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Face Photo-Sketch Synthesis and Recognition
Xiaogang Wang, Student Member, IEEE, and Xiaoou Tang, Senior Member, IEEE

Abstract—In this paper, we propose a novel face photo-sketch synthesis and recognition method using a multiscale Markov Random
Fields (MRF) model. Our system has three components: (1) given a face photo, synthesizing a sketch drawing; (2) given a face
sketch drawing, synthesizing a photo; (3) searching for face photos in the database based on a query sketch drawn by an artist.
It has useful applications for both digital entertainment and law enforcement. We assume that faces to be studied are in a frontal
pose, with normal lighting and neutral expression, and have no occlusions. To synthesize sketch/photo images, the face region is
divided into overlapping patches for learning. The size of the patches decides the scale of local face structures to be learnt. From
a training set which contains photo-sketch pairs, the joint photo-sketch model is learnt at multiple scales using a multiscale MRF
model. By transforming a face photo to a sketch (or transforming a sketch to a photo), the difference between photos and sketches is
significantly reduced, thus allowing effective matching between the two in face sketch recognition. After the photo-sketch transformation,
in principle, most of the proposed face photo recognition approaches can be applied to face sketch recognition in a straightforward
way. Extensive experiments are conducted on a face sketch database including 606 faces, which can be downloaded at our website
(http://mmlab.ie.cuhk.edu.hk/facesketch.html).

Index Terms—Face recognition, Face sketch synthesis, Face sketch recognition, Multi-scale Markov random field.

✦

1 INTRODUCTION

AN important application of face recognition is to as-
sist law enforcement. Automatic retrieval of photos

of suspects from the police mug-shot database can help
the police narrow down potential suspects quickly. How-
ever, in most cases, the photo image of a suspect is not
available. The best substitute is often a sketch drawing
based on the recollection of an eyewitness. Therefore,
automatically searching through a photo database using
a sketch drawing becomes important. It can not only
help police locate a group of potential suspects, but
also help the witness and the artist modify the sketch
drawing of the suspect interactively based on similar
photos retrieved [1], [2], [3], [4], [5], [6], [7]. However
due to the great difference between sketches and photos
and the unknown psychological mechanism of sketch
generation, face sketch recognition is much harder than
normal face recognition based on photo images. It is
difficult to match photos and sketches in two different
modalities. One way to solve this problem is to first
transform face photos into sketch drawings and then
match a query sketch with the synthesized sketches in
the same modality or first transform a query sketch into
a photo image and then match the synthesized photo
with real photos in the gallery. Face sketch/photo syn-
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thesis not only helps face sketch recognition, but also has
many other useful applications for digital entertain-ment
[8], [9]. In this paper, we will study these two interesting
and related problems, face sketch/photo synthesis and
face sketch recognition.

Artists have a fascinating ability to capture the most
distinctive characteristics of human faces and depict
them on sketches. Although sketches are very different
from photos in style and appearance, we often can easily
recognize a person from his sketch. How to synthe-
size face sketches from photos by a computer is an
interesting problem. The psychological mechanism of
sketch generation is difficult to be expressed precisely by
rules or grammar. The difference between sketches and
photos mainly exists in two aspects: texture and shape.
An example is shown in Figure 1. The patches drawn
by pencil on paper have different texture compared to
human skin captured on a photo. In order to convey
the 3D shading information, some shadow texture is
often added to sketches by artists. For shape, a sketch
exaggerates some distinctive facial features just like a
caricature, and thus involves shape deformation. For
example, if a face has a big nose in a photo, the nose
drawn in the sketch will be even bigger.

1.1 Related Work

In psychology study, researchers have long been using
various face drawings, especially line drawings of faces,
to investigate face recognition by the human visual
system [10], [11], [12], [13], [14]. Human beings can
recognize caricatures quite well, which is a special kind
of line drawings of faces, with particular details of a face
accentuated, compared with the ability to recognize face
photos. Presumably, the details which get accentuated
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Fig. 1. Examples of a face photo and a sketch.

in caricaturing are those which are characteristics of that
individual. Someone even question whether caricatures
are in any way better representations than natural im-
ages, since caricatures may contain not only the essential
minimum of information but also some kind of “super-
fidelity” due to the accentuated structures [10]. Bruce et
al [11] have also shown that computer-drawn “cartoons”
with edges, pigmentation, and shading of the original
image can be well recognized by human beings.

Some computer based sketch synthesis systems have
been proposed in recent years. Most of them have the
line drawing output without much sketch texture which
is useful to convey 3D shading information. In [8], [9]
face shape was extracted from a photo and exaggerated
by some rules to make the result more similar to a sketch
in shape. They were not based on learning. Freeman et al
[15] proposed an example-based system translating a line
drawing into different styles. Chen et al [16] proposed
an example-based face cartoon generation system. It was
also limited to the line drawings and required the perfect
match between photos and line drawings in shape. These
systems relied on the extraction of face shape using face
alignment algorithms such as Active Appearance Model
(AAM) [17]. These line drawings are less expressive than
the sketches with shading texture. In this paper we work
on sketches with shading texture. It requires modeling
both face shape and texture.

There was only limited research work on face sketch
recognition because this problem is more difficult than
photo based face recognition and no large face sketch
database is available for experimental study. Methods
directly using traditional photo-based face recognition
techniques such as the eigenface method [1] and the
elastic graph matching method [2] were tested on two
very small sketch data sets with only 7 sketches and 13
sketches respectively.

In our previous work [3], [4], a face sketch synthesis
and recognition system using eigentransformation was
proposed. It was not limited to line drawing and can
synthesize sketches with more texture. The transforma-
tion was directly applied to the whole face image. In [4],
it was shown that a synthesized sketch by eigentrans-
formation would be a good approximation to a sketch
drawn by an artist only if two conditions are satisfied:
(1) a face photo can be well reconstructed by PCA from

training samples and (2) the photo-sketch transformation
procedure can be approximated as linear. In some cases,
especially when the hair region is included, these condi-
tions are hard to be satisfied. Human hair varies greatly
over different people and cannot be well reconstructed
by PCA from training samples. PCA and Bayesian classi-
fiers were used to match the sketches drawn by the artist
with the pseudo sketches synthesized from photos. Lui
et al [5] proposed a nonlinear face sketch synthesis and
recognition method. It followed the similar framework
as in [3], [4]. However, it did eigentranformation on
local patches instead of the global face images. It used
a kernel based nonlinear LDA classifier for recognition.
The drawback of this approach is that the local patches
are synthesized independently at a fixed scale, such that
face structures in large scale, especially the face shape,
cannot be well learnt. Zhang and Gao [6], [7] proposed
an approach using an embedded hidden Markov model
and a selective ensemble strategy to synthesize sketches
from photos. The transformation was also applied to the
whole face images and the hair region was excluded.

1.2 Our Approach

In this paper, we develop an alternative approach syn-
thesizing local face structures at different scales using a
Markov Random Fields model. It requires a training set
containing photo-sketch pairs. We assume that faces to
be studied are in a frontal pose, with normal lighting and
neutral expression, and have no occlusions. Instead of
directly learning the global face structure, which might
be too complicated to be well estimated, we target at
local patches, which are much simpler in structure. The
face region is divided into overlapping patches. During
sketch synthesis, for a photo patch from the face to be
synthesized, we find a similar photo patch from the
training set and use its corresponding sketch patch in
the training set to estimate the sketch patch to be syn-
thesized. The underlying assumption is that if two photo
patches are similar their sketch patches should also be
similar. In addition, we have a smoothness requirement
that neighboring patches on a synthesized sketch should
match well. The size of patches decides the scales of the
face structures which can be learnt. We use a multiscale
Markov Random Fields model to learn face structures at
different scales. Thus local patches in different regions
and scales are learnt jointly instead of independently as
in [5]. This approach can also be used to synthesize
face photos given sketches. Our sketch/photo algorithm
is relevant to [18] which used MRF to estimate scenes,
such as motion and range map, from images.

During the face sketch recognition stage, there are
two options to reduce the modality difference between
photos and sketches: (1) all the face photos in the gallery
are first transformed to sketches using the sketch synthe-
sis algorithm, and a query sketch is matched with the
synthesized sketches; (2) transform a query sketch to a
photo and match the synthesized photo with real photos
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in the gallery. We will evaluate both options in the exper-
imental study section. After the photos and sketches are
transformed into the same modality, in principle, most of
the proposed face photo recognition approaches can be
applied to face sketch recognition in a straightforward
way. In this paper, we will evaluate the performance of
several appearance-based face recognition approaches.

2 FACE SKETCH SYNTHESIS USING THE
MULTISCALE MARKOV RANDOM FIELDS
MODEL

In this section, we describe our sketch synthesis ap-
proach based on local patches. This approach can be
easily extended to face photo synthesis by simply ex-
changing the roles of photos and sketches. The steps
of our sketch synthesis algorithm can be outlined as
follows. The input is a face photo and output is a
synthesized sketch.

1) Perform geometry alignment and transform color
space in the preprocessing step.

2) Patch matching. For each patch yj on the in-
put photo find K photo patches {ỹl

j}K
l=1 from the

training set best matching yj in appearance, and
use their corresponding sketch patches {x̃l

j}K
l=1 as

candidates for the estimation of the synthesized
sketch patch xj corresponding to yj .

3) Build a multiscale Markov network and con-duct
belief propagation to estimate the sketch patches
{x̂j} of the input photo.

4) Synthesize the sketch image by stitching the esti-
mated sketch patches {x̂j}.

Each of the above steps will be explained in the follow-
ing subsections.

2.1 Preprocessing

In the preprocessing step, all the photos and sketches
are translated, rotated, and scaled such that the two eye
centers of all the face images are at fixed position. This
simple geometric normalization step aligns the same face
components in different images roughly to the same
region. Face photos can be gray or color images. When
photos are in color, we fist convert the RGB color space
to the Luv color space, since Euclidean distance in Luv
space better correlates to the perceived change in color.

2.2 Patch Matching

The face region is divided into patches and the neigh-
boring patches overlap as shown in Figure 2. For each
patch on the input photo image, we try to estimate
its sketch patch. A smoothness constraint requires that
two neighboring synthesized sketch patches have similar
intensities or colors at the pixels inside their overlapping
region. How to measure the compatibility between two
neighboring synthesized sketch patches is formulated in
Section 2.3.

Fig. 2. The face region is divided into patches as shown
in (a). The neighboring patches overlap as shown in (b).

In order to estimate the sketch patch xj of the input
photo patch yj , K candidate sketch patches {x̃l

j}K
l=1 are

collected from the training set. We assume that if a
patch ỹl

j found on a training photo is similar to the
patch yj on the input photo in appearance, the sketch
patch x̃l

j corresponding to ỹl
j is considered as one of

the good candidates for xj . The procedure of searching
candidate sketch patches is described in Figure 3. For
each local patch yj on the input photo, we find its
corresponding position on a training photo. Since face
images are not exactly aligned in shape, the same face
components on different images may not locate exactly
at the same position. We cannot directly sample the patch
on the training photo at the same position as on the
input photo. Instead, we set a searching range around
this position indicated by the black dash window in
Figure 3. Searching inside this range, we find the patch
best matching yj as the sampled patch from this training
photo. Here, we use the Euclidean distance between
intensities or colors of two photo patches as the matching
measure. Let I be a photo in the training set and R be a
patch inside the searching range, the distance is

DR =
∑
i∈R

(yj(i) − IR(i))2

=
∑

i

y2
j (i) +

∑
i

I2
R(i) − 2

∑
i

yj(i)IR(i), (1)

where yj(i) and IR(i) are the intensities or color vectors
at pixel i on the input photo patch and the patch R on
the training photo. After searching through the entire
training set, for each input photo patch yj , we have a
patch sampled from each training photo. Suppose there
are M photo-sketch pairs in the training set. We select
K photo patches best matching yj in appearance from
the M training photos. Each patch on a training photo
has a corresponding patch on its training sketch. We use
the K sketch patches corresponding to the K selected
photo patches from the training set as candidates for the
possible states of xj . An example is shown in Figure 4.

Patch matching is the most time consuming part of our
algorithm. This part can be speeded up using integral
computation [19] and 2D fast Fourier transform. In order
to find the patch on a training photo I best matching
the input photo patch yj , the distance in Eq (1) has to
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Fig. 3. Search candidate sketch patches for a patch
on the input photo. For a patch on the input photo, the
dash black window is the searching range on the training
photos.

Fig. 4. Example of collecting candidate sketch patches
from the training set. (a) A patch on the input photo;
(b) Photo patches selected from the training photos best
matching the patch on the input photo; (c) Sketch patches
corresponding to the selected photo patches from the
training set.

be computed for all possible patches R. For each input
photo

∑
i y2

j (i) only need to be computed once.
∑

i I2
R(i)

can be computed efficiently using the trick of integral
computation which first computes an integral image
once and then is able to compute statistics over any rect-
angle regions over the image very fast. More importantly,
this term can be computed off line and saved for each
training photo. The correlation term

∑
i yj(i)IR(i) costs

the most computation since it has to be computed for
each pair of input photo and training photo on line.
Fortunately, it is well known that correlation can be
speeded up using fast Fourier transform.

If we simply choose a single training sketch patch
whose photo patch best matches the input photo patch
yj in appearance as an estimate of sketch patch xj , the

synthesized sketch image is not smooth with mosaic ef-
fect. Also because sketch patches are estimated indepen-
dently, when estimating a sketch patch, information from
the remaining face region is not considered. This is quite
different from the process of an artist drawing a sketch.
An artist often considers the whole face structure when
drawing a small patch. In our approach, to estimate a
sketch patch, we keep K candidates as its possible val-
ues, and also require that neighboring synthesized sketch
patches match well. Thus all the sketch patches need to
be jointly modeled. The synthesized sketch image should
closely match the input photo in appearance and be
smooth in the meanwhile. To reach this goal a Markov
network is used to model the process of sketch synthesis.
It will be explained in Section 2.3 and Section 2.5.

2.3 Markov Network at a Single Scale

The graphical model representation of the Markov
network is shown in Figure 5. The whole face region is
divided into N patches. Each node on the network is a
sketch patch or a photo patch. Let yj and xj be the input
photo patch and the sketch patch to be estimated at face
patch j. The dependency between yj and xj , written as
Φ(xj , yj) provides the local evidence for xj . xj is con-
nected to other sketch nodes in its neighborhood by the
compatibility function Ψ(xj , xj′ ) . The joint probability
of the input photo and its sketch can be written as,

p(x1, . . . , xN , y1, . . . , yN) =
∏
j1j2

Ψ(xj1 , xj2 )
∏
j

Φ (xj , yj) .

(2)
xi has a discrete representation taking values only on
K possible states which are candidate sketch patches
{x̃l

j}K
l=1 collected through patch matching as described

in Section 2.2.
The local evidence is computed as

Φ(x̃l
j , yj) = exp

{
−‖ỹj − yj‖2

/2σ2
e

}
, (3)

where ỹl
j is the corresponding photo patch of the candi-

date sketch patch x̃l
j from the training set. If x̃l

j is a good
estimation of xj , ỹl

j should be similar to yj .
Let j1 and j2 be two neighboring patches with overlap-

ping region A. Let dl
j1j2

be the intensity or color vector
of the lth candidate sketch patch x̃l

j1
at j1 inside A. Let

dm
j1j2

be the intensity or color vector of the mth candi-
date sketch patch x̃l

j2 at j2 inside A. The compatibility
function is computed as

Ψ(x̃l
j1 , x̃

m
j2) = exp

{− ∥∥dl
j1j2 − dm

j1j2

∥∥ /2σ2
c

}
(4)

If both x̃jl
1

and x̃jm
2

are estimations of synthesized
patches, they should have consistent intensities or colors
in their overlapping region.

Given the Markov network, the sketch patches can be
estimated by taking maximum a posteriori (MAP) esti-
mator x̂jMAP or minimum mean-square error (MMSE)
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Fig. 5. The graphical model of Markov network.

estimator x̂jMMSE .

x̂jMAP = arg max
[xj]

max
[xi,i�=j]

P (x1, . . . , xN |y1, . . . , yN), (5)

x̂jMMSE =
∑
xj

xj

∑
[xi,i�=j]

P (x1, . . . , xN |y1, . . . , yN). (6)

We use belief propagation [20] to do inference. Messages
from local regions propagate along the Markov network
to reach optimal solution. When the network has no
loops, Eq 5 and 6 can be exactly computed using the
“message-passing” rules [18]. The MAP estimate at
node j is

x̂jMAP = argmax
[xj]

Φ(xj , yj)ΠkMk
j (xj), (7)

where Mk
j is the message from the neighbor node k to

node j, and is computed as

Mk
j = max

[xk]
Ψ (xj , xk) Φ (xk, yk)

∏
l �=j

M̃ l
k (xk) , (8)

where M̃k
j is Mk

j computed from the previous iteration.
The MMSE estimate at node j is

x̂jMSSE =
∑
xj

xjΦ (xj , yj)
∏
k

Mk
j (xj) , (9)

Mk
j =

∑
xk

Ψ (xj , xk) Φ (xk, yk)
∏
l �=j

M̃ l
k (xk) . (10)

When messages pass along the network, a sketch patch
receives information not only from neighboring patches
but also from other patches far away. A detailed descrip-
tion of belief propagation can be found in [18], [20].

Computing the MAP and MMSE values for a Markov
network with loops is prohibitive. But the above propa-
gation rules can still be applied to get the approximated
solution. From our experimental results, the MAP esti-
mate has a better performance while the MMSE estimate
often brings blurring effect. Besides belief propagation,
there are also other approaches, such as graph cut [21],
to approximate the optimal solution of Markov Random
Fields.

Fig. 6. Find the minimum error boundary cut between two
overlapping estimated sketch patches x̂j1 and x̂j1 .

Fig. 7. When an artist draws a sketch patch, he often
refers to the larger structure around that patch. In this
figure, the two local patches from the bridge of the nose
and the cheek have similar appearance in photos, but the
corresponding sketch patches drawn by the artist are very
different.

2.4 Stitching Sketch Patches

Since neighboring sketch patches have overlap regions,
to synthesize the whole sketch image, one could aver-
age the neighboring patches. However, this will lead
to blurring effect. Instead, we make a minimum error
boundary cut between two overlapping patches on the
pixels where the two patches match best [22] as shown
in Figure 6. The minimum cost path through the error
surface is computed with dynamic programming.

2.5 Markov Network at Multiple Scales

In Section 2.2 and 2.3, we assume that all the image
patches have the same size. A drawback of using a
uniform scale of Markov random field is that it can-
not address the long range dependency among local
patches. When an artist draws a patch, he usually refers
to the larger structure around that patch. Sometimes
even though two photo patches are very similar, their
corresponding sketch patches might be very different.
One example is shown in Figure 7. The size of the patch
decides the scale of the face structures to be learnt. When
the patch is small, some shadow added by the artist to
convey 3D shading information and some face structures
such as the face contour, eyebrows, and the bridge of
the nose might be missed. It seems that these structures
have to be learnt using larger patches. However, patches
in large size will lead to distortions and mosaic effect
on the synthesized sketch. To overcome this conflict,
we develop a multiscale Markov Random Fields model
which learns face structures across different scales.

As shown in Figure 13, a multiscale Markov random
fields model is composed of L layers of random fields
x(1), x(2), . . . , x(L) with difference resolutions. x(1) is the
finest scale random fields with the smallest patch size.
x(L) is the coarsest scale random fields with the largest
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Fig. 8. Pyramid structure of the multiscale Markov Ran-
dom Field model.

patch size. A node at layer n is decomposed into s2

nodes at layer n− 1, where s is the resolution reduction
rate. They are defined as neighboring nodes in different
scales. It is assumed that the distribution of x(n) only
depends on the neighboring layers,

P
(
x(1), . . . , x(L), y(1), . . . , y(L)

)

=
L∏

n=1

Ω
(
x(n), y(n)

) L−1∏
n=1

Θ
(
x(n), x(n+1)

)
. (11)

where y(1), . . . , y(L) are the photo images on different
layers. Their only difference is the patch size. Thus the
joint probability distribution Eq 2 can be extended by
adding the connection between the hidden variable x

(n)
j

and its neighboring nodes in adjacent scale layers n − 1
and n + 1,

P (x(1), . . . , x(L), y)
= P (x(1), . . . , x(L), y(1), . . . , y(L))

= P (x(1)
1 , . . . , x

(1)
N1

, x
(L)
1 , . . . , x

(L)
NL

, y
(1)
1 , . . . , y

(L)
NL

)

=
L∏

n=1

∏
i

Φ
(
x

(n)
i , y

(n)
i

) ∏
i,j,m,n

Ψ
(
x

(m)
i , x

(n)
j

)
(12)

When m = n, x
(m)
i and x

(n)
j are in the same size and are

neighbors in space. When m = n−1 , the region covered
by x

(m)
i is part of that covered by x

(n)
j and Ψ

(
x

(m)
i , x

(n)
j

)

is defined in the same way as Eq 4 by comparing the
intensity or color difference in the overlapping region of
two patches. We use the same belief propagation rules
as described in Section 2.3, except that messages pass
between scale layers. We take the finest resolution layer
x(1) as the synthesis result.

2.6 Discussion

Our sketch synthesis approach is based on local patches.
It does not require that a face photo can be well recon-
structed by PCA from the training set and the photo-
sketch transform can be approximated as a linear proce-
dure as the global eigentransformation approach did [4].
So it can synthesize more complicated face structure such
as hair which is hard for global eigentransformation.

Hair is an important feature for entertainment applica-
tions of the sketch synthesis algorithm. For the recog-
nition task, in some cases, especially when two images
of the same person are captured long time apart, e.g.
several months or years, hair may not be a stable feature
for recognition since its style may change. However,
under some situations when this interval is not long,
hair is still a distinctive feature for recognition. When
the police ask the witness to generate the sketch of a
suspect, hair feature is often required.

The approach proposed in [5] was also based on local
patches. However, it has several key differences with our
method. First, in [5], sketch patches were synthesized
independently while in our approach, sketch patches are
jointly modeled using MRF. In our approach, a sketch
patch receives information not only from neighboring
patches but also from other patches far away by belief
propagation. Secondly, in [5] the size of patches is
fixed at one scale. Experimental results in [5] showed
that small and large patch sizes led to different prob-
lems in the synthesis results. Our approach synthesizes
sketch patches over different scales. Because of these two
reasons our approach can better learn the long range
face structure and global shape feature and generate
smoother results. Thirdly, method in [5] synthesized
a local patch through the linear combination of can-
didate patches. This brought blurring effect. Instead
our approach finally chooses only one candidate sketch
patch as an estimate. We will compare these approaches
through experimental evaluation.

3 EXPERIMENTAL RESULTS

We build a face photo-sketch database for experimental
study. It includes 188 faces from the CUHK student
database, 123 faces from the AR database [23], 295 faces
from the XM2VTS database [24]. For each face, there
are a sketch drawn by the artist and a photo taken in a
frontal pose, under normal lighting condition, and with a
neutral expression. Some examples are shown in Figure
9. The data can be downloaded from our website1.

3.1 Face Sketch Synthesis

We do the face sketch synthesis experiments on the three
face databases. In the CUHK student database, 88 faces
are selected for training and the remaining 100 faces are
selected for testing. In the XM2VTS database, 100 faces
are selected for training and the remaining 195 faces for
testing. In the AR database, we use the leave-one-out
strategy, i.e. each time one face is selected for testing and
the remaining 122 faces are used for training. In Figure
10, we show some examples of sketch synthesis results.
We choose examples from each of the three databases.
Please see more results from our website. We use the
MAP estimate. Our multiscale Markov Random Fields
model has two layers. At the first layer, the local patch

1. http://mmlab.ie.cuhk.edu.hk/facesketch.html
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Fig. 9. Examples of face photos and sketches from (a) the CUHK student database, (b) the AR database, and (c) the
XM2VTS database.

size is 10× 10 . At the second layer, the local patch size
is 20 × 20 . The face region is in size of 200 × 250 . We
set σe = 0.5 , σc = 1 in Eq ( 3) and ( 4) throughout the
experiments. From Eq ( 2), ( 3) and ( 4), only the ratio
σe/σc actually matters. From our empirical study, good
performance can be achieved when σe/σc takes value
between 0.3 and 0.8.

In Figure 11, we compare the synthesized sketches
after different numbers of iterations of belief propaga-
tion. At the beginning (0 iteration), a sketch is synthe-
sized from the sketch patches best matching input photo
patches without considering smoothness constraint. The
result is noisy and has mosaic effect. Based on our statis-
tic, more than 80% of these estimated sketch patches
are subsequently corrected by Markov analysis. Belief
propagation quickly converges after five iterations and
the quality of the synthesized sketch is greatly improved
after belief propagation.

In Figure 12, we compare two different estimation
methods, MMSE and MAP. MMSE estimate has a blur-
ring effect. The results of MAP have sharper edges and
more clear contours and are more similar to the sketches
drawn by the artist.

In Figure 13, we compare the sketch synthesis perfor-
mance using the one scale MRF model and the multiscale
MRF model. Under the one scale MRF model, when
the patch size is small (10 × 10), some shadow texture

and face structures, such as the lower part of the face
contour and ear, are missing. These structures can be
learnt using patches of larger size. However, there is
distortion and mosaic effect when the patch size is large
(20 × 20). Using the multiscale MRF model, the result
has less distortion and mosaic effect compared with the
results learnt only at the coarse resolution layer, and
more face structures are synthesized compared with the
results leant only at the fine resolution layer. Based on
our empirical study there is no significant improvement
on the performance of sketch synthesis when increasing
the numbers of layers to three or more.

In Figure 14, we compare the sketch synthesis re-
sults using the multiscales MRF model and the global
eigentransformation approach proposed in [4]. Since
our synthesis is based on local patches, it works better
on synthesizing local textures than global transforma-
tion. Our results are sharper with less noise. Global
eigentransformation required that the face data has a
Guassian distribution in the high dimensional space and
a testing face photo can be well reconstructed by PCA
from the examples in the training set. However, since
human hair has a large variety of styles, when the hair
region is included, the distribution of face vectors cannot
be estimated as Gaussian and face photos cannot be well
reconstructed by PCA. In Figure 14, eigentransformation
has a much worse performance on synthesizing hair. The
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Fig. 10. Face sketch synthesis results. (a) photo; (b) sketch drawn by the artist; (c) synthesized sketch.

hair region also leads to errors on the synthesis of other
regions in the face. Our approach has no such constraint.
It synthesizes a variety of hair styles quite well.

In Figure 15, we compare the face sketch synthesis
results using our approach and the approach proposed
in [5]. [5] used the same database as us. We choose the
examples which were published in [5] for comparison.
Using our approach, the synthesized sketches are less
blurred and cleaner. Large face structures and shape
features in sketches are well captured.

Our sketch synthesis algorithm has a relatively high
computational cost because of patch matching. After

being speeded up using integral computation and 2D
fast Fourier transform as mentioned in Section 2.2, it
takes about three minutes to synthesize a sketch running
on a computer with 3GHz CPU. Notice that if multiple
CPUs are available, patch matching can be done in
parallel and thus sketches can be synthesized faster.

3.2 Face Photo Synthesis

Our approach can also synthesize a face photo given a
sketch drawn by an artist, by simply switching roles
of photos and sketches. In Figure 16, we show the
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Fig. 11. Synthesized sketches after different numbers of
iterations of belief propagation.

face photo synthesis results. The experiment settings and
parameters are the same as experiments in Section 3.1.

3.3 Face Sketch Recognition

At the face sketch recognition stage, there are two strate-
gies to reduce the modality difference between photos
and sketches: (a) all the face photos in the gallery are
first transformed to sketches using the sketch synthesis
algorithm, and a query sketch is matched with the
synthesized sketches; (b) transform a query sketch to a
photo and match the synthesized photo with real photos
in the gallery. We will evaluate both strategies in the
face sketch recognition experiments. After the photos
and sketches are transformed into the same modality, in
principle, most of the proposed face photo recognition
approaches can be applied to face sketch recognition in
a straightforward way. In this paper, we will evaluate
the performance of several appearance-based face recog-
nition approaches including PCA [25], Bayesianface
(Bayes) [26], Fisherface [27], null-space LDA [28], dual-
space LDA [29], and Random Sampling LDA (RS-LDA)
[30], [31].

The 606 photo-sketch pairs are divided into three
subsets. 153 photo-sketch pairs in subset I are used for
the training of photo/sketch synthesis. 153 photo-sketch
pairs in subset II are used for the training of subspace
classifiers. When using strategy (a), the photos in subset
II are first transformed to synthesized sketches using
subset I as the training set. Then the synthesized sketches
and the sketches drawn by the artist in subset II are
used to train subspace classifiers such as Fisherface and
random sampling LDA. Strategy (b) is similar, except
that sketches and photos switch roles. Three hundred
photo-sketch pairs in subset III are used for testing. The
division of the data set is the same as in [4].

In Table 1, we compare the rank one recognition
accuracy using different sketch/photo synthesis algo-
rithms and face recognition methods. We evaluate three
sketch/photo synthesis methods.

• Sketch synthesis using global eigentransform. As
described in [4], face photo texture and shape are
first separated, transformed to sketch texture and
shape, and finally combined for recognition.

• Sketch synthesis using the multiscale MRF model
(multiscale MRF SS) with strategy (a).

• Photo synthesis using the multiscale MRF model
(multiscale MRF SP) with strategy (b).

Sketch synthesis using the multiscale MRF model
(multiscale MRF SS) achieves better results than global
eigentransform. Photo synthesis using the multiscale
MRF model (multiscale MRF SP) achieves even better
results. These observations are consistent using differ-
ent face recognition methods. We evaluate six different
appearance-based face recognition methods. Random
Sampling LDA (RS-LDA) always has the best perfor-
mance over different sketch/photo synthesis methods.

In Table 2, we compare the cumulative match scores
of our methods with two conventional face recognition
methods, Eigenface [25] and Elastic Graph Matching
(EGM) [32], and a nonlinear face sketch recognition
approach proposed in [5]. Eigenface and EGM have
very poor recognition performance on our dataset, with
the first match accuracies of no more than 30%, which
is consistent with results shown in [3], [4]. Lui et al
[5] proposed a face sketch recognition approach which
synthesized sketches based on local patches and used
kernel based nonlinear LDA classifier for recognition.
It had the first match rate 86.7% and the tenth match
rate 99%. Our approaches significantly improve the first
match to 96.3% and the tenth match to 99.7%.

In this work, we assume that all faces are in a frontal
pose, with normal lighting and neutral expression, and
have no occlusions. If the input photo is taken under a
very different condition than the photos in our training
set, our sketch synthesis algorithm may not work well
with these significant variations. Solving this problem is
a direction of future study. In order to match a normal
sketch with photos with significant variations on poses,
lightings, expressions, and occlusions, it is better to first
transform the sketch to a pseudo photo. Since we can
choose the photos in training set as those taken under a
normal condition, there is no difficulty at this step. The
synthesized photo from a sketch looks like a photo taken
under a normal condition. Then at the step of matching
the pseudo photo with photos taken under different
conditions, the difficulties caused by these intrapersonal
variations have to be overcome. However, it becomes a
traditional photo-to-photo face matching problem with-
out special consideration on sketches. Many studies have
been done to solve these problems for photo-to-photo
face matching.

To illustrate this, we evaluate the performance of face
sketch recognition on the AR database which includes



IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

Fig. 12. Compare sketch synthesis results using MMSE
estimate and MAP estimate. (a) photo; (b) sketch drawn
by the artist; (c) synthesized sketch using MMSE esti-
mate; (d) synthesized sketch using MAP estimate.

face photos taken under different lighting conditions,
with different expressions and occlusions. Each face has
one photo taken under a normal condition, two photos
taken with different occlusions (sun glasses and scarf),
three photos taken under different lighting conditions,
and three photos taken with different expressions. See
more details in [23]. The 123 faces are divided into two
subsets with 78 faces in the training set and 45 faces
in the testing set. Radom sampling LDA classifiers are
trained to supress the effect of these intrapersonal varia-
tions. For a face sketch in the testing set, its pseudo photo
is synthesized using the sketches and photos taken under
a normal condition in the training set. With the random
sampling LDA classifiers learnt from the training set, the
pseudo photo synthesized from a sketch is used as a
query image to match photos with different variations of
lightings, expressions, and occlusions in the testing set.
The recognition accuracies under different conditions are
reported in Table 3. For comparison, instead of using a
sketch, a photo taken under a normal condition is also
used as query with the same classifiers. Its recognition
accuracies are also reported in Table 3. Compared with
the recognition accuracies reported in Table 2, the vari-
ations of lightings, expressions, and occlusions make the
recognition task more difficult. Random sampling LDA
significantly improves the recognition performance com-
pared with directly matching images using correlation.
However, the difference between using a pseudo photo
synthesized from a sketch and a real photo taken under
a normal condition as query is not very significant. This
means that in order to solve the problems of variations
cause by lighting, expressions, and occlusions in face
sketch recognition, we can use the techniques which
have been developed to solve these problems in photo-
to-photo matching.

4 CONCLUSION

In this paper, we proposed a novel face photo-sketch
synthesis and recognition system. Given a face photo (or
a face sketch), its sketch (or photo) can be synthesized
using a multiscale Markov Random Fields model, which
learns the face structure across different scales. After the
photos and the sketches have been transformed to the

same modality, various face recognition methods have
been evaluated for the face sketch recognition task. Our
approach is tested on a face sketch database including
606 faces. It outperforms existing face sketch synthesis
and recognition approaches.
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Fig. 14. Compare the sketch synthesis results of global eigentransformation and the multiscale MRF model when the
hair region is included. (a) photos; (b) sketches synthesized by global eigentransformation; (c) sketches synthesized
by the multiscale MRF model; (d) sketches drawn by the artist.
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Fig. 15. Compare the sketch synthesis results using a nonlinear approach proposed in [5] and our multiscale MRF
model. (a) photos; (b) sketches synthesized by the nonlinear approach proposed in [5]; (c) sketches synthesized by
our multiscale MRF model; (d) sketches drawn by the artist.

TABLE 2
Cumulative match scores using different face sketch recognition methods (%).

1 2 3 4 5 6 7 8 9 10
Eigenface 6.3 8.0 9.0 9.3 11.3 13.3 14.0 14.0 14.3 16.0

EGM 25.3 32.3 40.0 43.0 46.7 48.7 53.0 54.3 56.3 57.7
Nonlinear face sketch recognition [5] 87.7 92.0 95.0 97.3 97.7 98.3 98.7 99.0 99.0 99.0

Eigentransform RS−LDA 90.0 94.0 96.7 97.3 97.7 97.7 98.3 98.3 99.0 99.0
Multiscale MRF SS + RSLDA 93.3 94.6 97.3 98.3 98.3 98.3 98.3 99.0 99.0 99.0
Multiscale MRF PS + RSLDA 96.3 97.7 98.0 98.3 98.7 98.7 99.3 99.3 99.7 99.7
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Fig. 16. sketch synthesis results. (a) sketch drawn by the artist; (b) photo; (c) synthesized photo.

TABLE 3
Face recognition accuracies with variations of lighting, expressions, and occlusions (%). The recognition accuracies
using sketches and photos taken under normal conditions as queries are compared. See more details in the text.

Lighting Expression Occlusion
Direct matching by Euclidean distance (Sketch query) 48.9 64.4 37.8
Direct matching by Euclidean distance (Photo query) 51.1 66.7 42.2

Random Sampling LDA (Sketch query) 77.8 75.6 62.2
Random Sampling LDA (Photo query) 82.2 78.9 67.8


