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Abstract

To obtain closed-form solution for estimating extra-factors, we present in this paper a statistical learning technique

called mode-kn Factor Analysis for exploiting image ensembles, expressed as an n-th order tensor with the n-th

dimension characterizing intra-features while other dimensions representing extra-factors. In the learning stage,

for the k-th dimension of the tensor, the mode-kn patterns are constructed by concatenating the intra-features

dimension and the k-th extra-factor dimension, and then a mode-kn factor analysis model is built based on the

mode-kn patterns unfolded from the original tensor. In the inference stage, for a new image, the mode classi�cation

of the k-th dimension is performed within a probabilistic framework. The advantages of mode-kn factor analysis

over conventional tensor analysis algorithms are two-fold: 1) a closed-form solution, instead of iterative sub-optimal

solution as conventionally obtained, is achieved for estimating the extra-factor modes of new data; and 2) the

classi�cation capability is enhanced by interacting with the process of synthesizing data of all other modes in the

k-th dimension. Experiments on the Pointing'04 and CMU PIE databases for pose and illumination estimation both

validate the superiority of the proposed algorithm over conventional algorithms for tensor analysis.

I. INTRODUCTION

Computer vision research has witnessed an increasing interest in tensor-based learning techniques for image

analysis [11][8]. These techniques can be roughly divided into two categories. The �rst category, e.g., TensorFaces

[12], Multilinear Independent Component Analysis (ICA) [14] and Wang's work in [15], describes each image as a

concatenated vector, and various images with different extra-factors (such as identity, pose and illumination) �nally

constitute a high order tensor for further analysis. The second category instead considers the original or processed

image as a 2nd or high order tensor, and its integration with conventional learning techniques elicits a large set

of tensor counterparts, such as Generalized Low Rank Approximations of Matrices [17], Two-dimensional Linear

Discriminant Analysis [18], and Discriminant Analysis based on Tensor Representation [16].
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The work presented in this paper is motivated from several observations from the �rst category of tensor-based

learning algorithms: 1) most algorithms are enlightened from the algebraic point of view instead of statistical

learning, and the learning as well as inference stages are based on certain image reconstruction criteria; 2) the

mode matrices along the extra-factor dimensions often do not contain explicit semantics; and 3) in the inference

stage, the estimation of the extra-factors often results in an optimization problem without a closed-form solution,

and only an iterative sub-optimal solution is available.

In this paper, we present a statistical framework for modeling and analyzing the tensor-formed image ensemble,

and consequently offer a closed-form solution for estimating the extra-factors of new data. All of these are achieved

by the following three steps. First, we propose a novel tensor unfolding approach, called mode-kn unfolding of

the n-th order tensor with the assumption that the n-th dimension of the data tensor characterizes the underlying

features. The mode-kn unfolding operator unfolds a tensor into a matrix whose row number is the product of the

sizes of the k-th and n-th dimensions, while the column number is the product of the sizes of other dimensions. A

column vector of the unfolded matrix concatenates all the features in different modes along the k-th extra-factor

dimension. Then, Factor Analysis [10] [3] [6] is performed on the unfolded matrix by considering each column

vector as a new sample. Finally, for a new datum, a probabilistic inference method for handling incomplete data is

applied for determining the mode at the k-th dimension, and the solution is obtained in a closed-form manner.

The rest of the paper is organized as follows. Section 2 gives a brief review of the related works on tensor

analysis and the consequent motivations. We introduce the details of the mode-kn unfolding of a tensor and the

mode-kn factor analysis in Section 3. Section 4 demonstrates a set of validating experiments and we conclude this

paper in Section 5.

II. PRELIMINARIES AND MOTIVATIONS

A. Tensor Algebra

A tensor is a higher order generalization of a matrix. In this subsection, we �rst brie�y introduce some concepts

and operators on tensor algebra.

The mode-k product operation of a high order tensor Y ∈ Rm1×...mk−1×m′
k×mk+1×...×mn and a matrix Uk ∈

Rmk×m′
k produces another tensor X ∈ Rm1×m2×...×mn , denoted as Y ×k Uk, that can be calculated as

Xi1,i2,...,in
=

m′
k∑

jk=1

Yi1,...,ik−1,jk,ik+1,··· ,in
Uk

ik,jk
. (1)

For a tensor X , a mode-k pattern is an mk-dimensional vector formed by varying index ik with all other indices

�xed. We can arrange all mode-k patterns in order of indices into an mk × (m1× · · · ×mk−1×mk+1× · · · ×mn)

matrix, which is called mode-k �attened matrix of X , denoted as Xk. The �attened matrices and tensor product
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take on an important relation:

X = Y ×k Uk ⇔ Xk = UkY k. (2)

The matrix operator Singular Value Decomposition (SVD) also has a higher-order generalization, n-Mode SVD,

which expresses a tensor X as follows:

X = D ×1 U1 ×2 U2 ×3 . . .×n Un (3)

where D ∈ Rm′
1×m′

2×...×m′
n is a core tensor coordinating the interaction of mode matrices: U1, U2, . . . , Un.

B. Related Works

Constituting a high order tensor with the image ensemble of different subjects at different expressions, viewpoints,

and illuminations has been very popular in the past decade. In this paper, the n-th dimension of an n-th tensor is

assumed to represent the underlying features for each image while other dimensions are for extra-factors such as

expressions, viewpoints, and illuminations. The pioneering work of TensorFaces was contributed by Vasilescu et al.

[13]. TensorFaces utilizes the mode matrices U1, U2, . . . , Un for characterizing the variations of different factors. It

has been successfully applied for face recognition with considerable improvement compared with the unsupervised

algorithm Principal Component Analysis [2]. A further extension of TensorFaces to iteratively re�ne these mode

matrices for better reconstruction performance was demonstrated in [12]. Vasilescu et al. [14] also extended the

TensorFaces algorithm to Multilinear Independent Component Analysis (ICA) and utilized the ICA technique for

computing the mode matrices along different tensor dimensions.

Wang et al. [15] proposed to analyze and synthesize human expressions by using the core tensor D. For a new

image datum x, the expression vector denoted as v1 and identity vector denoted as v2 are estimated by minimizing

‖x−D ×1 vT
1 ×2 vT

2 ×3 U3‖, (4)

where U3 is assumed to be the mode matrix for the underlying image features. The vectors v1 and v2 are obtained

by iteratively optimizing one vector with the other �xed. Vasilescu et al. [14] presented a more elegant method for

such a purpose. First, the vectors v1 and v2 are combined into one vector via the Kronecker product, and then the

combined vector can be obtained in closed-form manner; �nally the the vectors v1 and v2 are derived by a rank-1

factorization approach. But the derived solution cannot be guaranteed to be globally optimal. The work in [8] and

[11] demonstrated the application of a mode-k �attening based tensor decomposition method for segmentation and

motion analysis, respectively.
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C. Motivations

This work is motivated from the following observations on conventional tensor analysis techniques:

1) The computed mode matrices from the extra-factor dimensions lack explicit semantics and are of no use in the

subsequent classi�cation process. For example, for the expression mode matrix denoted as U1, commonly it

was believed that its column vectors characterize the expression variations, but one mode-1 pattern consists of

the image gray levels of different expressions only on a certain point within the image plane, and hence cannot

suf�ciently characterize the expression variations. Moreover, for the subsequent classi�cation of identity or

expression, commonly no dimensionality reduction was conducted for identity and expression dimensions

since the sizes in these dimensions are already small. As in Eqn. (4), if we set v1 = U1v′1, the estimation of

expression will be independent of the mode matrix U1 yet without sacri�cing any accuracy.

2) The classi�cation of identity, pose or other extra-factors is performed by minimizing the reconstruction error,

which is intuitively illuminated from the algebraic point of view, and a more theoretical solution is desired

for the whole classi�cation process. Moreover, the estimation of the identity and expression vectors suffers

from the local optimum issue in conventional tensor analysis techniques [15][14].

In this paper, we present a statistical framework for tensor analysis, and the main targets and the expected

superiorities over conventional algorithms are: 1) modeling the extra-factors in a way easy for visualization

and understanding; 2) inferring extra-factors with closed-form solutions; and 3) conducting the classi�cation and

synthesis of the modes at certain dimensions simultaneously.

III. MODE-kn FACTOR ANALYSIS

In this section, we introduce our new solution to modeling the extra-factors of the tensor-formed data set. By

following the terminology in Section 2, the data tensor is denoted as X , and the n-th dimension of the tensor X
represents the underlying features extracted from the images. The following subsections will introduce the learning

and inference stages of our statistical framework for tensor analysis.

A. Learning Stage

The learning stage of our statistical framework includes two sub-steps: mode-kn �attening of an n-th order tensor

and mode-kn factor analysis.

1) Mode-kn Pattern and Flattening: Mode-k �attening of a tensor is widely used for the subsequent n-mode

SVD of a tensor. In this section, we present a novel �attening approach, called mode-kn �attening, to transform

a tensor into a matrix. For the mode-kn �attening, the extra-factor dimension k and the feature dimension n of a

tensor are combined to form a mode-kn pattern for subsequent analysis, and all the mode-kn patterns constitute
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the so-called mode-kn �attened matrix Xkn ∈ R(mk×mn)×(m1×···×mk−1×mk+1...×mn−1),

Xkn
ij = Xi1,i2,··· ,in

, (5)

where i = (ik − 1)×mn + in and j = 1 +
∑n−1

l=1,l 6=k(il − 1)
∏n−1

o=l+1,o6=k mo.

Each column vector of matrix Xkn is a single mode-kn pattern, which has explicit semantics. For example, if the

4-th order tensor X encodes the images of different subjects (dim-1) at different poses (dim-2) and illuminations

(dim-3), a column vector of the mode-(2, 4) �attened matrix X(2,4) means the concatenated image features of

different poses for a certain subject with certain illumination. The corresponding mode-(2, 4) pattern characterizes

the correlation among the images of different poses. Owing to this explicit semantics and its suf�ciently large row

number of the �attened matrix, we can easily build a statistical model by taking the mode-kn pattern as a new

object to be analyzed.

2) Mode-kn Factor Analysis: Factor analysis (FA) seeks to reveal the relationship between an observed vector

variable and a latent variable of reduced dimensionality. It has been widely used for many applications involving

high-dimensional observed data.

Given a (mk×mn)-dimensional observation x, factor analysis tries to explain x by relating it to a q-dimensional

latent variable z as:

x = µ + Wz + e, (6)

where W is a (mk ×mn)× q matrix, µ is the mean, and e is assumed to be white noise, namely e ∼ N(0, δ2I),

here, where I is a q× q identity matrix. The variable z is conventionally assumed to follow a Gaussian distribution

N(0, I), and then we have

x|z ∼ N(0, δ2I), (7)

x ∼ N(µ, WW T + δ2I). (8)

In this work, we take the mode-kn patterns as observed vectors, denoted as {Xkn
1 , Xkn

2 , · · · , Xkn
m̃ }, where

m̃ = m1 × · · · ×mk−1 ×mk+1 × · · ·mn−1 and Xkn
i is the i-th column vector of the matrix Xkn, namely the i-th

mode-kn pattern. Then the parameters of the above model can be inferred by maximizing the likelihood probability,

p(Xkn
1 , · · · , Xkn

m̃ |µ, W, δ) =
m̃∏

i=1

p(Xkn
i |µ,W, δ). (9)

Several parameter estimation methods have been proposed for the factor analysis model [1], [5], and commonly

they can guarantee a numerically correct and stable solution.
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Fig. 1. Schematic diagram showing the learning and inference stages of the mode-kn factor analysis algorithm for tensor analysis.

B. Inference Stage

In the inference stage, the basic task is to predict the identity, pose or illumination mode/label for any new image

datum y ∈ Rmn . In this work, we perform the estimation of extra-factors one by one instead of all of them together,

but all can be done within a uni�ed framework.

In this work, we utilize a simpli�ed criterion for measuring the con�dence that the image y belongs to the c-th

mode of the k-th extra-factor, namely the maximal joint probability of the latent variable and a certain mode-kn

pattern with y as the c-th segment. It is formally de�ned as

p̂(c|y) = max
z,xkn(y,c)

p(z, xkn(y, c)), (10)

where xkn(y, c) means a mode-kn pattern with y as the c-th segment. Note that a mode-kn pattern has mk segments

of equal lengths, and we can directly derive the probability for y to be the c-th segment of a mode-kn pattern from

Eqn. (8), but it will result in a complex computation problem. Hence we propose the above simpli�ed statistical

con�dence measure p̂(c|y).

The term p(z, xkn(y, c)) in Eqn. (10) can be further rewritten as

p(z, xkn(y, c)) = p(z)p(xkn(y, c)|z). (11)

Then, we can have

max
z,xkn(y,c)

p(xkn(y, c)|z) (12)

= max
z

exp{−||y − (µ + Wz)c||2/δ2}, (13)
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where (µ + Wz)c = µc + Wcz means the c-th segment of the vector µ + Wz. Similarly, µc is the c-th segment of

the vector µ and Wc is the c-th segment of the matrix W along the row direction. It means that the elements of

xkn(y, c) except y are with the same values as Wz.

Consequently, the optimization problem is simpli�ed as

min
z
||y − (µc + Wcz)||2/δ2 + ||z||2, (14)

and the optimal z can be derived as

z = (δ2I + W T
c Wc)−1W T

c (y − µc). (15)

Finally, the classi�cation of the mode for a given extra-factor is performed by

c∗ = arg max
c

p̂(c|y). (16)

The whole statistical framework for tensor analysis is demonstrated in Figure 1. The learning stage and inference

stage are further detailed in the diagram.
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Fig. 2. Data sets shown in a 4D structure: a) Pointing'04 and b) CMU PIE. Note that to improve display, some persons and illuminations
are not shown for CMU PIE database.

C. Discussion

In this subsection, we would like to highlight some aspects of our proposed mode-kn factor analysis algorithm.

1) Mode-kn pattern vs. Mode-k Pattern: Most previous algorithms [11][8] with tensor analysis directly analyze

the mode-k pattern. When the k-th dimension of the tensor data is for an extra-factor, the mode-k pattern lacks

explicit semantics and the size is typically small, e.g., the number of poses or illuminations is commonly at most
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21 in our experiments. Consequently, the statistical analysis of these patterns is of limited importance, and no

dimensionality reduction is necessary for these dimensions in real applications, as has been indicated with the

algorithms [15][14].

A mode-kn pattern characterizes the combined features for all modes of a certain extra-factor, and the statistical

modeling of these patterns can reveal the correlations among different modes of this extra-factor. In addition, the

size of the mode-kn pattern is large, and the number of patterns is also reasonably large, which greatly facilitate

the subsequent statistical modeling and learning process.

2) Classi�cation by Interacting with Synthesis: As demonstrated in Section 3.2, the classi�cation of the mode

of a certain extra-factor for a new image datum is de�ned as a search for the optimal latent variable z and the

image data in other modes, such that the joint probability of the latent variable and the complete mode-kn pattern is

maximized. In the classi�cation process, the derived latent variable has encoded all the information for synthesizing

the images for other modes of the given extra-factor, namely

xkn = µ + Wz, (17)

where z is the derived latent variable in Eqn. (13).

An important fact for mode-kn factor analysis to possess great classi�cation capability is that it performs the

classi�cation by interacting with synthesis. As shown in Eqn. (10), for the �nal classi�cation, it synthesizes the

images in all other modes of a given extra-factor, and ensures that the combined mode-kn pattern will have high

probability along with the latent variable. Instead, most previous algorithms for tensor analysis make the prediction

only by reconstructing the input image via the learned core matrix, but do not consider whether the synthesized

images in other modes will have reasonable probabilities. This classi�cation-by-synthesis approach directly leads

to the superiority of the mode-kn factor analysis algorithm over conventional algorithms in potential classi�cation

capability.

IV. EXPERIMENTS

In this section, we present two sets of experiments for evaluating the effectiveness of our proposed mode-kn

factor analysis algorithm for classi�cation of the extra-factors including pose and illumination.

A. Data Set Preparation

Two databases are used for the experiments. One is the Pointing'04 [7] data set. The Pointing'04 head pose

database consists of 15 sets of images. Each set contains two series of 93 images of the same person with different

poses. The nose tips are manually marked for this database, and we crop the faces with the assumption that the

face sizes are similar. This database is used for pose estimation in two directions: pan and tilt. Another database
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is the CMU PIE [9] database, where the facial images are cropped and resized to 32 by 32. Due to the data

incompleteness for some subjects, we use a subset consisting of 59 subjects with 13 poses and 21 illuminations.

For the Pointing'04 database, we extract the �rst layer of Laplacian Pyramid [4] features to represent the faces.

91 = 7 (tilt) × 13 (pan) poses are used for the experiments, and the images from the �rst series are used for

training and from other series for testing. The gray-level features are used for the CMU PIE database, with the �rst

25 persons for training and the others for testing. The 4D structures of the extracted data tensor are displayed in

Figure 2.

B. Visualization of Mode Matrices

In this subsection, we visualize the learned mode matrices from mode-kn factor analysis. The CMU PIE database

is used for visualization. The mean vector µ and the mode matrix W along the pose (illumination) dimension are

displayed in Figure 3 and Figure 4. The counterpart of mode matrices from TensorFaces are shown in Figure 5.

We can see that the column vectors of W in mode-kn factor analysis characterize the joint variation of different

modes for certain extra-factors, and another interesting observation is that different components of the pose pattern

characterize different illuminations, while different components of the illumination pattern characterize different

poses. For the mode matrices from Tensorfaces, we cannot observe meaningful characteristics, and even for the

feature dimension, we cannot observe the explicit relationship with pose and illumination.

Fig. 3. The mean faces in µ (�rst row) and the �rst four column vectors in the matrix W (second to �fth rows) for the mode-kn factor
analysis along the pose dimension. The results are obtained from the training data of CMU PIE database.

Fig. 4. The mean faces in µ (�rst row) and the �rst four column vectors in the matrix W (second to �fth rows) for the mode-kn factor
analysis along the illumination dimension. The results are obtained from the same data as in Figure 3.
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Fig. 5. The mode matrices of different tensor dimensions from Tensorfaces. Note that the column vectors of the mode matrix for the feature
dimension of the tensor are reshaped into matrices to facilitate display, and the results are obtained from the training data of the CMU PIE
database.

TABLE I
PAN POSE ESTIMATION ACCURACIES (%) ON THE POINTING'04 DATABASE. NOTE THAT THE SYMBOL TF MEANS TENSORFACES AND

MICA MEANS MULTILINEAR ICA.

Algorithm P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 Total
TF+SP 75.4 72.4 64.8 56.2 53.3 57.1 56.2 42.8 52.4 51.4 67.6 58.1 61.0 69.1
TF+FV 83.8 85.7 79.1 67.6 65.7 63.8 74.3 66.7 63.8 67.6 79.1 68.6 78.1 72.6

MICA+SP 78.1 74.3 67.6 58.1 70.5 62.0 69.5 57.1 61.0 61.0 60.0 62.9 73.3 65.8
MICA+FV 84.8 85.7 82.9 70.5 68.6 68.6 72.4 70.5 73.3 71.4 78.1 70.5 77.1 75.0

Mode-kn FA 83.8 86.7 81.0 74.3 79.1 82.0 78.1 77.1 71.4 71.4 79.1 66.7 74.3 77.3

C. Pose Estimation on Pointing'04

In this subsection, we evaluate the effectiveness of mode-kn factor analysis for extra-factor estimation on the

Pointing'04 database. Comparisons are performed with two conventional techniques for tensor analysis: TensorFaces

(TF) and Multilinear ICA (MICA). For these two baseline algorithms, two approaches are used for �nal classi�cation.

One is the subspace projection method presented in [13], referred to as SP in the results table, and the other one,

referred to as FV [14], computes the extra-factor vectors as in Eqn.(4) and then conducts classi�cation directly on

these vectors with the Nearest Neighbor approach. For both baseline algorithms and mode-kn factor analysis, the

column number of the mode matrix related to intra-features is tested with several values, namely [10% 20% 30%

40% 50% 60% 70% 80% 90%] of the feature number, and the best results are reported. The results listed in

Tables 1-2 show that our proposed algorithm outperforms all of the other four methods for pose estimation in both

TABLE II
TILT POSE ESTIMATION ACCURACIES (%) ON THE POINTING'04 DATABASE.

Algorithm T1 T2 T3 T4 T5 T6 T7 Total
TF-SP 78.0 63.6 50.8 50.0 54.4 50.8 67.7 60.6
TF-FV 91.8 76.9 64.1 73.3 80.5 85.1 99.0 81.5

MICA-SP 85.1 59.5 44.6 53.9 50.3 62.6 85.6 63.1
MICA-FV 87.7 72.8 66.7 73.3 77.4 89.2 99.0 80.9

Mode-kn FA 87.7 81.0 72.3 77.4 81.0 86.2 98.0 83.4
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pan and tilt directions. Another observation is that the pose estimation at the near-frontal directions are the most

dif�cult for the other four methods, while mode-kn factor analysis works much better than them in these directions.

D. Pose and Illumination Estimation on PIE

In this subsection, we evaluate the estimation accuracy of pose and illumination on the CMU PIE databases. The

results listed in Tables 3-4 again show the superiority of our proposed mode-kn factor analysis over the other four

methods. Especially for pose estimation, the accuracy is improved from 74.3% of the best result from the other

four algorithms to 80.2%. Also, we observe that the FV-version method can achieve better performance than the

SP-version method for both TensorFaces and Multilinear ICA.

Note that we focus on the classi�cation of the extra-factors with mode-kn factor analysis in this work, and its

applications for automatic image synthesis with different illuminations and poses are left for future publication due

to the page limitation.

TABLE III
POSE ESTIMATION ACCURACIES (%) ON THE CMU PIE DATABASE. NOTE THAT P1-P13 MEAN DIFFERENT POSES IN BOTH TILT AND

PAN DIRECTIONS.

Algorithm P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 Total
TF-SP 58.4 93.6 57.7 62.9 81.4 39.2 83.1 42.7 25.5 88.5 79.4 79.3 87.3 67.6
TF-FV 68.8 79.4 72.3 68.6 77.0 61.6 79.6 59.8 27.5 86.1 73.4 87.4 74.0 70.4

MICA-SP 59.0 92.4 60.1 62.0 80.1 40.6 76.8 38.7 23.4 89.9 76.2 71.6 88.2 66.1
MICA-FV 77.7 88.0 72.5 82.1 82.2 59.9 79.7 56.4 21.6 90.1 86.6 86.4 82.1 74.3

Mode-kn FA 73.4 93.8 75.1 78.7 80.4 78.7 89.2 87.5 38.1 90.6 83.5 99.2 73.9 80.2

TABLE IV
ILLUMINATION ESTIMATION ACCURACIES (%) ON THE CMU PIE DATABASE. NOTE THAT I1-I12 MEAN DIFFERENT ILLUMINATIONS

WHILE THE ILLUMINATIONS FROM 13 TO 21 ARE COMBINED AS Else IN THE TABLE TO FACILITATE DISPLAY.

Algorithm I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 Else Total
TF-SP 25.8 24.4 24.0 8.4 9.3 11.8 14.3 6.3 16.3 12.2 14.3 15.8 16.9 16.0
TF-FV 93.2 16.3 0.2 11.5 16.7 29.2 51.1 33.5 19.5 12.4 5.9 10.0 28.3 26.4

MICA-SP 23.5 26.9 59.7 17.2 15.2 39.4 35.1 19.0 37.8 20.0 21.7 27.1 34.6 31.1
MICA-FV 85.5 32.1 24.9 24.7 29.0 45.7 47.3 45.7 39.4 28.3 27.4 37.3 44.5 41.3

Mode-kn FA 92.1 51.0 10.4 35.7 58.8 47.3 70.4 73.8 26.0 55.2 5.2 29.4 36.3 42.0

V. CONCLUSION

In this paper, we have proposed a statistical framework for analyzing tensor-formed image ensemble. Three main

contributions are offered for tensor analysis: 1) mode-kn unfolding of the tensor and the corresponding mode-kn

factor analysis were proposed for tensor analysis; 2) a closed-form solution was provided for inferring the extra-

factors of new data; and 3) the estimation of the mode for a given extra-factor and the synthesis for other modes
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were performed in an interacting manner, instead of independently as done conventionally. An interesting direction

for future work is to utilize a Mixture Factor Analysis model [6], instead of a factor analysis model, for expressing

the possibly nonlinear generative model of the mode-kn patterns.
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