
L1 Regularized Projection Pursuit for Additive Model Learning

Xiao Zhang
Center for Advanced Study

Tsinghua University, Beijing, China
xiao-zhang03@mails.tsinghua.edu.cn

Lin Liang Xiaoou Tang
Microsoft Research Asia

Beijing, China
{lliang,xitang}@microsoft.com

Heung-Yeung Shum
Microsoft Corporation
Redmond, WA, USA
hshum@microsoft.com

Abstract

In this paper, we present a L1 regularized projection pur-
suit algorithm for additive model learning. Two new algo-
rithms are developed for regression and classification re-
spectively: sparse projection pursuit regression and sparse
Jensen-Shannon Boosting. The introduced L1 regularized
projection pursuit encourages sparse solutions, thus our
new algorithms are robust to overfitting and present bet-
ter generalization ability especially in settings with many
irrelevant input features and noisy data. To make the opti-
mization with L1 regularization more efficient, we develop
an ”informative feature first” sequential optimization algo-
rithm. Extensive experiments demonstrate the effectiveness
of our proposed approach.

1. Introduction

Additive model is an efficient method for high-
dimensional and nonlinear learning problems. The Basic
Additive Model first introduced in [7] approximates the
mapping function from the input features x(∈ R

M ) to the
response y(∈ R) using a sum of component functions of
each individual feature xj . The additive model is inter-
pretable and easy to fit, and also avoids the ”curse of the di-
mension” problem of the non-parametric methods [5]. Ad-
ditive model has been widely used in regression and clas-
sification problems. For example, the popular Adaboost
method can be viewed as an approximation to additive mod-
eling [4].

One limitation of the basic additive model is that the
interactions between the input features are not consid-
ered. Projection pursuit [5] is adopted to solve this prob-
lem: the optimal combinations of the input features are
fed into the component functions to better interpret the re-
sponse. These set of additive models are generally called
Extended Additive Models. For example, projection pursuit
regression [5] was developed to approximate a much richer
class of functions. Kullback-Leibler boosting [17] projects
high-dimensional data to linear features to maximize the

Kullback-Leibler (KL) divergence. The learned classifier
is more compact and robust. Neural networks can also be
seen as a kind of extended additive model. Although addi-
tive models with projection pursuit are more powerful, the
model complexity is significantly increased since variable
combinations are considered. Thus, when these methods
are applied to the problems with many irrelevant variables
and noisy data, which usually happens in the real world,
they are prone to overfit.

Recently, for the basic additive model learning without
projection pursuit, some works have been done to prevent
overfitting. The work in [15] explicitly detects outliers and
limits their influence on the Adaboost classifier. RegBoost
[12] uses the graph Laplacian regularizer to penalize the
base classifiers that cut through dense regions. Inspired by
the recent success of lasso estimator [24] that uses L1 reg-
ularization to encourage sparse solutions, Ravikumar pro-
poses a sparse additive model (SpAM) [23]. SpAM adopts
L1 constraints to suppress the redundant component func-
tions. All the above methods focus on the additive mod-
els without projection pursuit. How to prevent the over-
fitting introduced by the projection pursuit stage in the ex-
tended additive model learning has not been addressed, even
though overfitting is more sever due to projection pursuit.

In this paper, we add L1 regularization into the projec-
tion pursuit stage of the additive model learning to encour-
age the sparsity of the interacted variables. Two new al-
gorithms are developed for regression and classification re-
spectively: sparse projection pursuit regression and sparse
Jensen-Shannon Boosting. By using L1 regularization pro-
jection pursuit, the new algorithms are robust to overfitting
especially when there are noisy data and many irrelevant
variables. The obtained additive model also maintains the
good interpretable property of the basic additive model. To
make the optimization with L1 regularization more efficient
and stable, an ”informative feature first” sequential opti-
mization algorithm is developed. The proposed optimiza-
tion algorithm is efficient for high dimensional space and
general for both parametric and non-parametric cost func-
tion. We demonstrate the effectiveness of our algorithms on
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two difficult problems: face exaggeration and gender clas-
sification, good performances are obtained.

The rest of this paper is organized as follows. We in-
troduce the main theory of additive model with projection
pursuit in Section 2. L1 regularized projection pursuit is
discussed in Section 3. Section 4 presents two new addi-
tive learning algorithms. In Section 5, the applications of
our algorithms to face exaggeration and gender classifica-
tion are presented. After some discussions in Section 6, we
conclude the paper in Section 7.

2. Additive Model with Projection Pursuit

2.1. Basic additive model

The additive model is a flexible statistical method for
modeling the mean E(y|x) = F (x), where x ∈ R

M and
y ∈ R. Basically, it has the form:

F (x) =
p∑

j=1

fj(xj , βj) (1)

where fj(xj , βj) is a component function with parameter
βj . Notice that fj only depends on the individual feature
xj . That is, in the additive model, each component function
fj(xj) is estimated using a univariate function, the ”curse
of dimensionality” difficulty for many nonparametric meth-
ods (e.g., smoothing splines) is avoided. Also, it is easy to
explain how the response y changes with the input feature
xj from the additive model Equation (1).

2.2. Additive model with projection pursuit

One problem of the basic additive model is that it ap-
proximates the mapping by a sum of univariate functions of
each individual feature, thus it cannot deal with the interac-
tions among the input features, which usually happens in the
real world. To overcome this problem, Projection pursuit is
introduced into the additive model: the linear combinations
of the features are used as the variables in the component
functions. The extended additive model has the form:

F (x) =
p∑

j=1

fj(αT
j x, βj)) (2)

where αj = {aj
m}M

m=1 is the projection vector and is re-
stricted to ‖αj‖2 = 1. Projection pursuit improves the
modeling ability of the additive model significantly. With
different definitions of the component function fj , the ex-
tended additive models are widely used in many areas.

For regression, if fj is approximated using a sigmoid
function, the model (2) can be viewed as a single hidden
layer neural network [9]. If fj is estimated by a supper
smoother, the model (2) is well known as projection pur-
suit regression [5]. These models form nonlinear functions

of the projection pursuit terms, thus they are very general.
Comparing with the basic additive model, they can approx-
imate a much richer class of functions.

For classification, if fj is a ”weak leaner”, Equation (2)
becomes the formulation of Kullback-Leibler boosting [17].
KLBoosting adopts projection pursuit to find the optimal
discriminative linear features. The obtained classifier gen-
eralizes better than AdaBoost.

To find the optimal parameters of the model (2), back-
fitting algorithm [7] or a ”greedy” forward stepwise [4] ap-
proach can be adopted. These algorithms fit a single com-
ponent function fj to the data one by one. During each
iteration j, the modified versions of the original data yj is
obtained. For example, for regression, yj is the residue of
this iteration, and for boosting, yj corresponds to the re-
weighted samples. Then the j-th iteration of additive model
fitting is to optimize:

{α∗
j , β

∗
j } = arg min

αj ,βj

g(yj , α
T
j x, βj) (3)

where g(·) is a cost function with different formulations for
different problems. For example, for regression, g(·) is usu-
ally defined as the mean square error:

g(yj, α
T
j x, βj) = [yj − fj(αT

j x, βj)]2 (4)

2.3. The limitations of projection pursuit

Although projection pursuit increases the power of addi-
tive model for high-dimensional data analysis, it does have
the following disadvantages:

• Overfitting

Projection pursuit increases the freedom of the additive
model, thus when there are many irrelevant features
fed into the algorithm, the algorithm tends to overfit-
ting, especially when the training data are noisy.

• Not easy to interpret the model

There are usually many nonzero entries in each pro-
jection vector, thus the model obtained by projection
pursuit is difficult to interpret [8], unlike the original
additive model (1).

To solve these problems, we introduce L1 regularization
into the projection pursuit stage, as explained in the next
section.

3. L1 Regularized Projection Pursuit

3.1. L1 regularization

The traditional projection pursuit learning may introduce
many irrelevant features into the model to interpret the data,
especially when the data are noisy. To overcome this prob-
lem, we add a L1 regularization term to each iteration of



additive model fitting. Then at the j-th iteration, the opti-
mal parameters are found by minimizing:

{α∗
j , β

∗
j } = arg min

αj ,βj

[g(yj , α
T
j x, βj) + λj‖αj‖1] (5)

where ‖αj‖1 =
∑M

m=1 |aj
m| and the parameter λj ≥ 0

controls a tradeoff between fitting the data well, and having
small parameters.

L1-norm ‖αj‖1 is a convex relaxation of L0-norm (the
number of non-zero elements) [3]. The function of L1 reg-
ularization is to encourage many entries of projection vec-
tor to equal zero. Thus by adding L1 regularization, the
algorithm will avoid introducing many features and those
irrelevant features will be suppressed. The model becomes
more parsimonious and interpretable. Comparing with L2-
norm regularization that penalizes large features much more
than the smaller ones, L1 regularization also penalizes small
terms strongly, thereby L1 regularization is more effective
at identifying relevant features even with a relatively small
number of samples [20].

As the convergence of the additive model fitting, the fit-
ting cost g(·) becomes small, if the weight λj of L1 regu-
larization is set as a constant for each iteration of additive
model fitting, L1 regularization will become too strong with
the convergence. To avoid this problem, we adaptively ad-
just λj as:

λj =
g(α(0)

j , β
(0)
j )

τ
, (6)

where α
(0)
j and β

(0)
j are the initial parameters of the j-th

iteration of additive model fitting, and τ controls the over-
all strength of L1 regularization. The optimal value of τ
could be determined by cross-validation. Comparing with
the way that keeps λj as a constant, more reasonable bal-
ance between the data fitting and the model sparseness is
achieved.

3.2. "Informative feature first" sequential opti-
mization

To find the optimal solution of Equation (5) is not easy.
(To be succinct, we omit the iteration index j in this sec-
tion). One difficulty is that: the cost function g(·) may be
nonparametric (e.g. the KL distance adopted in KLBoosting
[17]), thus those gradient-based approaches [13][21] can
not be applied. Another difficulty is that: the dimension
of the projection α is usually high.

As pointed out in Ce’s work [17], since the projection
α is a unit vector, given any feature x ∈ R

M , there ex-
ists a boundary [ax, bx], such that ax ≤ αT x ≤ bx for
α ∈ R

M , ‖α‖2 = 1, so it is possible to search the opti-
mal projection in a neighborhood of α. Also in Equation
(5), once the projection α is fixed, the function parameter

// m: feature index to be searched along
// [h1, h2]: search range; dh: search step
// α0 = {a0

m}M
m=1: initial projection vector

// a∗
m: optimal projection value; E∗

m: minimum cost

[a∗
m, E∗

m] = 1DSearch(m, h1, h2, dh, α0)
• a∗

m = a0
m, E∗

m = E(α0, β(α0)),
α = α0, K = (h2 − h1)/dh

For i = 0 to K
• Set am = a0

m + i ∗ dh + h1 in α
• Find β∗ → min E(α, β(α))
• Calculate E(α, β∗)
If E(α, β∗) > E∗

m

E∗
m = E(α, β∗), a∗

m = am

return [a∗
m, E∗

m]

Table 1. The pseudo code of 1D search along one feature.

Denote: projection α = {am}M
m=1, cost E(α, β(α)).

• Initialize:
• Find feature index i, such that

αi = [0, .., 0, ai = 1, 0, .., 0] → min E,
Set α(0) = αi, E∗ = E(αi, β(αi))

• Search range H = 1
• Search step dH = 0.1, dh = 0.01

For k = 1 to K
• α(k) = α(k−1)

// find informative feature
• Optimal feature index: m∗ = −1
• Optimal projection value: a∗ = 0
For m = 1 to M

• [a∗
m, E∗

m]=1DSearch(m,−H, H, dH, α(k))
If E∗

m > E∗

m∗ = m, E∗ = E∗
m, a∗ = a∗

m

// fine search on informative feature m∗

• h1 = a∗ − dH , h2 = a∗ + dH
[a∗

m∗ , E∗]=1DSearch(m∗, h1, h2, dh, α(k))
• Update a

(k)
m∗ = a∗

m∗ in α(k)

Output α∗ = α(K)/‖α(K)‖
Table 2. The pseudo code of ”Informative feature first” sequential
optimization. The sub-function 1DSearch() is shown in Table 1.

β can be obtained by Least Square optimization or gradi-
ent descent [8], that is, β can be seen as a function of α.
So to optimize Equation (5), we quantize the projection am

of each feature in a neighborhood |am| ≤ H and search
the optimal solution in such neighborhood. Equation (5) is
modified as:

α∗ = argmin
α

E(α, β(α))

α = {am}M
m=1, |am| ≤ H, m = 1, . . . , M (7)

where the cost E(α, β(α)) is:

E(α, β(α)) = g(y, αTx, β) + λ‖α‖1 (8)



To optimize Equation (7) is still not easy. In KLBoost-
ing [17], Ce and Shum just did 1D optimization: quantize
the projection am in a neighborhood, then find the optimal
value a∗

m to minimize the cost (8). Such 1D optimization is
sequentially performed along each feature in the feature set
until converge. Since in Ce’s algorithm, the projection co-
efficients of all features will be sequentially modified, it is
possible to get nonzero entries for those irrelevant features
in the projection vector. This will decrease the generaliza-
tion ability of the learning algorithm.

To solve this problem, we improve Ce’s algorithm by in-
troducing an ”informative feature first” mechanism: 1D op-
timization is performed along a selected feature that would
maximally reduce the fitting cost as Equation (8). More
specifically, our approach contains two steps:

1. Find an informative feature by coarsely quantizing the
projection am along each feature and selecting a fea-
ture that maximally minimizes Equation (8).

2. Perform 1D optimization along the selected informa-
tive feature at a fine quantization level.

These two steps are carried out iteratively until converge.
To initialize the projection α, we find a feature m that max-
imally reduces the cost (8), then set the initial projection
vector α(0) = [0, .., 0, am = 1, 0, ..0]. In practice, we set
the search range H = 1. We summarize the 1D optimiza-
tion step as a sub-function in Table 1, and the pseudo code
of the whole algorithm is shown in Table 2.

Our algorithm is efficient to suppress those irrelevant
features. The ”informative feature first” algorithm is ac-
tually a feature selection mechanism: the projection vec-
tor is first modified along the most informative coordinate.
In this way, our algorithm reduces the possibility to select
those irrelevant features to the model. Also notice that, our
optimization algorithm is suitable for both parametric and
non-parametric cost function. It is more general than those
gradient-based approaches [13][21].

4. Additive Model Learning with L1 Regular-
ized Projection Pursuit

In this section, we apply our L1 regularization projection
pursuit algorithm to additive model learning and develop
two efficient algorithms for regression and classification re-
spectively.

4.1. Sparse projection pursuit regression

Projection pursuit regression (PPR) [5] extends the basic
additive model to allow interactions among the variables by
projection pursuit. It has the form as Equation (2), here the
component function fj is a super smoother (e.g., a cubic
smoothing spline or kernel smoother) and y is a real value.

Given:(x1, y1), . . . , (xn, yn),xi ∈ R
M , yi ∈ R

1. Set ri
1 = yi, λ1 =

∑n
i=1(r

i
1)2/τ

2. For j = 1,... minimize
R2

j =
∑n

i=1 [ri
j − fj(αT

j xi, βj)]2 + λj‖αj‖1

by the algorithm in Table 2
3. Update ri

j+1 = ri
j − fj(αT

j xi, βj)
λj+1 =

∑n
i=1(r

i
j+1)

2/τ
repeat step 2 until Rj becomes small.

Table 3. The flowchart of SpPPR.

Comparing with the basic additive regression model [7],
PPR is able to approximate a much richer class of functions,
such as the product x1 · x2. But such flexibility also brings
some disadvantages such as overfitting and interpretation
difficulty as explained in section 2.3.

Here we propose a sparse projection pursuit regression
(SpPPR) algorithm that adopts L1 regularized projection
pursuit for each component function fj’s estimation. The
detailed form of Equation (5) becomes:

{α∗
j , β

∗
j } = arg min

αj ,βj

{[rj−fj(αT
j x; βj)]2+λj‖αj‖1} (9)

where rj = y − ∑
k �=j fk(αT

k x; βk) is the residue of the
j-th iteration.

To optimize Equation (9), the usual approach is to al-
ternatively fix the projection coefficients αj or the function
parameters βj , then to optimize the other. The disadvantage
of this approach is that when fixing βj , αj could hardly
be updated towards to the optimal solution of Equation (9).
Our ”informative feature first” optimization alleviates this
problem and converges to the optimal solution quickly. The
pseudo code of SpPPR is summarized in Table 3.

The SpPPR can identify relevant variables even if the
training data are noisy. The obtained regression model is
more interpretable and has good generalization ability, as
shown in the following toy problem.

4.1.1 A toy problem

We test our SpPPR on the following 5-dimensional func-
tion:

y = x1 ∗ x2 + ε (10)

with three irrelevant variables x3, x4, x5. Here xj , j =
1, . . . , 5 is uniformly distributed in [0, 1] and ε ∼ N (0, 1)
is Gaussian noise. Notice that, this function can also be
written as:

y =
(x1 + x2)2

4
− (x1 − x2)2

4
+ ε (11)

which can be modeled by additive model with projection
pursuit as Equation (2), but is not suitable for the basic ad-
ditive model (1).

Using this function, we generate 300 samples with noise
for training, and 6000 samples without noise for testing. We



τ MSE � ZEROS Selected variables
5 0.1935 7 {x1}

10 0.0334 6 {x1, x2}
15 0.0223(

√
) 6 {x1, x2}

30 0.0291 5 {x1, x2, x5}
100 0.032 5 {x1, x2, x5}
∞ 0.1674 0 {x1, x2, x3, x4, x5}

Table 4. Mean square errors, zero entries, and the selected vari-
ables obtained by changing the weight τ of L1 regularization in
SpPPR. τ = ∞ corresponds to PPR.

Projection [a1, a2, a3, a4, a5] estimated by SpPPR
α1 [ 1 1 0 0 0 ]
α2 [ -1 1 0 0 0 ]

[a1, a2, a3, a4, a5] estimated by PPR
α1 [ 0.67 0.67 -0.01 -0.04 -0.08]
α2 [-1.44 1.87 0.22 0.35 0.16]

Table 5. The projection vectors in two component functions esti-
mated by SpPPR and the original PPR respectively.

remove the noise ε from the testing data to more clearly
evaluate if the learned regression model is close to the
ground truth. An additive model with two smooth spline
component functions:y =

∑2
j=1 fj(αT

j x), αj = {aj
m}5

m=1

is fitted to the training data.
Table 4 shows the testing results of SpPPR by chang-

ing the weight τ of L1 regularization in Equation (6). An
infinite τ corresponds to the traditional PPR. As we can
see, when τ becomes larger (L1 regularization is reduc-
ing), more variables will be selected to the model including
those irrelevant ones. When τ = 15, the model obtained by
SpPPR has the smallest fitting error that is much less than
the traditional PPR (τ =∝). The projection vectors of the
corresponding model are shown at the top of Table 5 which
are the same as the ground truth (Equation (11)). The bot-
tom of Table 5 also shows the projection vectors estimated
by the traditional PPR. The entries of those irrelevant vari-
ables are nonzero. It is hard to tell how the input variables
influence the changing of the response y.

It is clear that when the data is noisy and there are many
irrelevant variables, SpPPR has the ability to capture the
underlying structure of the data, while the traditional PPR
tends to include irrelevant variables that decreases its gen-
eralization and interpretation ability.

4.2. Sparse Jensen-Shannon boosting

To improve the feature selection stage in Adaboost
[26], KLBoosting [17] pursues the discriminative features
by maximizing the projected Kullback-Leibler divergence.
Jensen-Shannon Boosting [10] improves the numerical sta-
bility of KLBoosting by using Jensen-Shannon divergence.
But when there are undistinguishable samples in the train-
ing data, these algorithms tend to separate them by intro-

Given:(x1, y1),. . . , (xn, yn), xi ∈ R
M , yi ∈ {−1, 1}

• Initialize: W1(xi
+) = 1

N+
, W1(xi

−) = 1
N−

For j = 1 to J
• Learn projection vector αj by minimizing Equ.(12)

using the algorithm in Table 2.
• Update Wj+1(xi

+) and Wj+1(xi−).
Output classifier:

F (x) = sign[
∑j

i=1
1
2 log h+

i (αT
i x)

h−
i (αT

i x)
]

Table 6. The flowchart of SpJSBoost.

ducing irrelevant features. Consequently these irrelevant
features may damage the classifier’s discrimination on those
originally distinguishable samples.

To overcome this problem, we develop a SpJSBoost al-
gorithm: L1 regularization is incorporated into the feature
pursuit stage of JSBoost. The optimal projection is found
by optimizing:

α∗
j = argmin

αj

[−SJS(αT
j x) + λj‖αj‖1] (12)

where SJS(αT
j x) is the Jensen-Shannon divergence:

SJS(αT
j x) =

∫
{h+

j (αT
j x) log

h+
j (αT

j x)
1
2 [h+

j (αT
j x) + h−

j (αT
j x)]

+

h−
j (αT

j x) log
h−

j (αT
j x)

1
2 [h+

j (αT
j x) + h−

j (αT
j x)]

}d(αT
j x) (13)

where h+
j (αT

j x) and h−
j (αT

j x) are the histograms of the
weighted positive and negative samples. The flow chart of
SpJSBoost is summarized in Table (6).

The SpJSBoost shows better generalization ability when
training data contains undistinguishable samples as shown
in the following toy problem.

4.2.1 A toy problem

We demonstrate the effectiveness of SpJSBoost on a non-
linear separation problem with noisy data and irrelevant fea-
tures. As shown in Figure 1, the positive samples lie within
a circle while the negative samples are distributed outside
the circle. We add some noisy to the training data by ran-
domly switching the labels of 5% of the samples. So the
class boundary is not clear in our problem. When train-
ing the classifier, besides the positive samples x1 and the
negative samples x2, we also feed three irrelevant features
x3, x4, x5 into the algorithm. Then we compare our SpJS-
Boost with JSBoost on a test set without noise. We use 600
samples for training and 6000 samples for testing.

The results are shown in Figure 2. As we can see, the
testing error of SpJSBoost on such test set without adding
noise is even lower than its training error, this indicates that
the added noise in the training stage does not significantly
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Figure 1. The synthetic data to test the generalization ability of
SpJSBoost.

0 5 10 15 20 25 30 35 40
0.05

0.1

0.15

0.2

0.25

0.3

Number of Features

E
rr

or
 R

at
e

 

 
SpJSBoost on Testing Data
SpJSBoost on Training Data
JSBoost on Testing Data
JSBoost on Training Data

Figure 2. The training and testing error rate vs. the number of
features for SpJSBoost and JSBoost.

affect the discrimination power of SpJSBoost on those orig-
inally distinguishable samples. Also, the testing error of
SpJSBoost is much smaller than the original JSBoost. SpJS-
Boost has much better generalization on the test set. To
evaluate the contributions of the irrelevant features x3,4,5 to
the learned classifier, we calculate the following ratio:

r =

∑
j wj

∑5
m=3 |aj

m|∑
j wj

∑5
m=1 |aj

m| (14)

where wj is the weight of the j-th weak learner and aj
m is

the projection coefficient of the feature xm for the j-th weak
learner. For SpJSBoost, the ratio is 10.4%, and for JSBoost,
the ratio is 35.1%. This indicates that, JSBoost prefers to
introduce those irrelevant features to interpret those insep-
arable samples, while by L1 regularization, our SpJSBoost
does not tend to select those irrelevant features to reduce the
training error. Overfitting is effectively reduced.

5. Applications

In this section, to further demonstrate the effectiveness
of L1 regularized projection pursuit, we test our SpPPR on
face caricature generation to demonstrate its advantages on
noisy data. We also apply SpJSBoost to gender classifica-
tion to show its feasibility on data set with undistinguishable
samples.

(a) (b) (d)(c)

Figure 3. Examples of training data. (a) The original pictures. (b)
The original face shapes. The exaggerated face shapes (c) are la-
beled from caricatures (d) drawn by the artist.

5.1. SpPPR for example-based face caricature gen-
eration

Generating a caricature by computer is a challenging
and interesting problem and has attracted many attentions
[1][14][2][6]. Recently some works have been done to learn
how to exaggerate a face based on training examples [27]
[16].

In this experiment, we extract a set of semantic face
features from the labeled face shape, such as the width
of the eyes, and apply our SpPPR to learn the mapping
function from the unexaggerated features to an exaggerated
one. Actually, this problem is very challenging due to high-
nonlinearity, small training set and the data noise caused by
the randomness of the artist’s drawing process. Notice that
the linear combinations of the face features are meaningful
(e.g. the difference between two eyes’ widths), so projec-
tion pursuit is helpful for this problem.

Our data set contains 350 faces, some examples are
shown in Figure 3. We extract 35 face features from the
original face shape and the exaggerated one respectively for
each face, some of the features are listed in the first col-
umn of Table 7 (Please refer to [27] for all features’ defi-
nitions.). Based on this data set, we test our SpPPR algo-
rithm and compare it with three other algorithms: basic ad-
ditive model(AM), projection pursuit regression(PPR) and
support vector regression(SVR). The inputs are the values
of 35 unexaggerated features and the output is one feature’s
value after exaggeration.

To test the algorithms, we do ten-fold cross-validation
and calculate the average mean square error for each fea-
ture’s prediction. In total 35 features, there are 32, 34 and
32 features that SpPPR predicts better than AM, PPR and
SVM respectively. Table 7 shows the results of some key
face features. As we can see, SpPPR outperforms other
algorithms and has better generalization ability. Table 8
shows the nonzero entries in the learned projection vec-
tor for SpPPR and PPR. It is clear that the model learned
by SpPPR is more concise. For this exaggeration problem,
SpPPR has the ability to pursue meaningful linear combina-
tions of face features related to exaggeration, while it will



Face feature SpPPR AM PPR SVR
Height of left eye 0.262 0.285 0.291 0.311
Width of mouth 0.327 0.340 0.370 0.363
Height of nose 0.426 0.460 0.448 0.482
Distance between brows 0.722 0.797 0.790 0.807
Width of chin 0.553 0.610 0.625 0.616

Table 7. The average mean square errors of ten-fold cross-
validation test on some selected key face features for different al-
gorithms.

Face Feature SpPPR PPR
Height of left eye 4 35
Width of mouth 5 35
Height of nose 12 35
Distance between brows 4 35
Width of chin 7 35

Table 8. The number of nonzero entries in the projection vectors
learned by SpPPR and PPR for selected key face features.

not overfit the data like PPR because of L1 regularization.
Also the sparse model learned by SpPPR is helpful to in-
terpret how one feature’s exaggeration is affected by other
features.

5.2. SpJSBoost for gender classification

Gender classification is useful for applications such as
human identification, smart human computer interface [19]
[11] [25]. This problem is difficult because sometimes it
is hard to tell the gender from a cropped face image even
for human. As shown in figure 4, people will confuse the
gender of those faces with red mark. In other words, the
data set contains inseparable samples. We test our SpJS-
Boost on this difficult problem to show its advantages on
undistinguishable data.

Our data set contains 1002 females and 1005 males. The
images are collected from AR [18], FERET[22] databases,
etc. In our experiment, we align the faces by two eyes and
use 1400 images (700 females and 700 males) for training
and 607 images for testing. Some training images are shown
in Figure 4. We compare our SpJSBoost with JSBoost, Ad-
aboost, and SVM on two kinds of features: gabor features
(5 scales, each scale has 8 orientations) extracted from a
40 × 40 face patch and the gray appearance of a 21 × 21
face patch. Similar gray appearance feature has been used
by SVM gender classifier [19].

Table 9 shows the error rates on the testing set of differ-

Figure 4. Training images for gender classification.
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Figure 5. The training and testing error rate vs. the number of
features for SpJSBoost and JSBoost using gabor feature.
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Figure 6. The training and testing error rate vs. the number of
features for SpJSBoost and JSBoost using gray appearance of 21×
21 face patch.

Classifier Gabor Gray appearance
SpJSBoost 5.1% 7.6%

JSBoost 13.6% 11.1%
AdaBoost 7.0% 10.1%

SVM 8.6% 19.3%
Table 9. The testing error rates of different algorithms for gender
classification. The second and the third columns are the results of
using gabor feature and gray appearance respectively.

ent algorithms. On both kinds of features, the performance
of SpJSBoost is better than other algorithms. SpJSBoost
shows good generalization ability on such difficult data.
From Figure 5 and Figure 6 we can see, during the training,
our algorithm converges faster than JSBoost that shows the
effectiveness of our ”informative feature first” optimization.
Also, the testing error of SpJSBoost is considerably lower
than JSBoost, this indicates that the sparseness constraint
makes SpJSBoost generalize better.

6. Discussion

In this section, we will discuss the properties of three
kinds of methods: additive model with L1 regularized pro-
jection pursuit (L1PpAM), additive model with projection
pursuit (PpAM) and support vector machine (SVM).



(a) L1PpAM vs. PpAM
L1PpAM has the advantage of PpAM to pursue the op-

timal linear combinations of input features to interpret the
response better, while by L1 regularized projection pursuit,
L1PpAM avoids the overfitting problem of PpAM. Compar-
ing with PpAM, the model learned by L1PpAM is sparse,
easy to interpret and has better generalization ability espe-
cially when there are noisy data and many irrelevant fea-
tures.

(b) L1PpAM vs. SVM
Support Vectors Machines have been proved to work

well in extremely high-dimensional input spaces. But as
mentioned in [20], SVMs perform poorly in the presence of
many irrelevant features, because the diameter of the data
(e.g. maximum distance between any two points measured
in the L2-norm) grows with the number of irrelevant fea-
tures. While by using L1 regularized projection pursuit,
L1PpAM has the ability to pursue sparse optimal features,
thus L1PpAM performs better than SVM especially when
there are many irrelevant features fed into the algorithm.

7. Conclusion

In this paper, we have presented a L1 regularized pro-
jection pursuit algorithm for additive model learning. An
efficient ”informative feature first” optimization algorithm
is developed to pursue the optimal projection with L1 regu-
larization. Based on this, two new algorithms are developed
for regression and classification respectively: SpPPR and
SpJSBoost. The toy problems and the applications of cari-
cature generation and gender classification demonstrate the
feasibility of the algorithms especially for noisy data with
many irrelevant features.
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