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Abstract—1In this paper, we address a novel problem of automat-
ically creating a picture collage from a group of images. Picture
collage is a kind of visual image summary—to arrange all input
images on a given canvas, allowing overlay, to maximize visible
visual information. We formulate the picture collage creation
problem in a conditional random field model, which integrates
image salience, canvas constraint, natural preference, and user
interaction. Each image is represented by a group of weighted
rectangles, which indicate the salient regions. Then picture collage
is resolved by minimizing the energy, guided by the constraints.
A two-step optimization method is proposed. First, a quick ini-
tialization algorithm based on the proposed 1-D collage method
is presented. Second, a very efficient Markov chain Monte Carlo
method is designed for the refined optimization. We also integrate
user interaction in the formulation and optimization to obtain an
interactive collage reflecting personalized preference. Visual and
quantitative experimental evaluations indicate the efficiency of the
proposed collage creation technique.

Index Terms—1-D collage, interactive collage, Markov chain
Monto Carlo (MCMC) optimization, picture collage.

I. INTRODUCTION

ITH the rapid growth of digital image content, users
W can feel drowned by the amount of images they come
across. For examples, users have to browse hundreds of their
vacation photos on a desktop machine, or an image search en-
gine will return thousands of images for a query. To more ef-
ficiently view a set of images, image summarization is impor-
tant to address this problem. Most previous image summariza-
tion work mainly focuses on content-based techniques, such as
image clustering [1] and categorization [2], to provide a high-
level description of a set of images. In this paper, we propose a
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visual image summarization approach—picture collage. Fig. 1
shows an example of picture collage.

Fig. 1(a) shows a group of images. A common summariza-
tion method is to select a smaller number of representative im-
ages and create an image mosaic. However, the disadvantage of
this approach is that the image mosaic will contain lots of un-
informative regions and only few images can be selected. An
ideal image summary should contain as many informative re-
gions as possible on a given space. Fig. 1(b) shows a collage
produced by a commercial image browsing software. Images
are randomly placed on a canvas allowing overlay. Although all
images are displayed, more than half of the images are occluded.
Additionally, each image is down-sampled, and cropped without
considering image content. Fig. 1(c) is a picture collage gener-
ated by the proposed approach in this paper. Compared with the
previous results, picture collage shows the most informative re-
gions of all images on a single canvas without down-sampling
and cropping. In other words, picture collage creates a visual
image summarization of a group of images while maximizing
visible visual information.

A. Related Work

To create an ideal image summarization, the first step is
to determine which regions of each image are informative
or salient. Several approaches[3]-[5] on visual attention can
output a salience map to indicate the importance of each pixel,
while a rectangle enclosing the most salient region is also
outputted in [3] and [5]. The approach in [S5] defines the local,
regional, and global salient features to extract the most salient
object and is shown to be superior over [3] and [4]. Thus, in this
paper, we adopt it to extract the salient region. In this way, an
image is represented by a rectangle enclosing the most salient
region.

A simple technique for image arrangement is page layout
[6], [7]. It mainly aims to maximize page coverage without
allowing image overlap. The “stained glass” photo collage
alternatively packs the images together with irregular shapes
[8]. However, the two techniques share a common drawback of
image mosaics—paying homogenous attention over the entire
image.

An interactive approach to combine multiple images is dig-
ital photomontage [9]. The user manually specifies salient re-
gions on each image and the system creates a single composite
image. This technique works well only when all input images
are roughly aligned. But in our application, i.e., picture collage,
input images may be completely different.

One generative approach for selecting salient regions and
generating a summary image is epitomic analysis [10]. The
epitome of an input image is a condensed version of the image
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(a) Image collection

Fig. 1.
canvas in (c).

that contains all constitutive textural and shape primitives
necessary for reconstructing the image. But the epitome image
is originally designed for the purpose of reconstruction, not for
viewing. Semantic structures and objects in the input images
cannot be preserved in the epitome image.

The most similar work to ours is digital tapestry [11] and
autocollage [12]. Digital tapestry formulates the selection of
salient regions and their placement together as a Markov random
field (MRF) problem. Each image is represented as a set of
blocks, and the multiple-class labeling problem with non-metric
constraints is optimized by “truncating” the non-regular energy.
However, artifacts are also introduced along the boundaries of
neighboring salient regions coming from two different images
in digital tapestry, although some artifact removal methods can
be used [11]. Autocollage [12] defines different energies to en-
courage the selection of a representative set of images, select
particular object classes, and encourage a spatially efficient and
seamless layout. The optimization is divided into a sequence of
steps: from static ranking of images, through region of interest
detection, optimal packing by the branch-and-bound algorithm,
and lastly graph-cut alpha expansion. The core packing algo-
rithm is limited; for example, user interaction cannot be inte-
grated. The packing algorithm cannot deal with images with
multiple salient regions which are assigned different weights.
Further, the blending still may bring artifacts on the boundaries
of different images.

In contrast, picture collage is different from digital tapestry
and autocollage in four aspects: 1) Picture collage introduces an
overlay style to avoid artifacts caused by the tapestry. This col-
lage style is more common in real life and can often be found in
an album designed by artists; 2) The oriented placement and the
layer ordering of the image are two unique features in the pic-
ture collage. They substantially improve the visual impression
of the results. It is not trivial to apply digital tapestry on our pic-
ture collage generation; 3) Picture collage is formulated as an
energy minimization problem by the conditional random field
(CRF) model. All constraints, such as salience, canvas, natural
preference, and user interaction, are integrated together, and a
two-step optimization is proposed to achieve satisfactory results
efficiently; 4) User interaction is integrated in this framework to
create a personalized collage.

B. Our Approach

We argue that a nice picture collage should satisfy the fol-
lowing constraints: 1) Salience maximization, salience ratio bal-
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Collages. For all 44 images, the Google’s Picasa collage is shown in (b), and a nice collage with more information by our approach is created on a limited
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Fig. 2. Picture collage framework. Picture collage is formulated by a CRF
model, while quick initialization by 1-D collage, MCMC optimization, and in-
teractive optimization are proposed.

ance, and no severe occlusion. A picture collage should show as
many visible salient regions (without being overlaid by others)
as possible. At the same time, each image in the collage has a
similar salience ratio (the percentage of visible salient regions).
2) Fitting the canvas. A picture collage should make the best use
of the canvas by blank space minimization. If the canvas has an
arbitrary shape or a large size, the collage must be as uniform as
possible in the canvas. 3) Natural preference. A picture collage
must be as natural as possible, which is formulated by spatial
uniform, orientation diversity, and layer uniqueness. The spatial
distribution is uniform and the orientations of the images are di-
verse. This property is used to imitate the collage style created
by humans. 4) User’s interaction. A picture collage should be
capable of showing the user’s will, while the user’s interactions
are formulated as the hard or soft constraints on position, orien-
tation, or layer.

Picture collage is also related to the rectangle packing
problem, which is known to be NP-complete [13], [14]. Picture
collage is a more challenging problem because of the place-
ment order, and the efficiency is also a key point for such a
challenging optimization. Therefore, a two-step optimization
method is proposed. Firstly, a quick initialization algorithm,
based on 1-D collage, is proposed, while a nice collage can
be created from hundreds of images in one second. Secondly,
an efficient Markov chain Monto Carlo (MCMC) sampling
algorithm is designed for the refined optimization, while very
low energy is possible. We also integrate user’s interactions into
semi-automatic optimization to achieve a satisfactory collage.
The whole framework is shown in Fig. 2.

The remainder of this paper is organized as follows. Section II
describes the framework of picture collage. The optimization
algorithms including quick initialization, MCMC optimization,
and interactive optimization are presented in Sections III-V.
Section VI presents the experiment and the conclusion is given
in Section VIIL.
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Fig. 3. Salience representation. (a) Original image, where the rectangle is automatically detected by [5]. (b) Corresponding salient map. (c) One rectangle repre-
sentation with a linear weight, where the center point of the inside rectangle has a weight 1. (d) Multiple rectangles representation, where pixels in each rectangle

have the same weight.

II. FRAMEWORK

A. Notations

Given N input images [;...y and the salience maps A;...y,
picture collage arranges all these images on a canvas C. Each
image has a set of state variables X; = {s;,0;,[;}, where s;
is the 2-D spatial coordinate of image I; in the canvas, and o;
is the orientation angle. Each image has a unique layer index
l; € {1,2,..., N} such that we can determine the placement
order of all the images in the picture collage. Each image I; is
represented by A; completely in picture collage. In addition, the
constraint from user’s interaction is represented as U = {U;}.
Therefore, our aim is to resolve X7...y, given the inputs A;...y,
C,and U.

B. Salience Representation

The salience map A; indicates the importance of each pixel
from image I;, and there are several methods [3]-[5], [15]
related with salient region extraction. We follow [5], which is
shown to be capable to learn the model to detect saliency maps,
to compute the salient map by computing the local, regional,
and global salient features, which is shown in Fig. 3(b). To be
efficient, a rectangle is also resolved to indicate the salience[5].
Usually, the greater weight is assigned to the center of the rec-
tangle, and two kinds of weighting methods are introduced
here. First, a linear weight is given to the pixels in the rec-
tangle as in Fig. 3(c), where the center point of the inside
rectangle has a maximal weight 1, which will be used at the
1-D collage. Secondly, a set of weighted rectangles is used
as in Fig. 3(d), where pixels in each rectangle have the same
weight; this type of representation will be used in MCMC op-
timization. Because the salience map A; can be represented as
multiple weighted rectangles, more factors can be integrated.
For example, object recognition can help to discriminate the
importance of the regions, and face detection [16], [17] has
been studied extensively. The rectangles from the face detector
[16] are represented as the same as the salience rectangles.
A larger weight is assigned to the face rectangles because all
faces are expected to be visible, especially in family photos.
Users can also assign an important region in an image by hand,
where the region is also represented as a weighted rectangle.
We represent these weighted rectangles and the canvas as poly-
gons. Then, the computation, such as overlaps and occlusions,

during the arrangement can be performed efficiently by very
simple polygon boolean operations.!
C. Problem Formulation

With the conditional random field framework [18], picture
collage can be formulated as a conditional distribution:

N
> E(X)D. X)) | ()
=1

1
P(X,..N|D) = — OXP

where D = {A;.N,C,U} are the given inputs, X; =
X1..i—1,i+1...n are the constraints from the arrangements of
other images, and Z is the partition function. Compared with
Markov random field, one of the advantages of conditional
random field is that the constraints from all observations can
be integrated in the conditional probability. Maximizing the
probability is equivalent to minimizing the sum of energies,
and the optimal states for picture collage can be resolved:

N
X{. .y =arg %nin E Ei(Xi|D7Yi). 2)
TN

A reasonable supposition is that these constraints are condition-
ally independent, and the energy can be decomposed as

vl

N
ZEi(XiIDayi) = ES(Xl---N7A1---NZ+ FC(X1---N70)
=1 salience Zornstraint canvas (;)rnstraint

+ FP(Xl...NZ +FU(X1---N7U)~ 3)

vl

-~

natural preference user’s interaction

Each constraint tries to simulate one aspect in a human’s activ-
ities for collage, and is described as follows.

D. Salience Constraint

The salience constraint measures the cost from visible
salience with given salience map A;...y, and includes salience
maximization, salience ratio balance, and penalty of severe
occlusion:

ES(XI---N7A1---N) :Zocc+)\VvA+)\OoA (4)

I A fast implementation can be obtained from http://www.cs.man.ac.uk/ toby/
alan/software/gpc.html.



1228

Fig.4. Salience constraint. In (a), most of image 3 is invisible. With the salience
ratio balance criterion a collage with the same images is better balanced as
shown in (b). In (c), the directions e, and e5 are computed for image 1 and image
5 from blank space. The direction e, is computed for image 2 from moveable
space, respectively.

where A,,... is the normalized sum of occluded salience regions,
V4 is the variance of salience ratios, and O 4 is the penalty of
severe occlusion.

1) Salience Maximization: This property aims to maximize
the total amount of visible salience A,;; = ZZ AZV’L'S, where
A?*® is the visible part of the salience region A; and it can be
computed quickly with the help of rectangle representation and
polygon operation. Salience maximization is equivalent to min-
imizing the sum of occluded salience regions A,cc = Apax —
Ayis, where Apax = Y ; Ai. We further normalize this measure
in the range [0, 1]:

AOCC

ZOF(‘ = .
N Amax (5)

2) Salience Ratio Balance: Due to canvas size limitation, the
visible part of a salience region may be very small as image /5 in
Fig. 4(a). To avoid such a result, a visible salience ratio balance
can be introduced to obtain a well-balanced collage as shown in
Fig. 4(b). The visible salience ratio of one image is calculated
as r; = AV /A;. The variance of all visible salience ratios

. %Z ©)

is used to evaluate the balance, where 7 = Zf\;l ri/N. A well-
balanced picture collage tends to have a smaller variance V.
3) Penalty of Severe Occlusion: Salience ratio balance
cannot guarantee that all images are visible, especially when
they are influenced by other constraints. To make sure that
each image is partly visible, the penalty of severe collusion is

defined as
O4= Z 6 ( ) ™

where 6(z) = 1 if x is true, and 0 otherwise. to = 0.1 is the
threshold that an image is occluded severely.

To balance the relative importance of the above factors, we set
the weight A\yy = 2, and Ao = 100 which gives a big penalty
if an image is occluded severely. If Ao is too small, there may
be some images occluded severely, especially when the number
of images is large. These two parameters are important to avoid
salient region occlusion.
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E. Canvas Constraint

The canvas constraints measure the cost from the given
canvas C. These are blank space minimization and canvas
shape constraint:

Ec(X1..5,C) = AgB + A Cur 3

where B is the normalized sum of uncovered regions on the
canvas, and C); comes from the canvas shape constraint.

1) Blank Space Minimization: The blank space is the space in
the canvas that is not covered by any image. The blank space can
be calculated as the difference of the canvas bounding polygon
R¢ and the union of all the images: B = R¢ — Uf\;l R;, where
R; is the bounding polygon of image I;. B should be minimized
to make the best use of canvas space. We also compute the nor-
malized term

©)

2) Canvas Shape Constraint: The canvas can have arbitrary
shapes, where the images are only arranged in the valid region.
The binary shape mask M € {0, 1} indicates where the image
can be arranged, and it can be fitted as a polygon P,,. Then, the
cost is defined as

N
Ca =Y 6(si & Par)

i=1

(10)

where s; is the ¢th image’s position. It penalizes the image not
arranged in the canvas.

To balance the relative importance with other factors, we set
the weight A = 10, and \j; = 1000 which indicate that the
canvas shape is almost a hard constraint. If A g is too small, there
may be blank areas, especially when the number of images is
small.

F. Natural Preference

Naturally speaking, a visually pleasing collage must be spa-
tially uniform, orientationally diverse, and layer exclusive. We
factorize the prior Fp(X71...5) in (3) as

Ep(Xl...N) =

/\pSP5+/\pOP0+)\pLPL an

where Pg, Po, Pr, represent spatial uniformity, orientational di-
versity, and layer exclusion, respectively, and the weights are all
set to 10.

1) Spatial Uniformity: All images are expected to be ar-
ranged uniformly on the canvas. That means each image has
almost similar distance to their neighbors. Suppose image pairs
are neighbors: (s;, s;), the variance of distance between neigh-
boring images should be minimized:

Ps = bNZZ

1=1 jEN;

d(s;,55))? (12)

where M = (1/bN) 32, >~ c n, d(si, s5) is the mean distance,
b = 4 is the number of neighbors and N is the number of im-
ages, and d(s;, s;) is the normalized spatial distance between s;
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Fig. 5.

and s;. Each image is supposed to have four neighbors, which
can be found along for different orientations.

2) Orientational Diversity: We observed that the collage
would look very stiff if all the images are arranged in the same
orientation. To make the collage visually attractive, we bring
an orientational diversity term to expect that the images are
arranged with diverse orientations. To globally measure the
orientational diversity of all images, we compute the average
of the absolute orientation difference between any two images
L and Lz o, = /SN, oy loi— o 2/(N(N = 1). To
encourage orientational diversity, we model Pp as

N
Po = —log N(og;mg,UZ)HN(oi;O,ag) (13)
i=1

where {mg,0,} controls the global diversity of orientations.
The second term N (o0;;0,0,) encourages each image to be
placed upright, where the variance o, controls the individual
diversity.

3) Layer Exclusion: To compute the visible saliency map, it
is necessary to obtain the overlapping relations between all pairs
of images, which can be determined by the layer indices of the
images. To get the overlapping relations conveniently, we pro-
pose a unique layer index constraint, that is, each image has a
different index. The unique layer index constraint is a strict con-
straint since it can get the same overlapping relations to allow
that two images have the same layer index. However, it would
help formulate and solve the problem without changing the final
result. In order to assign a unique layer index to each image, we
model Py, as

vazl Hj;éi 5(11‘7 lj)

PL:—IOg ol

(14)

where 6(l;,1;) is an indicator function defined above.

G. User’s Interaction

People can operate the position, orientation, and layer for
each image and each operation generates a preference such as
Sit7, 0i7, iy - Suppose the set of images Ny are operated, and
Ey(Xi..w,U) in (3) can be factorized as

Eu()="Y_ (\Eu(si,U) + X By (01, U)+ M Ey (1, U))
1ENy
(15)

where Ey(s;,U), Ey(0i,U), Ey(l;,U) are the costs from the
operation on position, orientation, and layer. Suppose that the
position preference is the Gaussian distribution with the as-
signed position s;;;, then Ey(s;,U) = —log(N(si; sip, 02)),
where o is the allowable variance for position’s preference;
o, = 0 denotes the hard constraint. The orientation distribution

1-D collage. (a) Original images with detected salient rectangles, (b) 1-D collage without rotation, and (c) 1-D collage with rotation.

left Image

left Image right Image

right Image

Fig. 6. 1-D collage along the horizontal axis. (a) Occluded by the left image.
(b) Occluded by the left and right images. The top row is the top view, and the
bottom row is the lateral view. The carmine region is the salient region, and a
linear weight is given to the salient rectangle while the center has the maximal
weight 1.0. v; is the visible salient rectangle, w; is the width of salient rectangle,
ey, e, are the left and right boundaries of image. d; € {0,1} means whether
A; is occluded by the right image A; ;1.

is also a Gaussian distribution with the given o;;;, but with
a smaller variance: Fy(0;,U) = —log(N(o;;0ir,02)).
A unique label is assigned to each layer, and layer
preference is a hard constraint with the zero variance:
Ey(l;,U) = —logé(l;,liyy). To prefer the user’s interac-
tion, Ag, Ao, A; are all set to 100.

H. Optimization

To minimize such an energy efficiently, a two-step optimiza-
tion method is proposed. Firstly, a very efficient initialization
algorithm based on 1-D collage is presented to create an initial
collage. Secondly, an efficient MCMC optimization algorithm
is presented to refine the collage. A semi-automatic collage is
also designed while the user’s interactions are integrated. The
whole optimization strategy is shown in Fig. 2, and we will de-
ploy them, respectively, in the following.

III. QUICK INITIALIZATION BY 1-D COLLAGE

The quick initialization algorithm is based on a simplified
problem: 1-D collage, which means to arrange the images in
one dimension and can be optimized determinatively with high
efficiency. This algorithm can generate a nice collage from hun-
dreds of images in seconds.

A. I-D Collage

As shown in Fig. 5(a), the salient rectangles A;...y are auto-
matically detected from the images, and they are arranged along
the horizontal line as in Fig. 5(b) and (c), given the order of im-
ages and the canvas width W. In Fig. 6(a), for each image A;
along the row, w; indicates the width of the salient rectangle,
and ey;, e,.; are the left and right widths surrounding the salient
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region. The whole width of the image is w; + e;; + e,-;. The
unknown variables are the positions of each of the salient rect-
angles s;, the layers /;, and the orientation o;, where s; is the
horizontal coordinate of the center of the salient rectangle. We
define two extra variables:
* v; € [0, w;] is the visible salient rectangle width, while w;
is the width of the salient rectangle;
* d; € {0,1} indicates whether or not 4; is occluded by the
right image A4;.
We propose a sequential optimization method to this 1-D col-
lage problem: position and layer optimization. We will prove
that the final positions and layers {s;, ;} can be resolved from
{v;,d;} determinately given the image order, and we will in-
volve the layer uniqueness constraint in the optimization proce-
dure as a hard constraint, which will be omitted from the optimal
objective function. The main energy constraint comes from the
salience constraint, and the simplified energy optimization is
written as

(1=7)+Xob(r; <to)+Av(ri—7)?), (16)

where 7; = A%/ A; is the ratio of AY** and A;, and A?** indi-
cates the visible salient region. It can be observed that only the
ratio r; is involved in this equation; hence, it is sufficient to rep-
resent the salient and visible salient regions according to their
widths. Moreover, particularly in 1-D collage, the weight in the
salient rectangle is approximated in a linear decreasing func-
tion with respect to the distance of a pixel from the center of the
salient rectangle. Thus, A; = w; /2 indicates the whole salient
region. Furthermore, 7 = (1/N) Zi\;l AV [A; is denoted as
the mean salience ratio. For 7 is a global variable which is com-
puted from all AY**, the optimization can be resolved using the
expectation-maximization manner: first, we minimize the ob-
jective function to resolve AY** v;,d; using the previous com-
puted 7; second, we compute 7 using the previous computed
Afis, v;, d;. At the first iteration, the third item containing 7 in
(16) is omitted. Usually, the optimization can be converged in
three to five iterations.

As shown in Fig. 6, if AY** can be computed from v;, d;, d; 1,
the optimal v;, d; in (16) can be resolved determinately. We can
observe that when A; is occluded by the left and right images,
the optimal position of A; is at the center as shown in Fig. 6(b).
If A; is above the left and right images (d; = 0,d;_; = 1), then
v; = w;. The concluded equation is

(wi—vi)?

w; - R
2 (2%w; ) d'L - 17 dl_l =0
wy di=0.d =1
i 2 1 — Yy Ui—1 —
AT,”’S('U d; : ) = 2
7 iy Wi,i—1 v} _ w,
oo di = di—1,v; < 5
2
w; (w; —v;) _ w;
R di =di_1,v; > 5.

a7

A virtual point dy = 0 supposes that the first image is occluded
from the left, and dy = 1 indicates that the Nth image is oc-
cluded from the right.
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We can resolve the optimal {v;,d;} by dynamic program-
ming. Suppose that image A; is added at time clock ¢ along the
line from left to right, and the current canvas width is W;. d; is
also considered as a state variable to indicate whether the cur-
rent image will be occluded by the next image. The decision
variable is v;. Then the optimal value function T;(W;, d;) can
be defined as

T;(W;,d;) = arg min (18)

{Uud —1

}(Tifl(Wifhdifl) + Vi)

where V; is the objective function for the ¢th image that is min-
imized in (16), and W;_; is computed as

Wi_1 = {Wi = (vi + e1), diy=1

dioi =0 (19)

Wi — (vi +eri1),
where e;;, e,-; are the left and right boundary widths as shown
in Fig. 6. The initial condition is 74(0,dp) = 0, and dy = 0
as mentioned above. The final optimal resolve can be inferred
from T (W, dy ), where W is the whole width of the canvas,
and dy = 1 means the most right image is always occluded by
the canvas frame. When the images cannot be arranged in the
canvas without occlusions of salient regions: W < Zfil w; +
Zi\:ll min(e;;, €r;41), the canvas must be filled in and back-
ward from Tn (W, dy) promises that the salient regions are
maximized and there is no blank space on the canvas. Other-
wise, an easier method can arrange the images without dynamic
programming: the space between two salient regions is set as
(W — Efil w;)/(N — 1). This case with a large canvas can
be also extended to spatial collage, where the prior from spatial
uniform and orientation diversity will play the main functions
and where other energies will remain unchanged after several
iterations when there are no overlaps between images.

Then {s;,[;} can be resolved through {v;, d; }. To be clear, the
start position of each visible salient rectangle P; is computed as
an intermediate variable:

P P +vi_1 +ey,
T Picr +vie1 e,

di_1=1

di-1=0 (20)

where P; = 0. Then the center of the salient rectangle s; (the
horizontal coordinate here) is computed:

P+ % di-1=1
si=8 Pitvi—% di1=0,d; =0 (21)
P+ 3 di-1=0,d; = 1.

The layers {/;} can be resolved using a bi-directional chain:
if d; = 0, the next image A, should be put below A;, and vice
versa. Then {/;} is assigned as 1 - - - N from the lowest image in
the chain. Orientation o; is resolved subsequently with the orien-
tational diversity constraint, and the result is shown in Fig. 5(c).
Now, all the state variables {s;,[;, 0;} are approximately op-
timally resolved. We can also resolve the vertical coordinates
along each column with the same strategy, and the dynamic pro-
gramming can be speeded up through down-sampling.

B. Decompose into 1-D Collage

Although 1-D collage can be resolved efficiently using the
simplified energy, can the spatial collage be decomposed into
the vertical and horizontal 1-D collage? The intuitive thought is
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(a) (b)

Fig. 7. Decompose into 1-D collage. (a) Computed grids, the bottom-right grid
being empty. Dashed lines mark out the 1-D collage along the row and the
column. (b) Assign an image for each grid, to be as uniform as possible.

to divide the canvas into grids with N, rows and N, columns,
where N, ~ >, w;/W,N. = 3. h;/H and N, x N, > N.
Each grid is assigned an image A,,,, as in Fig. 7(a), where ny; €
[1, N]is theimage index and k € [1, N,],I € [1, N.] are the kth
row and /th column.

Suppose images are arranged in the canvas as uniform as pos-
sible, all rows of canvas grids have almost a similar sum of
“salience width”: M,. = 3. w; / N,.. Similarly, all columns have
a similar sum of “salience height”: M. = >_, h;/N.. Then the
optimal indices can be resolved:

N
N, N, 2 N, N, 2
= arg min Z <MT —Z wnk,) +Z <Mc —Z h’nkl)
{nr1} =1 =1 =1 k=1

(22)

The optimization can be achieved by the following two steps:

1) Grouping Jl\afv Rows: The row indices are assigned to min-
imize L, = Y0, (M, — Y0 wy,,)?, which is a typical in-
teger programming problem. A greedy method is used to se-
lect an image for the kth row at each time to minimize (M, —
ZzN:C1 Wy,,)?. The cropped dynamic programming algorithm
can speed up the selection, and the selection begins from the
last row. After all rows are assigned, image pairs are switched
between rows to minimize L,.: a pair of images from rows with
the minimal and maximal salience widths are switched if L,. de-
creases. This progress is repeated until L,. does not decrease.

2) Adjustment Between Columns: After the images are
grouped by rows, their columns are adjusted to minimize
L. = Z;icl(Mc - ZkN;1 Wn,,)?: similarly, an image pair
is searched to be switched to minimize L.. This operation is
repeated until L. does not decrease any more.

Now, all the images are arranged in the grids to make them
as uniform as possible, as shown in Fig. 7(b). Then 1-D collage
can be resolved along each row and each column, respectively.
The spatial position s; is composed with the horizontal and ver-
tical coordinate. The spatial layer [; can be computed from the
resolved layer in 1-D collage. The orientation o; can be resolved
independently using the orientational diversity constraint.

C. Analysis on Quick Initialization

Two examples from quick initialization are shown in
Fig. 8(a) and (b). Using the simplified energy, quick initializa-
tion can achieve a nice collage for a large number of images as
in Fig. 8(a). When the number of images decreases, there may
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Fig. 8. Results from quick initialization. (a) is with 32 images, and (b) is with
14 images taking less than 0.05 s. Quick initialization can output a nice result
from a large number of images as in (a). When the number of images decreases,
there may be artifacts such as the occlusion in (b). MCMC optimization can be
used to refine the result as in (b).

be artifacts such as blank canvas and occlusions as in Fig. 8(b).
This is because only one dimensional constraint along the row
or the column is considered during 1-D collage. As proved in
experiments, a quick initialization algorithm is quite efficient,
and it can output a nice collage from 500 images in seconds
and improve the efficiency of the whole collage optimization
dramatically. For those artifacts from quick initialization, such
as shown in Fig. 8(b), the MCMC optimization in the following
section considering all energies from (3) is proposed to refine
the collage.

IV. MCMC OPTIMIZATION

In this section, we present a Markov chain Monte Carlo
algorithm to refine the quick initialized collage. MCMC is a
powerful sampling-based optimization method to the com-
plex optimization problems [e.g., (3)] that cannot be solved
by some standard numerical optimization techniques (e.g.,
gradient-based methods). It has been shown that a good ini-
tialization (i.e., initial collage parameters including positions,
layer indices, and orientations of the images) can speed up
the MCMC optimization convergence. The collage parameters
obtained in quick initialization by 1-D collage are used as the
initial parameters of the MCMC optimization. In the following,
we present details on how to design the proposals.

A. Markov Chain Monte Carlo (MCMC)

Given a distribution 7(X) of variables X, in our case
X = {s;,0;,1;}, MCMC is a strategy for generating samples
{XFIE of 7(X) by exploring the state space of X using a
Markov chain mechanism. This mechanism constructs a chain
that spends more time in the regions with higher probability
density. The stationary distribution of the chain will be the
target distribution 7(X). In this paper, we pick the sample

X* = argmax . p(X*|D)

as the MAP solution, and D = {A;...5, C, U} are the inputs as
mentioned above.

Most MCMC methods are based on the Metropolis-Hast-
ings (MH) algorithm. In MH sampling, the proposal function
q(X*|X*) (also called transition kernel) can be an arbitrary
distribution that is used to sample a candidate sample X™* given
the current state X. It is the key factor that affects sampling
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efficiency. In other words, whether or not an MCMC approach
can effectively sample the target distribution 7(X) completely
depends on how well the proposal function q(X*|X*) is
designed.

B. Proposal Design

There must be many local optimums in our high dimen-
sional, non-convex combinatorial optimization problem. To
avoid sticking at local minima, we design a mixture of proposals
to deal with this problem: 1) a local proposal ¢; that discovers
finer details of the target distribution, 2) a global proposal g,
that can explore vast regions of the state space of X, and 3)
a pairwise proposal g, that has the property in between. The
mixture of proposal ¢(X*|X*) is defined as

9(XX) = 0igu(X|X") 4009 (X7 |XF) +upgp (X7 XF)
(23)

where vy, vy, and v), are three weights which will be dynamically
adjusted. Both global and pairwise proposals are critical to make
the algorithm jump out from a local minimum.

For clarity, let 7(X;, *) = 7(X;, X \ X;) when only the state
X is involved for update. Similarly, 7(s;, %) = m(s;, X \ X;)
when only the position of image I; is involved.

1) Local Proposal: Local proposal only changes the state of
one image once. The proposal g;( X *|X*) should determine: 1)
which image is to be selected for update and 2) how to propose
a good state for the selected image in a probabilistic manner.

For the first issue, we compute a weight w; for each image.
This weight is inversely proportional to the visible saliency ratio
r; = AV /A, of each image:

(ri+e)7!

D T

i

(24)

where ¢ = 0.2 is a constant to dilute the influence of this
weighting. We select the image [; with the probability w;.

For the second issue, the most frequently seen method is
random walk sampling, i.e., adding a random disturbance to
the current state configuration. However, in random walk sam-
pling, it is often the case that a small step-size in the proposal
will result in exceedingly slow movement of the corresponding
Markov chain, whereas a large step-size will result in a very
low acceptance rate. To avoid such “blind” sampling, we pro-
pose the following sampling algorithm to make large step-sizes
without lowering the acceptance ratio based on the Multipoint
Metropolis method [19].

To update the state X; = {s;, 0;,1; }, we randomly select one
of following proposals: position proposal, orientation proposal,
and layer proposal.

Position Proposal: Our position proposal is based on
Random-Grid Sampling [20] (RGS).
* Randomly generate a direction e and a gird size r.
* Construct the candidate set as

ym:sf+m-r-e7m:17...7M.

 Draw y from {y,, }*_, with probability 7(,,).
* Construct the reference set {y", = y,,, —m -7 -e}M_,.
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* Let s¥™' = g with probability
M

> T(Ym)

m=1
M

> m(yh)

m=1

min < 1

or reject otherwise.

Conceptually, RGS performs a 1-D probabilistic search on a
random direction such that it can make a large step-size jump
from the current state. However, the random sampling of the
direction in RGS is still blind. Therefore, we should propose the
direction e so that it has more space—either blank space driven
RGS or “moveable” direction driven RGS.

Blank Space Driven RGS: Given a current state configura-
tion, there may be a number of blank regions. In the case there
is at least one adjacent blank region B; for image I; (we ran-
domly select one if there is more than one adjacent blank re-
gion), we obtain a direction e from the center of the bounding
rectangle R; to the center of the union region R;J B;, e.g.,
the direction e3 of image 3 in Fig. 4(c). Then we sample e and
r for RGS from two Gaussian distributions N(e;eZ, 02) and
N(r;m,.,0?2), respectively. This proposal is in particular useful
in the early phase of the sampling when there are many blank
regions. We set M = 10 in RGS.

Moveable Direction Driven RGS: Inthe case there is no ad-
jacent blank region for image I;, we consider directions {e J 3?:1
from its center to the centers of its n adjacent images {/;}7_;.
First, we denote R as the saliency bounding rectangle of the
saliency region in image ;. Second, we define a “moveable”
distance d;; between image /; to its neighbor /;. If the image
1; is on the top of the image /;, the “moveable” distance d;;
is the minimal distance between the bounding rectangle R; of
image /; and the saliency bounding rectangle R} of image I;
[e.g., from image 4 to image 5 in Fig. 4(c)]; otherwise, d;; is
the minimal distance between R and R; [e.g., from image 5
to image 4 in Fig. 4(c)]. Lastly, we sample a direction ¢! from
the direction set {e; 1 with the probability that its value is
proportional to {d;; }_;. The final direction e for RGS is again
sampled from a Gaussian direction N (e; e}, 602). In the case
all the distances d;; are 0, a random direction is sampled. This
proposal is quite useful in the whole phase of the sampling.

Orientation Proposal: The RGS method can be directly
applied on orientation proposal because the orientation o; is a
1-D variable. Direction sampling is not necessary. We sample a
grid size r from a Gaussian distribution N (r; 0,/5,02/20). M
is also set as 10.

Layer Proposal: To sample layer index {**1, we do not
need to consider the layer index [* because layer change will
often cause a large change of the likelihood. Therefore, we gen-
erate the layer index using Multiple-Try Metropolised Indepen-
dence Sampling (MTMIS) [20]. Its basic process is as follows.

* Uniformly draw a trail set of layer index samples {y,, }}_,

fortheset {1,2,..., N}. Compute W = S _ 7(ym, *).
* Draw alayer index y from the trail set {y,,, }2/_, with prob-

ability proportional to (Y, , *).
+ Let [+ = y with probability

min {1 w }
T(W = 7(y, %) + m(Ik, %))
and let [*+1 = [¥ otherwise.
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We set the number M = 2N so that we have a good chance
to search a better layer index in a probabilistic manner. Another
big advantage of using multiple-try sampling is that we can pre-
compute {mw(l; = 1,%),...,7(l; = N,x)} incrementally such
that the computation cost of multiple-try sampling is just twice
the cost of a random walk sampling.

2) Global Proposal: In global proposal, we also have three
proposals for the position, orientation, and layer index set X,
X,, and X, respectively.

Position Proposal: To make the new sample X 1 jump
far way from the local minimum, we sample the positions for
all images independent of current state X*.

Roughly speaking, all images in a good picture collage should
not be overlapped, as shown in Fig. 1(c). To select initial posi-
tions of images without 1-D collage, we first divide the canvas
C into a number of N* > N squares and randomly select a
number of IV centers s{ of squares without drawback. Then, we
sample z, from the distribution [T, N (s;; 5§, 02 ), where o4« is
1/6 width of the square. '

Oriental Proposal: The orientation z,, is sampled based on
the prior of orientation:

g(xo) o [ N(0i;0,02). (25)

Layer Proposal: Layering is a unique property in the
picture collage. Our layer proposal is a mixture of a random
proposal and an af3-swap search. The random proposal ran-
domly selects a number of N layer indexes for z; from
{1,..., N} without drawback. The a/3-swap search is essen-
tially the a-swap algorithm in graph cut optimization for a
labeling problem on a graph. In our case, without changing
positions and orientations, all images in the canvas construct
a graph by connecting two overlaid images. The label of each
node or image is the layer index. This a/3-swap search can
be performed extremely fast if we only consider the salience
maximization as the likelihood. Notice that our goal is to
compute the MAP solution but not to truly sample the whole
posterior. Our experimental results also show that this strategy
works well for all results shown in the paper.
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(W)
Fig. 9. MCMC optimization. (a) is with 19 images, and (b) is with 22 images.

3) Pairwise Proposal: The acceptance rate of a global pro-
posal is usually low compared with local proposal. In order to
make the Markov chain have the ability to partially jump away
from the local minimum, a pairwise proposal is designed for this
goal. It can be viewed as a compromise between local proposal
and global proposal. In each iteration, it only swaps the positions,
orientations, or layer indexes of uniformly selected two different
images. For example, to implement the kth iteration of a position
pairwise proposal, we first uniformly sample the positions of an

image pair (s¥, sf), and construct the candidate set with a swap:
(shH1 = sk, s?"'l = s¥). Thenlet sFT! = sk, sf"'l = s¥ with

the probability: min{1, x(s¥", s¥1 ) /m(sF, 5%, %)}, and let
Gl _ gk Gkt
K2

= sf,s;7" = s% otherwise. It is similar to implement the
pairwise proposal of orientations or layer indexes. This proposal
is in particular useful in the early and intermediate phases of the
sampling.

4) Dynamic Weighting: The three weights v;, vy, and v, in
(23) represent our expectation on the frequencies of the local,
global, and pairwise proposals being utilized. In other words, in
each iteration of MCMC, the three weights are used to determine
which proposal will be sampled to generate the parameter status.
Practice shows that different proposals have different roles for
the optimization. Therefore, we propose a dynamic weighting
scheme to adaptively sample the proposals as the following.
When the local proposal cannot improve the result in a longer
time, the global and pairwise proposals should have larger prob-
abilities to be utilized. So we set v; = exp (—t2/202), where t is
the iteration number that the local proposal does not improve the
result continuously, o controls the probability that the local pro-
posal is utilized, and is set as 6N so that three types of local pro-
posals have a good chance to be utilized. The pairwise proposal
also has the potential to partially jump away from the local min-
imum and find local details. So it is desirable to encourage the
pairwise proposal to have a higher probability to be utilized than
the global proposal. Therefore, we set v, = 3vy, = 3(1 — v;)/4.

C. Analysis on MCMC Optimization

Two examples from MCMC optimization are shown in Fig. 9.
In these examples, all images are arranged automatically in the
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(a) Automatic collage
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(b) Interactive collage

Fig. 10. Interactive picture collage. (a) Picture collage is created automatically, while the most important regions from each image are visible in a limited canvas.
(b) Interactive optimization creates a very natural storyboard, with about 10—15 simple operations such as dragging and clicking. We can read the story at the first
sight: a group of students visit Microsoft, and attend many talks, with other snapshots including sea, buildings, stores, and so on.

canvas, while all salient regions are shown without occlusions.
The convergence condition in MCMC optimization is that the
energy decreasing during a cycle is smaller than a threshold (0.1
in the paper). The quantitative analysis from the following ex-
periments indicates that MCMC optimization can achieve a nice
collage in 1-2 s for less than 30 images.

V. INTERACTIVE OPTIMIZATION

The collaboration of quick initialization and MCMC opti-
mization can achieve a nice collage for a large number of images
very efficiently. However, in some cases, users want to interact
so that they can specify their preferences during collage. For ex-
ample, the collage in Fig. 10(a) is automatically generated from
the pictures of a journey. The user wants to adjust the positions
of images to make the group photo stand out as in Fig. 10(b).
In the real application, it is impossible to assign the positions
for hundreds of images. If the interaction can be integrated with
automatic optimization, we can assign the positions of some im-
ages, while other images will be smartly arranged automatically.
Can we successfully integrate the interaction and the automatic
optimization? There are some key problems: how to automat-
ically optimize all images after each operation on one image;
how to speed up the optimization for real-time interaction, es-
pecially when the number of images increases; and so on. To
solve these problems, the dragging operation is analyzed as an
example in detail.

A. Dragging Operation

1) Formulation: When the user drags an image to a target
position s;;;, a Gaussian distribution is preferred on the target
position: Eyr(s;,U) = —B,1og(N(s;; iy, 02)). There are two
kinds of dragging:

* Local dragging. When an image has been dragged only a

small distance, it can be inferred that the user is fine tuning.
In this case, a very small variance o is assigned to prevent
the following automatic optimization from changing the
user’s intention.

Fig. 11. Dragging operation. (a) Local dragging and (b) long-distance drag-
ging. The red arrow is dragging from users, and all green arrows denote images
being automatically moved when this task has been completed. The terminal
circle means the possible position from dragging, and the size corresponds to
the variance of distribution. The blue rectangle with dashed lines is the regions
where the visible salient rectangles must be re-computed.

* Long-distance dragging. In the case that the user wants
to arrange one image in the left-top corner of the canvas,
a large variance o is assigned, which allows for further
automatic optimization after dragging.

How does one discriminate between local dragging and
long-distance dragging and assign the variance automatically?
A polygon P; surrounding the current image is computed
through connecting the centers of the neighboring images.
When this image is dragged outside the polygon P;, it can be
inferred that the user make a long-distance dragging. Other-
wise, it can be inferred that the user make a local dragging.

2) Optimization After Dragging: Given these two kinds of
dragging, can we automatically optimize all images following
the operation.

* For local dragging, the local proposals will be run on the
surrounding images, and these images will move aside
along the green arrows in Fig. 11(a) under the control of
the energy constraints.

» For long-distance dragging, the image nearest to the target
position is selected to make a switch, which is shown as
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Fig. 12. Image summarization using picture collage. (a) is with 18 images from the search engine with keyword “bear”. (b) is with eight photos collected for a

child. Both collages are created automatically.

the long green arrow in Fig. 11(b). After this pairwise pro-
posal, all local proposals are run on the surrounding images
of the two switched images.

3) Speed Up Optimization: Efficiency is very critical for an
interactive system. The computation of the visible salient rect-
angles for all images after each operation is time taken and is
the bottleneck of the optimization algorithm. Therefore, we only
update the visible salient rectangles of the neighboring images
for each local proposal. For the dragging operation, the updated
regions are approximately shown as the blue dashed rectangles
in Fig. 11. Experiments indicate this strategy can speed up the
interaction optimization.

B. More Operations

More operations are similarly defined as the dragging oper-
ation and have the similar mechanism. The functions of these
operations are introduced briefly to demonstrate what the inter-
active collage can do.

1) Orientation Operation: Besides the position, users can
adjust the orientation for each image. It is also formulated as
a Gaussian distribution with the center at the given orientation
and a small variance. Local proposals will follow the operation
on the current image and their neighbors.

2) Layer Operation: Users can assign a new layer index o,
for each image. All images with layer index between o; and
o;y will increase or decrease by 1, and this will keep the orig-
inal layer order. Only local layer proposals are operated on the
changed images and their neighbors.

3) Image Zoom: Users can zoom in or out on selected
images. After each operation, the attention rectangle must
be re-computed, and the local proposals are operated on the
current image and all surrounding neighbors.

4) Canvas Operation: Users can adjust the canvas size and
scale. After each operation, all the positions s; are changed with
a ratio computed from the current and previous canvas. This
operation will induce all local and global proposals on all im-
ages.

Energy decreasing

0.1
0.01
0. 001
0. 0001 e
Random-Init. Quick-Init. MCMC-Opt.

Fig. 13. Mean energy decreasing from the running of 100 times for four groups
with 10, 50, 100, and 200 images. The vertical axis is the normalized energy,
where the energy from random initialization is supposed to be 1. For 10, 50,
and 100 images, the energies from quick initialization and MCMC optimiza-
tion are around 5 X 10~2 and 2 x 10 ~%. For 200 images, the energies change to
8x1072 and 3 x10~*.

VI. EXPERIMENTS

Experiments on picture collage run on a 2.8-GHz desktop
PC with 1.0 G of memory. Suppose 1-2 s are the user’s tol-
erance for each operation, and we call this time “lag-time”. Our
collage algorithm can achieve quick initialization for 300-500
images within lag-time boundaries. MCMC optimization con-
verges within similar boundaries for less than 30 images. Inter-
active optimization runs for each operation on less than 50-70
images. Automatic quick initialization and MCMC optimization
can progress on more than 500 images, while the intermediate
results are outputted at an interval of 3 s. Users can select to
pause or continue the optimization at any time to get an inter-
mediate result, or interact with the system while interactional
and automatic optimizations can cooperate to output a satisfac-
tory collage.

The basic function of picture collage is to make a summa-
rization of image search results and photograph collections. In
Fig. 12, two examples are given from automatic picture col-
lage. (a) is from the summarization of image search results with
Google’s image search, with the noisy images being discarded
by hand. (b) is from family photography.
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Random initialization

Quick initialization

MCMC optimization

Fig. 14. Two collage examples with energy decreasing from the left to the right, with 22 images (top row) and 32 images (bottom row). It is observed that a lower

energy corresponds to a nicer collage.

In the quantitative evaluation, the efficiency of quick initial-
ization and MCMC optimization is tested. The parallel strategy
is also introduced for a large number of images. The following
experimental results are all obtained with a fixed set of param-
eters as mentioned above.

A. Efficiency Evaluation

The canvas has a 0.75 height/width ratio and its size is 60%
of the total area of all input images. The salience rectangles are
computed automatically beforehand.

1) Energy Decreasing: To demonstrate how optimiza-
tions reduce energy, four groups of images are collected with
increasing numbers {10, 50, 100, 200}. Energy from three dif-
ferent algorithms is recorded: 1) random initialization; 2) quick
initialization; and 3) MCMC optimization based on quick
initialization (the convergence condition is the changed energy
for each cycle that it is less than 0.1). For each group of images,
each algorithm is repeated 100 times. The mean energies are
computed for each group. To take off the influence from the
image numbers, the energies are normalized using the energy
from a random initialization for each group. The mean energies
on groups are shown in Fig. 13. It is clear that the proposed
quick initialization and MCMC optimization can reduce the
energies efficiently, and the MCMC optimization can achieve
lower energy than quick initialization by about 10~2 times.
Two corresponding collage examples are shown in Fig. 14, and
we observe that a lower energy corresponds to a nicer collage.

2) Time Taken versus Number of Images: For the above
groups of images, the running times are also recorded for

|~ Quick-Tnit. =MCMC-Opt. | ‘*Quick—lnit. = MCMC-Opt.

1000000 10000000

100000 _ 1000000 /
100000
10000 |
10000
1000 1000
100 :’/// 0 //
" . |

10 o J 10
10 50 100 200 10 50 100 200
(a) Run to convergence (b) Run to the same energy

Fig. 15. Time taken versus number of images. The vertical axis is the time
in milliseconds, and the horizontal axis shows the number of images. (a) To
converge for 10-200 images, quick initialization takes between 0.02-0.4 s, and
MCMC optimization takes between 0.06—144 s starting from the results by
quick initialization. (b) To achieve the same energy use, quick initialization costs
10~3 times the MCMC optimization.

each algorithm. For each group, the mean time taken for 100
repetitions is shown in Fig. 15(a). Random initialization is not
shown because its cost is very low. It is observed that quick
initialization can finish in 0.2 s for 200 images. Based on quick
initialization, MCMC optimization achieves lower energy
(shown in Fig. 13) over a longer time.

Furthermore, we compare the time taken to get the same en-
ergy between quick initialization and MCMC optimization. An-
other four groups of images are repeated 100 times. The energy
from the quick initialization is set as the convergence condi-
tion for the MCMC optimization which begins from the random
initialization. As shown in Fig. 15(b), quick initialization costs
103 times the MCMC optimization to arrive the same energy.
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Fig. 16. Parallel collage. (a) Demonstrated sub-canvas for parallel collage. (b)
Energy (vertical axis) versus time taken (horizontal axis with seconds) curve
on 100 images. The starting energy is the random initialization, and parallel
algorithm and non-parallel algorithm run on these images 100 times with the
same convergence condition. It is observed that with parallel collage, the energy
decreases quickly.

B. Parallel Collage on Sub-Canvas

A nice collage is efficiently outputted by quick initialization
and MCMC optimization. However, when the number of images
increases to hundreds, MCMC optimization still faces difficul-
ties. Parallel collage proposes to group images and the canvas,
because we observe that MCMC optimization based on quick
initialization can run with a very high efficiency on a small
number of images. If a large number of images (N > 20) is to
be placed, the canvas is firstly partitioned into several sub-can-
vases. Then we perform collage inference in parallel on each
sub-canvas. Afterwards, those sub-canvases are packed into the
original large canvas, where two steps are followed to refine the
collage: 1) run the local sampling on the boundary images and
2) run the local, global, and pairwise samplings for all the im-
ages on the whole canvas. An example is shown in Fig. 16(a),
where the collage is divided into six sub-canvases. Two issues
are addressed in the following.

1) Smart Grouping: Smart grouping is proposed to divide the
canvas and images into several groups. Given the number of im-
ages N and the canvas width/height ratio r = W/ H , how many
groups should the images be divided into and how many images
in each group? Experiments indicate that MCMC optimization
has a very high efficiency for n, € [5,10] images. Then the
number of groups should be N,. x N, N,., N. € [N/10, N/5],
where N, and N, are numbers of rows and columns. The re-
solve can be written as

{erchng}*

=ar (N, *N.xny,—N) (26)

g min
ng€[5,10],N,*N.€[N/10,N/5]

where N, =~ N. xr, and N, * N. x n, > N promise that all
images can be assigned a group. All images are grouped with a
random order at each time, and there may be some groups with
only n, — 1 images.

2) Farallel versus Non-Parallel: To indicate how the parallel
strategy improves efficiency, quick initialization followed by
MCMC optimization will run by parallel strategy and non-par-
allel strategy, respectively, on 100 images, 100 times. With the
same convergence condition, the time taken is recorded and the
mean energy/time curves are shown in Fig. 16(b). Obviously,
the parallel strategy decrease most quickly.
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Fig. 17. Results from Autocollage [12]: the cases that the images are blended
with artifacts.

C. Comparison With Autocollage

We compare picture collage with Autocollage [12] which is
an existing state of the art piece of software.2 As introduced
in Section I, Autocollage provides some specific traits, for ex-
ample, images are ranked and selected automatically, and the
images are blended in the final result. In most cases with less
than 50 images, Autocollage can output a beautiful result with
advanced blending technologies. Compared with Autocollage,
our picture collage has four main advantages. 1) Our algorithm
can output a quick initialization from 1-D collage as shown in
Fig. 15, and it is much faster than Autocollage, especially when
the number of images increases. For example, for the 32 images
from Fig. 14, the trial version of Autocollage outputs the final
result in about 28 s, while picture collage can output a quick ini-
tialization in much less than 1 s, as shown in Fig. 14(b). MCMC
optimization can output the intermediate results every 3 s and
will converge in about 10 s (including the time taken to gen-
erate the intermediate collages with high-quality images). We
can stop this optimization at any time if we are satisfied with
the current result. 2) We use the overlay style where the blending
from Autocollage may bring artifacts in some cases. As shown
in Fig. 17(a), the head of a woman from the left part of the col-
lage is blended with another image; in Fig. 17(b), there are ob-
vious artifacts on the boundaries of images. 3) Our algorithm in-
tegrates the interactive optimization well, and we can operate on
each image if we are not satisfied with the automatically gener-
ated result. Fig. 10 provides an example where the group photo
is dragged to the center of collage and zoomed in for a better
view. Although Autocollage provides some user interactions,
such as image rank, they do not provide the operation on each
image, and further their interactions are not integrated in the
optimization. 4) Our algorithm can work on hundreds of images
and even on the canvas with arbitrary shapes as shown in the fol-
lowing subsection, and these traits are deficient in Autocollage.

D. Extension

Picture collage can be created on a canvas with arbitrary
shapes as in Fig. 18, where the arbitrary shapes are uniformly
processed in canvas shape constraint. Given a binary mask,
edges are automatically extracted and fitted to several enclosed
contours, which are expressed as the canvas polygon. This
canvas polygon is similarly processed when we compute the
energies and optimize with the MCMC algorithm. One issue
is that quick initialization will decompose the spatial collage

Zhttp://research.microsoft.com/en-us/um/cambridge/projects/autocollage/
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(d

Fig. 18. Automatic collage on canvas with arbitrary shapes. The binary mask
from the natural image is the input.

into a 1-D collage by grids-based layout. For an arbitrary
shape, an approximate rectangle is computed with equal area,
while quick initialization runs on this rectangle. Then a warp is
operated on positions s; to fit the arbitrary shape. Another issue
is from several disconnected enclosed canvas contours. Images
are divided into groups, and the sum of image areas for each
group corresponds to the area of the enclosed contour. Then the
collage will work on each enclosed contour, respectively.

E. User Study

To indicate that picture collage can create a natural, beautiful,
and satisfactory collage with a high efficiency, a user study is
conducted. Twenty volunteers are asked to create collages by
themselves using ten groups of images with numbers 10-70;
these users do not have any knowledge about collage and re-
lated experiences. We spend 1-2 min teaching them how to use
picture collage. Then users will create their picture collage by
themselves on all ten groups of images, and answer the fol-
lowing questions with 1 (definitely no) to 5 (definitely yes) after
operating on each group. The averaged results are as follows.
* Do you think it is a natural and beautiful summarization?
4.2)

¢ Is the result from automatic collage satisfactory? (4.3)

* Do you think the interfaces for interactive optimization are
useful? (4.2)

* Would you like to publish the picture collage on your web
space? (4.6)

These results indicate that picture collage really creates a
beautiful and satisfactory collage.

VII. CONCLUSION

In this paper, picture collage based on energy optimization is
proposed to create a visual image summarization for a set of im-
ages, where different constraints from image salience, canvas,
natural preference, and user’s interaction are integrated in a
CRF model. A two-step method including quick initialization
and MCMC optimization is proposed to achieve high perfor-
mance and efficiency. We also integrate interactive optimization
to implement a semi-automatic collage. Future work will in-
clude: 1) a better salience analysis technique, e.g., incorporating
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more semantic object recognition; 2) incorporating high-level
knowledge to create a storyboard on collage; and 3) more appli-
cations on photo summarization or browsing, especially on the
Internet.
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