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Abstract. A new approach, called Collective Shape Difference Classi-
fier (CSDC), is proposed to improve the accuracy and computational
efficiency of 3D face recognition. The CSDC learns the most discrimina-
tive local areas from the Pure Shape Difference Map (PSDM) and trains
them as weak classifiers for assembling a collective strong classifier using
the real-boosting approach. The PSDM is established between two 3D
face models aligned by a posture normalization procedure based on facial
features. The model alignment is self-dependent, which avoids registering
the probe face against every different gallery face during the recognition,
so that a high computational speed is obtained. The experiments, carried
out on the FRGC v2 and BU-3DFE databases, yield rank-1 recognition
rates better than 98%. Each recognition against a gallery with 1000 faces
only needs about 3.05 seconds. These two experimental results together
with the high performance recognition on partial faces demonstrate that
our algorithm is not only effective but also efficient.

1 Introduction

With explicit shape information, three dimensional face recognition has been
expected to overcome the problems, such as the variations of pose, lighting and
expression [1,2], facing traditional 2D face recognition. Various techniques for 3D
face recognition have been presented to make use of the shape clues [2]. However,
as a relatively new research topic, a number of challenges still exist that limits
the performance of current 3D face recognition algorithms both in accuracy and
speed.

The first challenge is how to automatically extract the facial region from the
raw data captured by a 3D scanner, which may contain hair, shoulder, and
neck. Chang et al. [3] designed a skin model for the 2D color face image to help
the 3D face extraction. Accurate registration between the image pixels and the
3D points are needed and the 3D facial region is found according to the skin
detection. The requirement of an additional 2D image limits the usage of the
approach.

The second challenge is the precise and fast alignment between two face mod-
els. A popular algorithm is the iterative closest point (ICP) [4] which is widely
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used during the matching stage in 3D face recognition [5,7,1,3]. The ICP al-
gorithm iteratively minimizes the mean square distance (MSD) metric and has
relatively good recognition performance. However, it suffers from facial surface
distortion due to expression variation and noise [3]. Furthermore, the iterative
process makes the ICP computationally expensive and the registration must
be done for each model in the gallery. Consequently, it is not suitable for a
recognition task with a large dataset.

The third problem is how to measure the similarity between two given facial
shapes. Existing features include curvature [8], profile [9], surface descriptors
[16], Point Signature [7], and Spherical Face Representation [17]. Some recent
methods treat the aligned face model as a point set. The similarity is calculated
via Hausdorff distance [5] or Root-Mean-Square (RMS) of the closest distances
[3,10]. This kind of distances based on averaging provides a plain dissimilar-
ity measure. The performance may decrease seriously in the presence of intra-
personal variation.

Expression variation is the fourth challenge. To reduce the effect of expres-
sions, one approach is to choose only rigid regions for matching [7,3]. Another
is to map or deform the original facial data to a middle model in which the dis-
tortion is reduced [10,11,6]. However, in the former case, there may not be such
parts of the face that is shape invariant with sufficient discirminating power [2].
The latter work is interesting and improves the performance to some extent, but
it is computationally demanding and more details are needed to understand the
underlying mechanism.

The last challenge concerns computational efficiency. More information in 3D
facial model leads to more computational cost. To our knowledge, there are no
effective algorithms that can run in real time or close to real time in 3D face
recognition when thousands of faces are in the gallery.

This paper proposes a new 3D face recognition approach named Collective
Shape Difference Classifier (CSDC) to deal with the problems described above.
The experimental results on FRGC v2 dataset [13], including 466 persons and
4007 models, achieve the rank-1 recognition rate 98.22%, which outperforms the
best published approaches and its speed is nearly real-time. The main contribu-
tions of our work are listed as follows:

(1) A fast and effective face posture alignment technique is presented to place
all face models to a standard position and orientation. We show that this feature-
based alignment step is enough for our later processing and no other iterative
registration is needed. Also, the alignment is self-dependent which greatly re-
duces the time cost in face matching. This technique is to overcome the second
and fifth challenges.

(2) A Pure Shape Difference Map (PSDM) is defined between two depth im-
ages sampled from two aligned 3D face models. The PSDM removes the align-
ment error in the pitch angle elegantly so as to encode more shape difference
information between two faces. The scheme is used to tackle the second and the
third challenges.
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Fig. 1. The framework of our method

(3) The PSDM helps convert the multi-class face recognition problem to a 2-
class classification problem, i.e., inter-personal and intra-personal classes, similar
to the case in 2D face recognition [19,20]. Clearly, the different parts of PSDM
do not contribute the same discriminability due to non-rigid distortion on the
face. From the training inter-personal and intra-personal PSDM sets, the real-
boosting [12] is used to choose the most discriminative local shape difference to
build a strong classifier, namely, the CSDC. This part is to conquer the third,
fourth, and fifth challenges.

Moreover, we also introduce a scheme for facial region extraction which ad-
dresses the first difficulty. Summarizing the above techniques, we show the whole
framework in Fig. 1. Besides the accuracy and speed, another advantage of our
method is its robustness on the partially missing face data. The specific tech-
niques are discussed in the rest of this paper.

2 Posture Alignment

It is not clear how to define exact alignment of poses for two given 3D faces with
rather different shapes. ICP uses the minimum of the mean square distance as
a measure for alignment. We prefer to the coincidence of the prominent features
such as the nose tips and the normals of the 3D face symmetry planes for align-
ment due to consideration of algorithmic efficiency and the fact that these two
features (the nose tip and the normal) are relatively stable. By the two features,
five out of the six degrees of freedom in face model can be fixed and we only
need another point to determine the pitch angle. The top of the nose bridge is
used for this task.

More detailed geometric definitions of the nose tip and the top of the nose
bridge are necessary. Let the central profile curve C be the intersection of the
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Fig. 2. Symmetry plane and profile finding. (a) An original model S and its mirror
Sm. (b) Registration of Sm to S. (c) The symmetry plane Es. (d) The profile C. (e)
A special case of the mirror plane. (f) Points inside the closed white curve used for
registration. (g) The horizontally placed profile. (h) The profile C, pt and pb.

symmetry plane and the facial surface. Then, the nose tip pt is defined as the
point on the central profile C with the maximum distance to the line le passing
through the two endpoints of C. The definition of the top of the nose bridge pb

is given in Section 2.2.
If the input facial surface only covers the facial region as shown in Fig. 2, these

features can be found reliably by our method described in Section 2.1 and 2.2.
However, failure can appear when the data contain the neck or much hair. Thus,
the facial model should cover only the main facial region which does not exceed
much of the forehead and the chin. Fortunately, it is not a difficult requirement.
The facial region extraction introduced in Section 4.1 works well for this. The
rest of this section discusses how to find the symmetry plane, the central profile,
the nose tip and the top of the nose bridge, and how to align the facial model.

2.1 Facial Central Profile Finding

Let S = {pi | pi = (xi, yi, zi), 1 ≤ i ≤ n} denote the point set of a 3D fa-
cial model, and Sm = {pm

i | pm
i = (xm

i , ym
i , zm

i ), 1 ≤ i ≤ n} be its mirror
set with respect to some plane Em, where the correspondence is naturally set
up. Then we register Sm to S using the ICP algorithm [4] with S fixed (see
Fig. 2(b)). After the registration, Sm becomes another set Sm′ = {pm

i
′ | pm

i
′ =

(xm
i

′, ym
i

′, zm
i

′), 1 ≤ i ≤ n}. The facial symmetry plane Es is defined as the best
fitting plane of the set of points B = {pb

i | pb
i = (pi + pm

i
′)/2, 1 ≤ i ≤ n}. The

central profile C can easily be found by computing the intersection between S
and Es.

There are two issues that need to be addressed in the implementation of our
technique. The first is that the mirror plane Em should be chosen carefully. In
some cases, an arbitrary Em may cause the ICP to be nonconvergent, such as the
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case shown in Fig. 2(e), because the initial poses of the two faces are changed too
much. To deal with this problem, we propose the following scheme: 1) Perform
PCA on S to obtain three new principal directions (eigenvectors) v1, v2 and v3
with their corresponding eigenvalues λ1 ≥ λ2 ≥ λ3. Roughly speaking, v1 is in
the direction passing through the nose bridge, v3 is perpendicular to the front
face, and v2 is perpendicular to both v1 and v3. 2) Em is chosen as the plane
passing through the centroid of S and with its normal being v2. Such a mirror
plane Em passes through S, making Sm and S already quite coincident, which
leads to fast convergence of the ICP.

The second issue comes from the fact that our method is based on the mirror
symmetry of human faces. However, the extracted facial region may not be
so ideal, especially along the boundary. One example is given in Fig. 2(f). To
guarantee the better convergence and alignment with ICP, a simple strategy is
used where the points close to the boundary are discarded in the registration.
When the facial model is represented as a 3D mesh, the inner points can easily
be determined.

2.2 The Standard Coordinate Frame

According to definition, the nose tip pt can be obtained from the central profile
C by

pt = (xt, yt, zt) = argmaxpc
i∈Cdist1(pc

i , le), (1)

where dist1(·, �) is the Euclidean distance from a point to a line segment, and
le is the line passing through the two endpoints of C.

Along the profile C with C placed horizontally as shown in Fig. 2(h), we find
a local minimum point on each side of pt, which is closest to pt, denoted as p∗

1
and p∗

2. Then the top of the nose bridge pb is defined as

pb = arg maxp∗∈{p∗
1 ,p∗

2}dist2(p∗, pt), (2)

where dist2(·, ·) denotes the Euclidean distance between two points. Figs. 2(g)
and (h) show the geometric relations of these new terms. It is worth noting that
in the implementation for robustly finding the local minimum p∗

1 or p∗
2, we use

its six nearest points along C, three on its one side and three on its other side,
to detect if it is a local minimum.

Now let the normal of the symmetry plane Es be vx
′. We define a candidate

frame (vx
′, vy

′, vz
′) with pt being the origin and vy

′ = pb − pt, vz
′ = vx

′ ⊗ vy
′,

where ⊗ denotes the cross product of two vectors. The geometry of this frame
is illustrated in Fig. 3(a). When we find the majority of the data points have
positive z coordinates, we multiply all the x and z coordinates of the data points
by −1 so that vx

′ is in the direction towards the left-hand side of the face.
Finally, the standard coordinate frame is defined as (vx, vy, vz), which is

obtained by rotating the candidate frame counterclockwise around the x axis
by an angle α (α = 30◦ in our experiments), as shown in Fig. 3(b). Compared
with the candidate frame, in this standard frame, we can reduce the number
of coincident points when the 3D face data are projected to the x − y plane
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Fig. 3. (a) The candidate Frame. (b) Models in the standard frame with small pitch
angle variation. (c) Some failure cases.

for constructing the PSDM (see the next section). Now we can align all models
into this standard frame. Since different people have different nose shapes, the
models, after alignment, may have small variation in the pitch angle (see Fig. 3
(b)). The effect of this pitch angle error can be removed with the PSDM, as
described in the next section.

It should be mentioned that when there are many missing data and/or large
distortion in a face model, it is possible for our method to align incorrectly. Three
such examples are shown in Fig. 3(c). However, our method can obtain very good
results for almost all the models in FRGC v2 and BU-3DFE databases.

3 Discriminative Local Shape Difference Boosting

Based on the aligned models, we investigate the shape differences and convert
the 3D face recognition to a 2-class classification problem, i.e., the problem of
determining a shape difference is inter-personal or intra-personal. In this section,
we design a shape difference representation method, called Pure Shape Differ-
ence Map (PSDM), and a classifier, called Collective Shape Difference Classifier
(CSDC). The PSDM aims to depict the shape difference/similarity between two
models with reduced alignment error, and the CSDC can choose the most dis-
criminative local patches from the PSDM to make the recognition decision.

3.1 Pure Shape Difference Map

Before obtaining the PSDM between two face models in the standard coordinate
frame, we need to generate their depth images. By a sphere with radius r centered
at the nose tip, the region of interest (ROI) is picked out and projected to a w×w
image with the nose tip at the center of the image (we choose w = r = 75 in
our experiments), as shown in Fig. 4(a). The positions that the projected face
surface does not cover is set to a special value ϕ.

The difference image between two depth images can reflect the shape similarity
between two 3D face models. However, the accuracy may be affected by the small
alignment error in the pitch angle, which results from the small position change
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Fig. 4. (a) PSDM computing. (b) Two very similar PSDMs obtained with small align-
ment error in the pitch angles. (c) Examples of inter-personal and intra-personal PS-
DMs.

of the top of the nose bridge pb among a group of 3D models. Suppose that each
3D model has a ground truth posture in the standard coordinate frame. Then
we can see that the pitch angle variation of a face model brings approximately
the same depth error on the same row of this depth image. Consequently, we can
remove its effect by constructing a map of the shape difference, i.e., the PSDM.

Let I1 (I2) be a depth image and I1(i, j) (I2(i, j)) be the depth value at the
position (i, j), δ1

i (δ2
i ) be the depth error on row i, and the ground truth depth

images corresponding to I1 and I2 be I∗1 and I∗2 respectively. Then,

I1(i, j) = I∗1 (i, j) + δ1
i , I2(i, j) = I∗2 (i, j) + δ2

i . (3)

The signed difference image Ds of I1 and I2 and the signed difference image
D∗

s of I∗1 and I∗2 are defined as

Ds(i, j) = { I1(i, j) − I2(i, j), if I1(i, j) �= ϕ and I2(i, j) �= ϕ
ξ, otherwise , (4)

D∗
s(i, j) = { I∗1 (i, j) − I∗2 (i, j), if I∗1 (i, j) �= ϕ and I∗2 (i, j) �= ϕ

ξ, otherwise , (5)

where ξ is a special value denoting that Ds(i, j) or D∗
s(i, j) is invalid at the

positions where at least one of the two depths under study equals ϕ. The PSDM,
Dps is defined as

Dps(i, j) = { | Ds(i, j) − 1
k

∑q+k−1
l=q Ds(i, l) |, if Ds(i, j) �= ξ and

Ds(i, l) �= ξ, q ≤ l ≤ q + k − 1
0, otherwise,

(6)

where {q, q+1, ..., q+k−1} denotes k consecutive pixel positions on row i (In our
experiments, we choose q = 28 and k = 21). Since Ds(i, j) = D∗

s(i, j) + δ1
i − δ2

i ,
we have

Dps(i, j) = { | D∗
s(i, j) − 1

k

∑q+k−1
l=q D∗

s(i, l) |, if Ds(i, j) �= ξ and
Ds(i, l) �= ξ, q ≤ l ≤ q + k − 1

0, otherwise.
(7)



610 Y. Wang et al.

It can be seen from Eq. (7) that the alignment errors δ1
i and δ2

i are removed
in Dps(i, j) (see Fig. 4(b)). Since the PSDM encodes the difference between two
depth images with their alignment errors removed, we call it the Pure Shape
Difference Map and use it as a critical representation for the recognition. Some
examples of inter-personal and intra-personal PSDMs are shown in Fig. 4(c).

3.2 Collective Shape Difference Classifier

The PSDM keeps the information of the similarity between two face models and
the Root-Mean-Square (RMS) is a choice for dissimilarity measure. However, the
RMS runs into trouble when the noise and distortion of the facial surface occur.
It is obvious that different parts of the PSDM have different contributions to
recognition. Although we do not know which areas are the most discriminative
across a broad range of distortion, the boosting algorithm can help select and
combine them with suitable weights. This is the main idea of the Collective Shape
Difference Classifier (CSDC).

The CSDC is a collective classifier of the form, HT (Dps) =
∑T

t=1 ct(Dps),
where ct(Dps) is a weak classifier selected based on the simple features on the
PSDMs during the real-boosting training [12], and T is the number of the weak
classifiers. The output of ct(Dps) is a real value, i.e., confidence, and the final
summed confidence is used as the similarity measure between the two 3D face
models yielding Dps.

In the learning of the CSDC, the intra-personal and inter-personal PSDMs
are built from the given 3D face models, which compose the training set Q.
Usually, the size of Q is very large mainly due to many different pairs of inter-
personal depth images. It is impractical for a common PC to use all PSDMs in Q
for training simultaneously. Thus, bootstrapping is used in learning by starting
with all intra-personal and part of inter-personal PSDMs which form a subset
Qw of Q. Then we keep exchanging the inter-personal PSDMs between Qw and
Q so that all inter-personal samples can be used during the learning procedure.
The detail of the learning is shown in the training part of Algorithm 1. Besides,
two types of features are used in constructing the weak classifiers. One is the
mean values of the rectangle patches in the PSDMs with different sizes. The
other is Haar-like features that are frequently used in face detection [18]. Both
use integrate images for better computational efficiency [18]. The testing part of
Algorithm 1 shows how the CSDC carries out the recognition.

4 Experiments

Two 3D face databases, FRGC v2 [13] and BU-3DFE [14], are used to test our
algorithm. The BU-3DFE database includes 100 persons and 2500 models. Each
person has 7 kinds of expressions, 1 neutral and 6 other expressions. FRGC v2
has 466 persons and 4007 models.

Half of the 2400 models with non-neutral expressions in BU-3DFE are ran-
domly selected and used together with the 100 neutral models to build the PSDM



3D Face Recognition by Local Shape Difference Boosting 611

Algorithm 1. Collective Shape Difference Classifier Training and Testing
Training Procedure:

Input:
1. Q

′
and Q

′
w: containing all and starting samples corresponding to Q and Qw.

2. T : the target number of the weak classifiers.

Initialization: w0,i

Learning:
For t = 1, 2, ..., T
1. Normalize the weights wt,i.
2. Train weak classifiers on Q

′
w and find the best weak classifier ct.

3. Update the current collective classifier Ht = Ht−1 + ct.
4. If sign(Ht) successfully classifies all samples in Q

′
w, update Q′

w by swapping
20% smallest weight inter-personal samples with those never used in Q′.
5. Update the weights wt,i.

Output: HT .

Testing Procedure:
Let G = {g1, . . . , gr} be the gallery set and Mp be a probe.
For i = 1, 2, ...,r
1. Compute Di

ps between gi and Mp,
2. Compute the score Ωi = HT (Di

ps).

Recognition result: Label(Mp) = arg max1≤i≤r(Ωi)

training set. The PSDMs are computed from pairs of these training models. Thus,
1200 intra-personal PSDMs and 118,800 inter-personal PSDMs are computed.
These samples train the CSDC which is used for the recognition experiments.
The remaining half of the models with non-neutral expressions in BU-3DFE are
employed to determine the number of features in the CSDC, with the 100 neu-
tral models forming the gallery set. For FRGC v2, the first session of the 466
persons are used as the gallery set, and the remaining 3541 models are used for
testing. Note that we do not use any models in FRGC v2 for training. Besides,
experiments on partial faces are also designed to test our algorithm.

Before testing, the models in FRGC v2 are smoothed and cropped by the
methods given in Section 4.1. The models in BU-3DFE have been preprocessed
by the providers. All models in these two databases are aligned to the standard
coordinate system by our posture alignment method. The two parameters m
and n in Algorithm 1 are 1200 and 10000, respectively.

4.1 Preprocessing

This subsection briefly discusses the preprocessing steps including face denois-
ing and facial region extraction. The raw face data are assumed to be stored
with known adjacency relations among the 3D points and the faces are placed
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roughly in the common top-down posture (the front direction of the face can be
arbitrary), as those in the FRGC v2 and 3D-BUFE databases. Many commercial
3D scanners can generate such data [2].

With this assumption, three Gaussian filters are designed to remove spikes,
fill holes, and smooth the data with different variances. After that, the facial
region is extracted based on the rough detection of the nose tip as follows: 1)
2/3 points close to the centroid of the denoised face in top-down direction are
used to fit a plane E1. Among the removed 1/3 points, 2/3 are at the bottom of
the face and 1/3 at the top. The plane E1 cuts the face data to two parts. The
one with the smaller variance is selected as the candidate facial region. 2) With
the points in the candidate facial region, we fit another plane E2 and again select
the part with the smaller variance. Among the points in this part, the point with
the largest distance to the plane E2 is selected as the approximate nose tip pt

′.
3) By placing a sphere centered at pt

′, the facial region can be cropped from the
original denoised face (the sphere radius = 95 is selected in our experiments).
This method is simple and fast, but works very well on the FRGC v2 database.

4.2 Effects of the Number and Type of Features

The number T of the weak classifiers in the CSDC balances the recognition
accuracy and the running time both in training and testing. The maximum
value T = 3000 is trained in our experiment. As shown in Fig. 5(a), the rank-
1 rates keep increasing, but the curves become flat when T > 2500. Thus, we
set T = 2500 in the subsequent experiments where the rank-1 rates on both
databases exceed 98.2%.

As for the type of features, the mean values of rectangle patches give worse
rank-1 rate than the Haar-like features by about 4% drop on the two sets. This
result indicates that not only the shape difference but also its change patterns en-
code the similarity when intra-personal variations occur. With Haar-like features,
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Fig. 5. (a) Rank-1 recognition rates against the feature number. (b) Cumulative match
characteristic curves (T = 2500).
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recognition rates better than 99% are achieved after rank-3 in the Cumulative
Match Characteristic (CMC) curves. (see Fig. 5(b)).

4.3 Comparison with Other Methods

We compare our CSDC with the ICP and the state of the art methods including
the ARMS [3], the AFM [15], the GCD [10], and the R3D [17]. Each method
uses all data in FRGC v2 database. For the AFM, the GCD, and our method,
the first data session of each subject is used as the gallery set (total 466 faces)
and the rest as probes (3541). The ARMS is with a superset, 449 vs. 3939 [3],
and R3D chooses a neutral model for each person to compose a gallery and the
remaining models are used as probes. The rank-1 rates obtained by the methods
are given in Table 1, which clearly indicate that our CSDC performs better than
the others. Note that the result of GCD is obtained from the authors of [10],
and the others except ICP are quoted from the original papers.

Table 1. Comparison with five other works on FRGC v2

ICP ARMS AFM GCD R3D CSDC
Rank-1 Rate 75.66% 91.9% 97% 87.74% 96.2% 98.22%

4.4 Evaluation on Partial Faces

Two kinds of partial 3D faces are generated. One is obtained by shrinking the
radius r used in projection for generating depth images (see Fig. 3.1), the other
is by removing one or more quadrants of the face region. Some examples are
shown in Fig. 6 and Fig. 7. Clearly, with such large parts of the face missing, our
pose alignment may fail. However, here our purpose is to find out which parts of
the face contribute more to the recognition, based on the partial faces that are
aligned well.

r=74 r=64
r=54

r=44r=34r=24r=14 2 10 20 30 40 44 50 60 70 74
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.95

1

Cropping raduis

R
an

k−
1 

R
at

e

 

 

BU−3DFE + Haar
FRGC v2 + Haar

Fig. 6. Radius shrinking



614 Y. Wang et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Missing Type

Ra
nk

−
1 

Ra
te

 

 

BU−3DFFE + Haar
FRGC v2 + Haar

1stQ 4thQ Right
Half

2ndQ Lower
Half

3rdQ Upper
Half

Left
Half

Fig. 7. Quadrant missing

Radius Shrinking. Totally 37 cropping radii, from 2 to 74 with step = 2, are
tested in the experiment. Fig. 6 shows that the rank-1 rates are better than 95%
for all r ≥ 44 on both databases. It is rather surprising that such a small central
patch as r = 44 still results in very good recognition rates by our CSDC. This is
an important finding from our experiments and more attention should be paid
to the nose region.

Quadrant Missing. We evaluate 8 kinds of quadrant missing. The results are
illustrated in Fig. 7. The most important conclusion from this experiment is that
the upper half of the face is more important than the lower half in recognition,
with the average rank-1 rate 97% versus 56%.

4.5 Computational Performance

Although some of the previous methods can do verification nearly real-time, the
computational performance of recognition is still a challenging task since the
recognition must match the probe face against every gallery face. Thus the size
of the gallery and the matching time are the main obstacle of fast recognition.

Usually, the running time of all steps, especially the preprocessing, depends on
the number of points in 3D face models. We select the models with the minimum
and maximum numbers of points from FRGC v2 to test our algorithm and also
compute the average recognition time. The consumed time on a PC with CPU
P4 3.0GHz and 2GB RAM is shown in Table 2.

The PSDM computation and the classification by the CSDC are very fast. In
this experiment, since there are 466 models in the gallery, we need to compute

Table 2. Time used in each step

points Denoising Facial Region Posture Depth PSDMs Scores
number Extraction Alignment Image (466 times) (466 times)

min. 53898 895ms 35ms 780ms 32ms 289ms 70ms
max. 197298 1844ms 130ms 1962ms 32ms 289ms 70ms
av. 100474 1195ms 71ms 978ms 32ms 289ms 70ms
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466 PSDMs and 466 scores for classification (see Algorithm 1) for each probe.
If the gallery has 1000 models, the average recognition time is about 3.05 sec-
onds which is nearly real-time. Our method is several orders faster than existing
methods.

5 Conclusion and Limitation

We have proposed an automatic 3D face recognition method which can obtain
both high accuracy and computational efficiency. From the experimental results
on the largest available public database, FRGC v2, the following conclusions can
be drawn:

(1) The rank-1 rate better than 98% obtained by the CSDC indicates that
the shape differences of 3D models are effective and the local area is critical. For
most cases, our pose alignment is good enough.

(2) The low computational cost together with the accuracy makes our method
practical for real time 3D face recognition system.

(3) Our method is robust on faces with large missing regions if the faces are
aligned well. An important finding is that even a small nose area can give very
good recognition results by the CSDC.

Although the CSDC works very well on common faces of approximate mirror-
symmetry with a nose, it can fail when the data of the nose are missing, which
causes incorrect alignment. This is the main limitation of our method. Fortu-
nately, this is a rare case and most scanners can generate faces that can be
handled by our algorithm.
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