KǨ+K̂

K̂
is called the ambi-

ent space of M
K+1
1 , and M

K+1
1 is a semi-Riemannian

submanifold of N
KǨ+K̂

K̂
. In general, K, Ǩ, and K̂ are

small positive integers. So N
KǨ+K̂

K̂
is a low-dimensional

semi-Riemannian space, implying that, even in the ambient

space, the global structure of classes is a low-dimensional

semi-Riemannian manifold. It is necessary to point it out

that the dimensions of M
K+1
1 and N

KǨ+K̂

K̂
are completely

independent of the dimension of the sample space S
n
x. The

right part in Figure 2 illustrates a toy example of N
KǨ+K̂

K̂
.

3.2. Learning Discriminant Subspaces via Semi-
Riemannian Manifold Learning

With the newly built space, discriminant subspaces can

be learnt from the semi-Riemannian geometry of M
K+1
1 .

To this end, we need to handle two matters. The first is

the optimization framework for learning discriminant sub-

spaces from local semi-Riemannian geometry embodied by

the ambient metric GN
i at xi. The second is the feasible so-

lution of the metric GN
i that is favorable of discrimination.

In this paper, we assume that the feature space is Eu-

clidean, meaning that the length of y is measured by the ℓ2
norm [12]: ‖y‖2

ℓ2
= yT y = tr(yyT ).

3.2.1 Alignment of Metric Tensors in Semi-

Riemannian Space

Suppose that the metric matrix GN
i at xi has already been

determined. If we penalize the feature space S
d
y using GN

i ,

meaning that the metric keeps invariant in S
d
y, then the op-

timization of learning discriminant subspaces can be per-

formed using the metric tensor g(dyi
,dyi

) in N
KǨ+K̂

K̂
. It



is straightforward to see that g(dyi
,dyi

) can be written as

g(dyi
,dyi

) = d
T
yi

G
N

i dyi
= ď

T
yi

Λ̌iďyi
− d̂

T
yi

Λ̂id̂yi
. (7)

Note here that GN
i is learnt from the structure of original

samples3 and applied to the feature space. What we de-
sire is the larger inter-class margins and at the same time
the smaller intra-class margins in S

d
y, which can be fulfilled

by maximizing the metric tensor g(dyi
,dyi

). The maxi-
mization of g(dyi

,dyi
) is in effect the principal component

analysis in N
KǨ+K̂

K̂
. We may handle the maximization by

taking advantage of Zhao et al.’s theoretic framework [35]
on the alignment of local geometry. More specifically, let
the difference operator D be

D =

[

I(KǨ+K̂)×(KǨ+K̂)

−eT

KǨ+K̂

]

. (8)

Then we have the following theorem pertaining to the met-

ric alignment4
∑m

i=1 g(dyi
,dyi

).

Theorem 1.
∑m

i=1 g(dyi
,dyi

) = tr(YLYT ), where L =
∑m

i=1 SiLiS
T
i , Li = DGN

i DT , and Si is the binary matrix

of size m×(KǨ+K̂+1) whose structure is that (Si)pq = 1
if the q-th vector in Yi is the p-th vector in Y.

With Theorem 1, it is easy to know that the optimal non-

linear embedding of class structures is the d-column eigen-

vectors of L corresponding to the first d largest eigenval-

ues. This type of nonlinear embedding can be exploited for

class visualization and the efficient computation of linear

subspace [4]. If there is a linear isometric transformation

between the low-dimensional feature vector y and the orig-

inal sample x, i.e., y 7→ Uy = x, where UT U = Id×d,

then the linear discriminant subspace U can be derived as

the principal subspace of XLXT . The principal subspace

U learnt via the semi-Riemannian subspace N
KǨ+K̂

K̂
is the

optimal subspace for discrimination, in the sense that the lo-

cal inter-class structures are enlarged while the local intra-

class structures are contracted.

It suffices to note that one may form the difference re-

lationship by various operators D in (8). The alignment

framework is still applicable for such modifications.

3.2.2 Semi-Riemannian Metric Learning

The metric GN
i is one of the crucial factors that govern the

geometry of N
KǨ+K̂

K̂
. We may apply GN

i to deform local

spaces of N
KǨ+K̂

K̂
towards the optimization of class struc-

tures. Therefore, we can determine appropriate metrics that

are favorable of discrimination in N
KǨ+K̂

K̂
. The metric GN

i

consists of two parts: the positive definite part Λ̌i and the

negative definite part −Λ̂i. In this section, we introduce

3It will be presented in the next section.
4We omit the proofs of the theorems in this paper due to lack of space.

an alternative way to determine Λ̌i and −Λ̂i, e.g., by the

smoothing of discrete functions and the nullity of N
KǨ+K̂

K̂
.

A. Smoothing. We may write ďT
yi

Λ̌iďyi
in the form of

components:

ď
T
yi

Λ̌iďyi
=

KǨ
∑

ǩ=1

ďyi
(ǩ)Λ̌i(ǩ, ǩ)ďyi

(ǩ). (9)

It is evident that the large component

ďyi
(ǩ)Λ̌i(ǩ, ǩ)ďyi

(ǩ) will suppress the small ones
when maximizing g(dyi

,dyi
). This functional

non-uniformness is harmful for learning an opti-
mal discriminant subspace. However, this weak-
ness can be allievated by smoothing the elements in
{ďxi

(1̌)Λ̌i(1̌,1̌)ďxi
(1̌),...,ďxi

(KǨ)Λ̌i(KǨ,KǨ)ďxi
(KǨ)}. Let

ǧi=[Λ̌i(1̌,1̌),...,Λ̌i(KǨ,KǨ)]T and ĝi=[Λ̂i(1̂,1̂),...,Λ̂i(K̂,K̂)]T .
Then the smoothing can be performed on Ďxi

ǧi due to

that ďT
xi

Λ̌iďxi
= eT Ďxi

ǧi. Here we employ the following
discretized Laplacian smoothing







arg min
ǧi

‖F̌Ďxi
ǧi‖

2,

s.t. eT ǧi = 1,
(10)

where F̌ is the first-order difference operator

F̌ = [I(KǨ−1)×(KǨ−1) 0(KǨ−1)×1] + (11)

[0(KǨ−1)×1 − I(KǨ−1)×(KǨ−1)]. (12)

Note that F̌T F̌ is the Neuman discretization of Laplacian

[19, 3].

B. Setting N
KǨ+K̂

K̂
Locally Null. Null (or light-like)

manifolds are typical examples in semi-Riemannian spaces
[6]. In classification, a null manifold has its physical na-
ture in its own right. As introduced in the preceding sec-

tion, a null vector dxi
in N

KǨ+K̂

K̂
is the vector that van-

ishes the metric tensor: g(dxi
,dxi

) = 0, i.e., ďT
xi

Λ̌iďxi
=

d̂T
xi

Λ̂id̂xi
. Equivalently, we have eT

K̂
D̂xi

ĝi = eT
KǨ

Ďxi
ǧi.

Putting the smoothing and the nullity together, we get the
optimization for the negative definite part of metric GN

i .






arg min
ĝi

‖F̂D̂xi
ĝi‖

2,

s.t. eT

K̂
D̂xi

ĝi = eT

KǨ
Ďxi

ǧi,
(13)

where F̂ is the difference operator similar to F̌. For opti-

mizations (10) and (13), we have the following theorem.

Theorem 2. ǧi =
Ď−1

xi
e

KǨ

eT

KǨ
Ď

−1

xi
e

KǨ

and ĝi =
eT

KǨ
Ďxi

ǧi

K̂
D̂−1

xi
eK̂ .

From Theorem 2, we see that ǧi and ĝi are independent

of the difference operators F̌ and F̂, respectively.

3.2.3 Local Geometry Transfer via Metrics

Readers may notice that GN
i is learnt from Sx (in Sec-

tion 3.2.2) but employed for learning Sy (in Section 3.2.1),

the process of which is the geometry transfer. The am-

bient N
KǨ+K̂

K̂
is governed by many local GN

i s which re-

veal the geometric distribution of class structures of orig-

inal samples. Sx and Sy are investigated in the same



Table 2. Algorithm of SRDA

1. For each xi, search the NN point sets Šxi
and Ŝxi

, record

the index set Ii of Sxi
, and form the dissimilarity vector

ďxi
and d̂xi

.

2. Compute the metric matrix GN

i using Theorem 2, and

form L by L(Ii, Ii) ←− L(Ii, Ii) + DGN

i D
T , where L

is initialized by a zero matrix.

3. Obtain U by computing the eigenvectors of XLXT as-

sociated with the first d largest eigenvalues, and project

samples: Y = UT X.

4. Choose an optimal γ in [0.5, 1] with the adaption Λ̂i ←
γΛ̂i and Λ̌i ← (1 − γ)Λ̌i by cross validation.

semi-Riemannian space. Henceforth, Sy admit the met-

ric GN
i in N

KǨ+K̂

K̂
. The functionality of GN

i for Sy is

to locally penalize the corresponding Euclidean distances

{dy1
, . . . ,dym

} according to the learnt geometric struc-

tures when maximizing the metric tensor g(dyi
,dyi

). The

role of GN
i in semi-Riemannian manifold learning is sim-

ilar to that of locally linear fittings in the LLE algorithm

[22] in traditional manifold learning, transferring the local

geometry from the sample space to the feature space.

The enforcement of nullity of N
KǨ+K̂

K̂
is in effect to

balance the inter-class scatter ďT
xi

Λ̌iďxi
and the intra-class

scatter d̂T
xi

Λ̂id̂xi
, thus leading GN

i to be the baseline of

determining the final attribute of N
KǨ+K̂

K̂
for classifica-

tion. Maximizing g(dyi
,dyi

) means pulling Sy towards

the space-likeness in N
KǨ+K̂

K̂
. We empirically find that

the discriminability will be enhanced if Sx is time-like in

N
KǨ+K̂

K̂
. The time-likeness of Sx is easily achievable by

multiplying a positive factor γ to Λ̂i, i.e, Λ̂i ← γΛ̂i, where

γ ∈ [0.5, 1], and performing Λ̌i ← (1 − γ)Λ̌i at the same

time.

3.2.4 Semi-Riemannian Discriminant Analysis

By means of the formulated framework in a semi-

Riemannian space, we now give a specific algorithm, Semi-

Riemannian Discriminant Analysis (SRDA), for classifica-

tion or discriminant subspace learning. The elements in Šj
xi

are determined by the nearest neighbor points in the j-th

KNN class of xi and Ŝxi
by the nearest neighbor points of

xi in class ω(xi). The algorithm of SRDA is summarized

in Table 2.

4. Experiments

Experiments are conducted on face recognition and

handwritten capital letter classification to test the perfor-

mance of SRDA against traditional and newly proposed al-

gorithms on recognition and classification. The former is

the singular case (small sample size) while the latter is not.

Figure 3. Facial images of two subjects in the FRGC version 2.

Table 3. Recognition results on experiment 4 of FRGC version 2.

– On raw data On PCA features On LBP features

LBP 90.53 ± 0.74 (2891) – –

PCA 86.85 ± 1.17 (150) – 93.48 ± 0.90 (300)

LDA – 93.83 ± 0.83 (50) –

LPP – 91.32 ± 0.75 (65) –

MFA – 94.08 ± 0.96 (35) –

MMC 87.48 ± 0.81 (570) 90.38 ± 0.82 (30) 94.72 ± 0.62 (540)

SNMMC 91.69 ± 0.66 (120) 91.82 ± 0.75 (100) 96.47 ± 0.61 (510)

ANMM 91.35 ± 0.97 (170) 91.69 ± 0.71 (105) 96.18 ± 0.60 (510)

SRDA 94.19 ± 0.54 (80) 94.24 ± 0.76 (140) 98.09 ± 0.49 (850)

The methods for comparison include PCA, LDA, LPP [11],

MFA [31], MMC [14], SNMMC [21], and ANMM [24].

For simplicity and generality, we directly use the ℓ2 norm

(for raw data and PCA features) and the Chi-square (for

LBP features) to compute ‖xj − xi‖Sn
x

. The nearest neigh-

bor classifier is employed on extracted features for recogni-

tion and classification.

4.1. Singular Case: Face Recognition

We perform the experiments on a subset selected from

the query set of experiment 4 in FRGC version 2 [20]. The

facial data set was used in [36]. There are 200 subjects in

the gallery and probe set and 116 subjects in the training

set. There are ten facial images for each subject. The iden-

tities of subjects in the training set is different from those of

subjects in the gallery and probe set. The facial images are

aligned according to the positions of eyes and mouths, and

cropped to the size of 51×57. Figure 3 shows facial images

of two subjects. For each subject, five images are randomly

selected as the gallery set and the remaining for the probe

set. Such a trial is repeated 20 times.

We apply the Local Binary Pattern (LBP) algorithm to

extract visual features. The usage of LBP here is consis-

tent with that in [1]: pattern (8, 2), 59 bins, and 7 × 7 im-

age blocks. For PCA-combined methods, the number of

principal components is optimally determined. Besides, for

LPP, the number of nearest neighbors is chosen as 3, and

for MFA the number of the inter-class and intra-class near-

est neighbors are chosen as 40 and 3, respectively. These

parameters are tuned optimally in the training phase. For

ANMM, as suggested by authors [24], we take ten inter-

class and intra-class nearest neighbors, respectively. For

SRDA, we take K = 5, Ǩ = 2, and K̂ = 9. The results are

shown in Table 3.

From Table 3, we see that SRDA performs better than

the other methods on the raw data whereas LDA and MFA

have the comparable performance with SRDA on PCA fea-

tures. What’s interesting is that the performance of SRDA
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Figure 4. Recognition rates of involved algorithms over the vari-

ation of number of principal components. The related parameters

in all algorithms keep invariant.
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Figure 5. Recognition rates of SRDA against the variations of

numbers of KNN classes and inter-class nearest neighbors. (a)

K = 5 and K̂ = 9. (b) Ǩ = 2 and K̂ = 9.

keeps almost invariant on the raw data and on PCA fea-

tures, implying that PCA does not contribute much to en-

hance the discrimination. The major contribution of PCA

in classification is on dimension reduction and reducing the

computational complexity. Figure 4 illustrates the robust-

ness of involved algorithms over the variation of the num-

ber of principal components in PCA. We can see that SRDA

and ANMM behave robustly. This is because the distances

between neighboring projected samples only slightly vary

with the increment of the number of principal components

when they are sufficiently large. Besides, the recognition

performance of SRDA is improved on LBP visual features.

Notice that the discriminability of SRDA depends on the

accuracy of characterization of local class structures. And

LBP features are superior to the raw data and PCA features

on measuring the similarities among faces. Thus, it is not

surprising that SRDA performs better on LBP features than

on the raw data and on PCA features. Figure 5 shows the

recognition rates of SRDA against the variations of numbers

of KNN classes and inter-class nearest neighbors. Again,

SRDA exhibits strong robustness.

4.2. Nonsingular Case: Handwritten Capital Letter
Classification

The capital letter data set (including the USPS hand-

written digits) used in this experiment comes from Sam

Figure 6. Handwritten capital letters.

Table 4. Classification results on handwritten capital letters.

Algorithm Accuracy (%) Algorithm Accuracy (%)

raw data 72.6 ± 1.60

PCA 71.62 ± 1.86 (20) MMC 73.56 ± 1.28 (30)

LDA 38.76 ± 1.76 (30) SNMMC 60.03 ± 1.86 (40)

LPP 53.63 ± 2.72 (30) ANMM 77.79 ± 1.79 (30)

MFA 45.18 ± 2.11 (70) SRDA 82.71 ± 2.49 (20)

Roweis’s homepage5. The capital letters are the cropped

20 × 16 images of ‘A’ through ‘Z’. There are 39 examples

for each class. Figure 6 shows the examples of ‘A’ and ‘B’.

We randomly select 19 samples from each class for train-

ing. So, there are all together 494 images in the training set.

Therefore, the methods such as LDA, LPP, and MFA will

not encounter the singularity problem of computation. So,

we can directly employ them for discrimination. The trial is

repeated 50 times.

The classification results are listed in Table 4. PCA per-

forms comparably well with using the raw data directly.

Surprisingly, the performance of LDA, LPP, and MFA is

less effective than that directly on the raw data. This is be-

cause the performance of these methods may be affected by

the numerical instability of generalized eigen-analysis on

complex or fairly noisy data. One may resort to the methods

in [9, 8, 25, 3] to improve the numerical stability. In con-

trast, the methods like MMC, ANMM, and our SRDA per-

form better. Particularly, the performance of classification

is improved by 10% on SRDA discriminant features over

using the raw data. SNMMC is a bit sensitive to the struc-

tural variation when the number of samples in each class

is large, because the method exploits the distance between

the point in question and its farthest point to represent the

intra-class association.

The experiments are also performed on the classification

of the USPS handwritten digits. The first 100 samples are

selected from 1100 samples of each digit (ten digits all to-

gether) for training and the remaining for testing. The clas-

sification accuracies are 88.2% using the raw data, 88.35%
on PCA features, 82.73% on LDA features, and 89.19% on

MMC features, 92.05% on ANMM features, and 92.72%
on SRDA features.

5. Conclusion

The classification problem is investigated via semi-

Riemannian spaces in this paper. The structural relationship

between classes is locally described as a low-dimensional

5 http://www.cs.toronto.edu/̃ roweis/data.html.



semi-Riemannian submanifold of index one, or equiva-

lently a Lorentz manifold embedded in an ambient semi-

Riemannian space. The dimension and structure of the

discriminant sub-manifold are determined by the class and

neighboring classes of a sample. The dissimilarities be-

tween the sample and its intra-class neighbors and inter-

class neighbors are considered as the natural coordinate rep-

resentation of a point in the ambient space. Therefore, the

built semi-Riemannian space is not restricted by metrics

of diverse original sample spaces. This property is sim-

ilar to those of kernel-based methods. The structures of

classes can be characterized and reshaped by metrics in the

semi-Riemannian space. The linear and nonlinear discrim-

inant subspaces can be obtained by virtue of the alignment

of local metric tensors, which reduces to a simple eigen-

decomposition like those in traditional manifold learning.

Furthermore, we present a feasible determination of local

metrics via the smoothing of discrete functions and the nul-

lity of a semi-Riemannian space. Based on the proposed

framework, a new method, Semi-Riemannian Discriminant

Analysis (SRDA), is presented for supervised discriminant

subspace learning. The effectiveness of SRDA is tested

on face recognition and handwritten capital letter classifi-

cation.
Our future work will be focused on developing algo-

rithms for classification by means of the intrinsic geome-
try of semi-Riemannian submanifolds in semi-Riemannian
spaces.
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