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Abstract

In this paper, we propose a novel probabilistic view of
the spectral clustering algorithm. In our framework, the
spectral clustering algorithm can be viewed as assigning
class labels to samples to minimize the Bayes classification
error rate by using a kernel density estimator (KDE). From
this perspective, we propose to construct directed graphs
using variable bandwidth KDEs. Such a variable band-
width KDE based directed graph has the advantage that
it encodes the local density information of the data in the
graph edge weights. In order to cluster vertices of the di-
rected graph, we develop a directed graph partitioning al-
gorithm which optimizes a random walk isoperimetric ratio.
The partitioning result can be obtained efficiently by solving
a system of linear equations. We have applied our algorithm
to several benchmark data sets and obtained promising re-
sults.

1. Introduction

Due to the success of spectral clustering methods [13,
16, 19, 20, 11], graph based clustering algorithms are of
great interests recently. These methods first compute the
pairwise similarities of the data to construct an undirected
graph. Then the clustering result of the data is obtained by
partitioning the vertices of the graph into disjoint sets. One
advantage of these methods is that they do not make strong
assumptions about the distribution of the data. Therefore,
they can potentially deal with data of irregular shapes.

Despite the success of the graph based clustering meth-
ods, there are still some unsolved issues, such as how to
compute edge weights to reflect the underlying data distri-
bution and how to select the free parameters. It has been no-
ticed that the fixed bandwidth Gaussian kernel based spec-
tral clustering algorithms cannot achieve satisfactory results
on many data sets [15]. As pointed by the authors, these
algorithms cannot deal with multi-scale data sets well even
with carefully tuned parameters. How to construct the graph
remains an art which is still based on heuristics [21].
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In this paper, we first present a novel probabilistic view
of the spectral clustering algorithm. We show that the Gaus-
sian kernel based spectral clustering algorithm can be seen
as assigning data samples to disjoint classes to minimize the
kernel density estimator (KDE) based Bayes classification
error rate. From this viewpoint, we can see that in order to
obtain a good clustering result, one should construct a graph
reflecting the underlying density of the data. Therefore, we
propose to construct a graph by using a variable bandwidth
KDE which naturally results in a directed graph. The di-
graph effectively explores the local density of the data.

A directed graph partitioning algorithm called random
walk isoperimetric cut (RWICut) is proposed to cut a di-
rected graph into two disjoint parts by minimizing a ran-
dom walk isoperimetric ratio. This random walk isoperi-
metric constant generalizes the isoperimetric constant of an
undirected graph to the state space of the Markov chain. By
adopting the random walk view, we can handle both the di-
rected and undirected graph partitioning problems in a uni-
fied framework. Finding the exact solution of this combi-
natorial problem is NP-hard. However, an approximate so-
lution can be efficiently achieved by solving a sparse linear
system of equations. Given a data set, the clustering result is
then obtained by iteratively cutting the constructed digraph
into disconnected subgraphs.

The rest of the paper is organized as follows. In Section
2, we briefly review the spectral clustering algorithm (SC)
and KDE. Then we show the connections between KDE, SC
and the Bayes classification error rate. Section 3 describes
the framework of the proposed KDE digraph based random
walk isoperimetric cut approach. Section 4 presents our ex-
perimental results. Section 5 concludes this paper.

2. Analysis of Spectral Clustering

In this section, we revisit the isoperimetric constant (for
a manifold and an undirected graph), the spectral clustering
algorithm, and the kernel density estimator. Then we de-
velop a novel probabilistic view of the spectral clustering
algorithm from the nonparametric density estimation per-
spective.
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2.1. The isoperimetric constant on manifolds

The isoperimetric constant is originally defined by
Cheeger [2] in Riemannian geometry. Let M be a d-
dimensional closed Riemannian manifold, Vol(S) be the
volume of a d-dimensional submanifold S, and Vol(0.5)
be the volume of the boundary 0.5, which is a (d — 1)-
dimensional submanifold. The Cheeger isoperimetric con-
stant of M is defined as

. . Vol(9S)

h(M) = 1I§f Vol(9) (1)
Intuitively, the Cheeger isoperimetric constant defines the
small bottleneck boundary of the manifold which separates
the manifold into two parts with large volumes.

In the application of data clustering, we assume that the
data are sampled from an underlying distribution with the
probability measure P(x) from M. Then we have

Vol(S):/SdP(a?):/Sp(x)daz, (2)

where P(z) is a probability measure on M satisfying
Sy dP(z) = 1, and p(z) is the corresponding probability
density function.

2.2. Isoperimetric problem on undirected graphs

In the context of an undirected graph G = (V, E), let
S be a subset of the vertex set V. The boundary of S is
defined as an edge set 9S = {e;;|i € S,j € S}. Then the
isoperimetric constant h(G) is [14]

. Vol(9S)
hG) = min == Vol(S) 3)

where  Vol(9S) = Y g cgwiy, Vol(S) =
Yiesjev Wij, Vol(S) < Vol(V)/2, and w;; is the
weight of edge e;; computed from the sample pair x; and
x; by wij = exp(—pBz; — z;?).

The isoperimetric constant of an undirected graph satis-
fies h(G) € [0,1], and is strictly positive iff the graph is
connected. In [8, 9], the authors propose an algorithm that
minimizes the graph isoperimetric constant to solve an im-
age segmentation problem.

The spectral clustering algorithm proposed in [19, 11] is
a graph bi-partitioning algorithm which minimizes the nor-
malized cut (NCut) criterion

Vol(95S)
Vol(S)

Vol(95S)

NCut(S) = Vol(3)

“4)

As shown in [11, 5], the algorithm also minimizes the upper
bound of the graph isoperimetric constant.

2.3. Kernel density estimators

In statistics, a KDE (also called Parzen window) is a non-
parametric way of estimating the probability density func-
tion of a random variable. It is given by

1 & —
= Y K(S), ®)
Jj=1

where K is a kernel function, and A is the bandwidth
(smoothing parameter) depending only on the sample size.
To assure the convergence of the estimator f,(x), one im-
poses the conditions: h — 0 and nh — oo when n — oc.
A widely used kernel is the Gaussian kernel

2
ep(—12_I0) e

T -y
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If the Gaussian kernel is used, the KDE becomes

[l — ;>

p(x) = nhmzem 52 )

)

2.4. A Bayes error view of spectral clustering

Here we analyze the spectral clustering algorithm from a
classification perspective, which gives the algorithm a prob-
abilistic interpretation.

Given a set of vectors {z;}!_; sampled from an under-
lying manifold M, let V' be the index set of the vectors.
Also let S; and S, be the index sets of two disjoint sub-
sets of the samples with class labels c; and ¢y which satisfy
S1JS2 =V, and T} and Ty be the disjoint submanifolds
enclosing the samples of .S1 and So, respectively, which sat-
ISfy Tl UT2 = M.

The density function for the component ¢;, [ = 1,2, is
estimated by the KDE as

[z — ;2
plaler) = ‘SW%Z 7> ®)

JES:

Then the Bayes error [7] for the two-class classification
problem is given by

P(err) Z/T p($|02)p(02)d$+/ p(z|c1)p(er)dz. (9)

T>

By assuming the equal prior p(c;) = p(c2) = 1/2 and
replacing the integrals with empirical summations over the
samples, the Bayes error can be approximated by

Yies, P(@ilea) > ics, P(Tiler)
> icy p(wile2) " > iz p(wiler) > '

P(err) ~ % (
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Replacing the conditional density with the KDE in (8)

a2
and setting w;; = exp(—%), we have

n Ziesl j€Sy Wij
D1 Xjes, Wi

L[ Xies, jes, Wij
P ~ = 1,7 2
(err) =5 <Z?—1 > jes, Wij
x NCut(S).
(11)

From (11) we can see that the NCut spectral clustering algo-
rithm can be viewed as finding the optimal partition of the
data that minimizes the approximated Bayes classification
error rate.

It is worth noting that the above analysis does not de-
pend on the choice of the KDE. However, the analysis does
suggest that in order to obtain a good clustering result, one
should construct the underlying graph to reflect the data
distribution. Therefore, in the next section, we propose to
construct the graph using a variable bandwidth KDE, which
naturally results in a directed graph.

3. Random Walk Isoperimetric Cut

In this section, we first introduce variable bandwidth
KDE based directed graph construction methods. Then we
propose the random walk isoperimetric cut algorithm to par-
tition the vertices of the graph into disjoint subsets. We also
analyze our algorithm from different viewpoints.

3.1. Local scaling directed graph construction

The first step of spectral graph clustering methods is to
construct a graph from a vector data set. The edge weights
are usually computed by the Gaussian kernel exp(—||z; —
z;]|?/(202))".  However, as indicated in [15], for cer-
tain data sets, say, multi-scale data, the Gaussian kernel
with a single uniform scaling parameter o is not informa-
tive enough for modeling the pairwise relations. The con-
structed graph is not able to capture the underlying data dis-
tribution. As a result, the intrinsic clusters of the data may
not be obtained by partitioning the graph.

Instead of selecting a single scaling parameter, several
papers suggest to compute the edge weights by incorpo-
rating local information in various ways. The authors of
[3] propose to estimate local Gaussian distributions to con-
struct a directed probabilistic graph. The authors of [22]
construct the graph using coding length. However, these
methods are very time consuming which limits their practi-
cal use. The authors of [21] suggest to replace the uniform
o? of the Gaussian kernel with a location dependent scale
o(z;)o(x;), but they do not provide a principal justification
why the edges should be constructed this way.

'Without ambiguity, in this section, 2 or z; is used to denote a sample
vector.

Figure 1. The local density affects the relationships between sam-
ple pairs.

Consider the data shown in Figure 1. The Euclidean dis-
tances d(a,b) and d(a, c) are equal. Then the similarities
computed by the fixed bandwidth Gaussian kernel are the
same. However with the context data points around sample
a, apparently a is more likely to belong to the same cluster
as b than as c. Here the local density of the data distribu-
tion is important for modeling the relationships between the
sample pairs. This intuitive example motivates us to use a
location dependent method to construct the graph.

In this paper, we incorporate the nonparametric density
estimation view to use a variable bandwidth KDE to con-
struct the graph from a data set. The variable bandwidth
KDE is given by

1 T — T,

T) = — K(=—), 12

fol@) ;nhj () (12)
where the bandwidth h; depends on the context information
of x;. It is well known that with a fixed bandwidth, the
kernel estimate tends to oversmooth at the main part and
undersmooth at the tail part of the distribution. This is the
basic motivation for considering a variable bandwidth KDE,
which allows the bandwidth to vary from one observation to
another. It gives the flexibility of using a smaller bandwidth
(hence reduces the bias of the estimate) in regions where
there are many observations, and a larger bandwidth (hence
reduces the variance of the estimate) in regions where there
are relatively few observations.

In this paper, the local bandwidth A is set to be the dis-
tance between x; and its kth nearest neighbor. The param-
eter k is selected by cross validation. The k& with which the
variable bandwidth KDE (12) has the largest leave-one-out
likelihood on the given data set is used in our algorithm.
According to the analysis in Section 2.4, by using the vari-
able bandwidth KDE, the edge weight of the constructed
graph is w;; = - K (*5-"2). We use the Gaussian kernel
for the KDE in this paper. Therefore the edge weight of the
constructed graph between x; and x; is

_7) (13)

Notice that, in general, w;; is not necessarily equal to
wj;. Therefore, the constructed graph is a directed graph.
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3.2. Random walk on a directed graph

After having the directed graph, in order to obtain a clus-
tering result, we partition the graph into disjoint subgraphs.
Random walk is a powerful tool for dealing with graph
structured data. In [13], the authors utilize random walk
to analyze the normalized cut algorithm. In [4], the authors
propose to use random walk to embed directed graphs into
vector spaces. In this paper, we propose a random walk
based graph cut algorithm which can deal with undirected
and directed graphs in a unified way.

A directed graph G = (V, E) consists of a finite set of
vertices v € V together with a subset of edges e € E C
V' x V. An edge ¢;; of the directed graph is an ordered pair
from vertex 7 to vertex j associated with the edge weight
w;j. The degree of vertex i is d; = Zj Wyj.

For a given weighted directed graph, there is a natural
random walk on the graph with the one step transition prob-
ability from i to its adjacent j defined as p;; = w;;/d;.
For all sample pairs, we have the stochastic matrix P =
Dijlijs 4,5 = 1,---,|V| satisfying P1 = 1, where 1 is a
vector with all entries being 1. The unique stationary dis-
tribution 7 = [m;];, ¢ = 1,---,|V], of the Markov chain
is guaranteed if P is irreducible or equivalently the graph
associated with P is strongly connected and aperiodic [1].
The stationary distribution vector, also called Pagerank vec-
tor in information retrieval literatures, satisfies 77 P = 71,
Then it can be obtained by solving the linear system subject
to the normalization 771 = 1.

The Perron-Frobenius Theorem [10] states that there ex-
ists an unique left eigenvector ¢ with all entries positive
such that TP = pop” where p is the spectral radius of
P . When P is irreducible, the spectral radius of P is 1. In
this case, ¢ simply equals the stationary distribution 7 up to
a constant factor. Therefore, the stationary distribution can
also be computed by an eigen-decomposition algorithm or
a power algorithm [12]. In the following parts of this sec-
tion, we assume that P is irreducible. How to enforce the
irreducibility will be discussed in Section 3.6.

3.3. Random walk isoperimetric constant

In this paper, we generalize the isoperimetric problem
into the scenario of random walk process. As a result, we
can treat the isoperimetric problem of undirected and di-
rected graphs in a unified way. The isoperimetric problem
of an undirected graph can be considered as a special case
of the random walk isoperimetric problem.

For a finite state irreducible Markov chain on a graph
with the transition probability matrix P, define the vol-
ume of the boundary of the vertex (state) set S as the
sum of the weighted transition probabilities: Vol(0S) =
> ies.jes MiPij- Vol(9S) is also the probability with which
a random walker jumps from S to its complement set S. It

can be shown that the volume of the boundary is symmetric.
Theorem 1. Vol(dS) = Vol(95S).

Proof. It is easy to see that »..  mp;; = @ =
> i, mipji- Then we have

VOI 5‘5 Z TiPij = Z Z TiPij — Z Z TiPij
i€S,j€S jes =1 jES €S
Zzzﬂjpg‘i—zzﬂjpﬁz Z TjPji
jeSs i=1 jeS ieS jeSs,iesS
= Vol(959),
(14)
which completes the proof. O

Next, define the volume of S as Vol(S) = > ., ¢7
Vol(S) is the probability with which the random walker oc-
cupies a vertex in S. Then the isoperimetric constant of the
random walk is defined as

Vol(9S)

= min —Zies’j €5 TiPij
S Vol(S) s '

ies i
The constant h(G) is the minimal probability of the ran-
dom walker jumping from the vertex set S to its comple-
ment set S in one step if the current state is in 5, i.e.,
ming Pr(S — S|S). It represents the probability bottle-
neck on the state space of the random walk process.

Define an indicator vector y € {0,1}", where

(1 iesS
yi_{o i€s. (16)

W(G) = inf (15)

Then, from Theorem 2 the volume of the boundary becomes
Vol(9S) = 2y TI(I — P)y, (17)

and the volume of the vertex set .S becomes
Vol(S) = y''r =TT, (18)

where II is a diagonal matrix of the elements of the station-
ary distribution vector, i.e., IT = diag(r).

Theorem 2. Vol(9S) = 2yTTI(I — P)y.

Proof. By the definition of P and 7, we have >, p;; = 1
and m; = Y. m;p;;. Then we have

Z szzg
= Z'ﬂzyz szg + Z Y; Z TiPij — 2 Z TiPijYilYj
= Zﬂ-zyz + Z ijg -2 Z TiPijYilY;

= 2(yTHy — yTHPy) = QyTH(I — P)y,

Vol(9S) =

which completes the proof. O
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Finally the isoperimetric constant of the random walk
can be rewritten as
.. Vol(9S) . 2yTI(I — P)y
h(G) Hng(S) fmym g (19)
This definition of the isoperimetric constant in terms of the
random walk is consistent with the definition (3) for an
undirected graph. Given an undirected graph with the ad-
jacent matrix W, we have the natural random walk with the
transition probability P = D~'W, where D is a diagonal
matrix with each entry on the diagonal being the degree of
each vertex, i.e., D = diag(W1). This Markov chain is
reversible. The stationary probability of the random walk
is proportional to the degree of each vertex. Substituting
P = D7 'W and Il = D/trace(D) to (19), we recover the
isoperimetric problem described in Section 2.2.

3.4. Random walk isoperimetric cut

Our goal is to design a graph partitioning algorithm to
minimize the isoperimetric constant. In fact, directly min-
imizing the isoperimetric constant is infeasible. The exact
solution to this discrete optimization problem is NP-hard
[6, 9].

In order to solve the partitioning problem, we relax the
binary definition of y so that it can take nonnegative real
values. Then the problem is transformed to

min y'TI(I — P)y
Y (20)
sit. yTIL = 1.

By introducing a Lagrange multiplier A, we turn (20) into a
constraint free optimization problem

Qy) = y"II(I — P)y — \y"II1. 1)

Taking the derivative of Q(y) w.r.t. y, and setting it equal to
0, we have
oTI(] — P)y = IT1. (22)

Therefore, the problem of finding the solution y that mini-
mizes (Q(y) reduces to solving a linear system

(I -Py=1, (23)

where the scalar parts are dropped since only relative values
are useful.

The matrix L = I — P is singular since L1 = 0. There-
fore, the linear system (23) is ill posed. To achieve an
unique solution of (23), we need extra constraints.

As we assume the transition matrix P is irreducible, the
directed graph associated with P is strongly connected. We
can designate an arbitrary vertex g to be included in S, i.e.,
yg = 0 (g is called the ground vertex in the rest of this
paper), which is equivalent to removing the gth row and

column of L (the remaining matrix is denoted by L), and
the gth row of y (the remaining vector is denoted by ) in
(23). Then the linear system

Loyo =1 (24)

is well posed, which can be efficiently solved by the conju-
gate gradient method. The solution yg is a nonnegative real-
valued vector. The bi-partitioning result can be obtained by
thresholding yq. Vertices with a y; below the threshold are
placed in S. We use y to collectively refer to yo and the
designated value of y, = 0. Several thresholding strategy
can be applied. For example, the jump cut which chooses a
threshold that separates vertices on either side of the largest
jump in a sorted y, and the criterion cut which chooses the
threshold that gives the lowest value of the isoperimetric ra-
tio.

To achieve a multi-class clustering result, the algorithm
is recursively applied to the subgraphs with the small-
est isoperimetric constants, until the number of subgraphs
reaches a predefined value.

There are several ways to choose the vertex g, such as
randomly picking a vertex. In this paper, we choose the ver-
tex with the maximal stationary probability. This strategy is
based on the heuristic that a vertex with a high stationary
probability is the one with high probability that a random
walker jumps to it. Such a vertex is likely in the interior
of a cluster but not on the boundary. Empirically, we have
found that, as long as g is not along the ideal boundary, a
reasonable partitioning with a small isoperimetric ratio can
be produced.

3.5. A random walk hitting time view

The expected hitting time m(j|) is defined as the ex-
pected number of steps that a random walker, starting from
the vertex (state) ¢ # j, will take to reach the vertex (state)
7 for the first time [1]. It can be easily verified that the
expected hitting time satisfies the following recurrence re-
lations

m(ili) = 0,
{”MW=1+ZLwMWM%i#j (25)

Let mg be the vector with each entry being the expected hit-
ting time m(g|i) from any vertex ¢ # g, to the ground vertex
g and Py be the matrix obtained from the transition matrix
P by removing the gth row and column. Then we can write
(25) in a matrix form as mg = 1 + FPymg, which is equiva-
lent to (24). We can see that the approximate solution of the
isoperimetric cut problem given by the linear system (24)
is the expected hitting times m(g|¢) from vertices i € V to
the ground vertex g. From this expected hitting time view-
point, we have the following insights into the isoperimetric
cut algorithm.
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First, we can easily see that if the ground vertex g is se-
lected such that for any other vertex i # g, there exists a
path from i to g, then the linear system (24) is well posed,
even if the graph is not strongly connected.

Second, we can examine the connectivity properties of
the partitions obtained by thresholding 3y obtained from
solving (24). We will prove that the partition containing the
ground vertex (i.e., the set S) must be connected, regardless
of how a threshold (i.e., cut) is chosen. The strategy for es-
tablishing this is that every vertex has a path to the ground
vertex with a monotonically decreasing expected hitting
time. Note that the partition not containing the ground ver-
tex may or may not be connected. This result extends the
result for undirected graphs in [8] to general state spaces of
Markov random walk with a weaker assumption.

Lemma 3. For every vertex i, there exists a path
(i,v%,v2,--- | g) to the ground vertex g, such that y; >
Ypl = Yp2 > -+ > 0, when Loy = 1.

Proof. By the definition of the expected hitting time, each
non-grounded vertex has a value

yi =1+ Z PijY;- (26)
ei; €EE

For a vertex set S C V/, let the boundary vertex set of .S be
Sy C V, such that S, = {jle;; € E,Ji € S,j ¢ S}. Then
for any vertex ¢, we can explicitly construct a path to the
ground vertex g with nonincreasing expected hitting time
by the following procedure:

1) Start with S = {i}.

2) Repeat adding j € Sy to .S such that y; < minyy, Vk €
S by (26), until g € Sp.

Step 2) is feasible, because for every vertex k € S, there
exists a path from k to g. O

Proposition 4. [fthe set of vertices V is strongly connected,
for any ¢, the subgraph with vertex set M C 'V defined
by M = {i € V|y; < c} is connected when yq satisfies
Loyo = 1.

Proof. Since V is strongly connected, for any g € V, Vi €
V,i # g, there exists a path from ¢ to g. Then from Lemma
3,all j € M are connected to g. Therefore the subgraph M
is connected. O

The relationship between the expected hitting time and
the isoperimetric problem also explains why the expected
hitting time, as a proximity measure, performs very well in
the ranking and retrieval tasks [18]. The small expected hit-
ting time between the query and a sample in the database
implies that they are likely of the same class in the cluster-
ing sense.

3.6. Forcing irreducibility

One problem that might occur in practice is that the as-
sumption of irreducibility of P is not satisfied. In such a
case, the stationary distribution is not guaranteed.

However, we can always construct an auxiliary graph G,
by adding a dummy vertex to the original graph G which
has an out-link to every other vertex and an in-link from
every other vertex. G, is apparently strongly connected,
making the Markov chain irreducible. The transition matrix
corresponding to the auxiliary graph is

[ 1—=a)D™'W  ae
n=(UT2 ) @

where a € (0, 1) is a small perturbation factor (say, o =
10~5). The dummy vertex is a teleport state of the chain. At
any other vertex, a random walker has a small probability a
of transitioning to the teleport state, from which it teleports
to one of the n original vertices with the probability 1/n.

When « is small, the auxiliary graph G, with the tran-
sition matrix P, has approximately the same isoperimet-
ric constant as the original graph GG. Assume that the true
stationary distribution and the evaluated 7 on the auxiliary
graph GG, are approximately the same. From (15), if the
vertex set S is fixed, the absolute difference of the isoperi-
metric ratios between G and G, is

IW(G) = h(Ga)| ~ a1 — h(G)). (28)

Therefore, if « is small, adding the teleport vertex dose not
change the cluster structure of the graph.

4. Experiments

In this section, we conduct experiments on a number
of benchmark data sets to evaluate the proposed random
walk isoperimetric cut (RWICut). Five related algorithms
are compared to show the effectiveness of our algorithm,
including Kmeans, iterative normalized cut (NCut) [19],
NIW [16], self-tuning graph construction based normal-
ized cut (StNCut) [21], and self-tuning graph construction
based NJW (StNJW). The parameters in these algorithms
are all tuned to ensure the best results in terms of the nor-
malized mutual information evaluation. Furthermore, we
analyze the computational efficiency of our algorithm com-
pared with eigen-decomposition based approaches such as
NCut, where the execution times of the algorithms with dif-
ferent numbers of samples and different numbers of neigh-
borhoods are examined.

4.1. Evaluation measures

To evaluate the performances of the clustering algo-
rithms, we compute the following two performance mea-
sures from the clustering results: normalized mutual infor-
mation (NMI) and minimal clustering error (Error). NMI is

2114
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Figure 2. Example images in the Scene data set [17].

Table 1. Descriptions of the image data sets used in the experi-
ments.

Dataset | clusters dimensions objects
Scene 8 512 2688
UMist-all 20 10304 575
UMist-10 10 10304 265
UMist-5 5 91 140
USPS-all 10 256 5000
USPS-5 5 256 2500
defined as
NMI(z, ) = M=y (29)
H(x)H (y)

where I(z,y) is the mutual information between x and y,
and H(x) and H(y) are the entropies of  and y respec-
tively. Note that 0 < NMI(z,y) < 1 and NMI(z,y) = 1
when x = y. The larger the value of NMI, the better a
clustering result.

The clustering error is defined as the minimal classifica-
tion error among all possible permutation mappings defined

as:
n

1
Error = min(1 — — 0(yi, i), 30
rror = min( . ; (yi,c)) (30)
where y; and ¢; are the true class label and the obtained clus-
tering result of x;, respectively, d(z, y) is the delta function
that equals 1 if z = y and 0 otherwise.

4.2. Experimental results on image data sets

To validate our algorithm on real image data set and
demonstrate the superiority of the proposed algorithm com-
pared with the state-of-the-art related ones, we carry out
experiments on three data sets, UMist, USPS, and a scene
category data set (Scene) [17]. UMist consists of 575 multi-
view face images of 20 different persons with varied poses
from profiles to frontal views. USPS consists of 5000 im-
ages of 10 handwritten digits (0-9). To further exploit the
databases, we randomly select 10 and 5 classes from UMist
to construct two data sets UMist-10 and UMist-5, and use
5 digital numbers (2, 3, 5, 6, 8) from USPS as another data
set USPS-5 for the experiments. For UMist-5, the dimen-
sions of the images are reduced by PCA while maintaining

Table 2. NMI comparison results on the ten real data sets. The best
values are bold.

Dataset Kmeans | NCut NIW | StNCut | SINJW | RWICut
Iris 0.7582 | 0.7571 | 0.7661 | 0.6524 | 0.7857 | 0.8449
Wine 0.4288 | 0.4624 | 0.4351 | 0.3665 | 0.4199 | 0.4496
WDBC 0.4672 | 0.5754 | 0.5358 | 0.4679 | 0.4845 | 0.5868
Satimage 0.6138 | 0.6749 | 0.6373 | 0.6336 | 0.6307 | 0.6932
Segment 0.6124 | 0.6465 | 0.6629 | 0.5852 | 0.6801 | 0.7440
UMist-all || 0.6726 | 0.6157 | 0.8009 | 0.5364 | 0.6512 | 0.8785
UMist-10 || 0.6161 | 0.5769 | 0.8214 | 0.4918 | 0.5850 | 0.8634
UMist-5 0.7065 | 0.8903 | 0.8655 | 0.6384 | 0.6371 1
USPS-all 0.4038 | 0.4517 | 0.5180 | 0.1894 | 0.3606 | 0.6880
USPS-5 0.4469 | 0.5789 | 0.4247 | 0.2536 | 0.3197 | 0.6910
Scene 0.3951 | 0.4100 | 0.4471 | 0.3605 | 0.4204 | 0.4695

Table 3. Error comparison results on the ten real data sets. The
best values are bold.

Dataset Kmeans | NCut NIJW | StNCut | StNJW | RWICut
Iris 0.1067 | 0.0933 | 0.1000 | 0.4867 | 0.0933 | 0.0533
Wine 0.2978 | 0.2697 | 0.2921 | 0.2921 | 0.2865 | 0.2472
WDBC 0.1459 | 0.0879 | 0.109 | 0.1388 | 0.1248 | 0.0796
Satimage || 0.3310 | 0.2544 | 0.2457 | 0.2810 | 0.2737 | 0.2197
Segment 0.3342 | 0.4004 | 0.2740 | 0.5165 | 0.3407 | 0.2922
UMist-all || 0.5339 | 0.5791 | 0.3948 | 0.6348 | 0.5739 | 0.2661
UMist-10 || 0.5509 | 0.5208 | 0.3057 | 0.5849 | 0.5547 | 0.2604
UMist-5 0.2214 | 0.0857 | 0.1214 | 0.3786 | 0.3071 0
USPS-all 0.6008 | 0.6404 | 0.4882 | 0.8396 | 0.6388 | 0.3398
USPS-5 0.3468 | 0.4140 | 0.4256 | 0.6224 | 0.4572 | 0.2232
Scene 0.5056 | 0.4835 | 0.4014 | 0.5443 | 0.4725 | 0.3857

99% of the total energy. The Scene data set was collected
by Oliva and Torralba [17], containing 8 categories of natu-
ral scenes. We use the feature called Spatial Envelope [17]
to represent each scene image, although other choices can
be used. The feature is a 512-dimensional vector, capturing
the dominant spatial structure of the scene. The description
of the data sets used in our experiments are summarized in
Table 1.

The clustering results by the six algorithms, Kmeans,
NCut, NJW, StNCut, StNJW, and RWICut, are shown in
Table 2 and Table 3, from which we can see that RWICut
performs best in all the data consistently.

4.3. Experimental results on UCI data sets

Five data sets (Iris, Wine, WDBC, Satimage, and Seg-
ment) from UCI Machine Learning Repository are used in
this experiment, which are widely used to evaluate cluster-
ing algorithms. The five data sets origin from the problems
in different domains. More details of them are summarized
in Table 4.

The comparison results are also listed in Table 2 and Ta-
ble 3. Among all the 22 comparisons, the RWICut algo-
rithm obtains the best results in 20 cases, and the second
best results in another 2 cases. These comparisons demon-
strate that RWICut can achieve excellent performances con-
sistently on real world applications with various numbers of
clusters, samples, and dimensionalities.
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Table 4. Descriptions of the UCI data sets used in the experiments.

Dataset | clusters dimensions objects
Iris 3 4 150
Wine 3 13 178
WDBC 2 30 569
Satimage 6 36 6435
Segment 7 19 2310
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Figure 3. Running time comparisons between RWICut and NCut.

4.4. Computational efficiency analysis

In addition to the excellent performance of our algo-
rithm in accuracy, its computational efficiency is also an
advantage over the related ones except Kmeans. Figure 3
shows the running times of RWICut and NCut, with respect
to different numbers of samples and neighborhoods. NCut
is a representative approach for eigen-decomposition based
algorithms, whose computational complexity is similar to
NJW, StNCut, and StNJW. From these results, we can see
that our algorithm is much faster than the other four algo-
rithms, with much smaller time increasing than that with
NCut as the numbers of samples and neighborhoods grow.
The algorithms are implemented in Matlab, running on a
2.8 GHz Pentium IV PC with 4GB RAM.

5. Conclusions

In this paper, we propose a kernel density estimator
based directed graph clustering algorithm. A variable band-
width kernel density estimator method is used to construct
the directed graph. This method effectively utilizes the local
distribution information of the data. An efficient directed
graph partitioning algorithm is also developed which opti-
mizes the random walk isoperimetric ratio by solving a lin-
ear system. Experimental results show that the proposed
method is superior to several popular methods on many
benchmark data sets.

Viewing spectral clustering from the density estimation
prospective opens a door to solving the graph construction
problem. Many nonparametric techniques can be utilized to
boost the performance of spectral clustering algorithms. In
our future work, we will explore other nonparametric den-
sity estimation models such as Dirichlet process. We will

also try to derive a multiclass formulation and its algorithm
for the random walk isopermetric cut.
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