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Abstract—Image segmentation plays an important role in com-
puter vision and image analysis. In this paper, image segmentation
is formulated as a labeling problem under a probability maximiza-
tion framework. To estimate the label configuration, an iterative
optimization scheme is proposed to alternately carry out the max-
imum a posteriori (MAP) estimation and the maximum likelihood
(ML) estimation. The MAP estimation problem is modeled with
Markov random fields (MRFs) and a graph cut algorithm is used
to find the solution to the MAP estimation. The ML estimation is
achieved by computing the means of region features in a Gaussian
model. Our algorithm can automatically segment an image into re-
gions with relevant textures or colors without the need to know the
number of regions in advance. Its results match image edges very
well and are consistent with human perception. Comparing to six
state-of-the-art algorithms, extensive experiments have shown that
our algorithm performs the best.

Index Terms—Graph cuts, image segmentation, Markov random
fields, maximum a posteriori, maximum likelihood.

1. INTRODUCTION

HE problem of image segmentation and visual grouping

has received extensive attention since the early years
of computer vision research. It has been known that visual
grouping plays an important role in human visual perception.
Many computer vision problems, such as stereo vision, motion
estimation, image retrieval, and object recognition, can be
solved better with reliable results of image segmentation. For
example, results of stereo vision based upon image segmenta-
tion are more stable than pixel-based results [1]. Although the
problem of image segmentation has been studied for more than
three decades, great challenges still remain in this research.
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A. Related Work

Available image segmentation algorithms can be classified
into two groups: contour-based approaches and region-based
approaches. Contour-based approaches try to find the bound-
aries of objects in an image, while region-based approaches at-
tempt to split an image into connected regions.

The main idea of contour-based approaches is to start with
some initial boundary shape represented in the form of a spline
curve, and iteratively modify it by shrink and expansion opera-
tions to minimize some energy function. These approaches are
physics-based models that deform under the laws of Newton
mechanics, in particular, by the theory of elasticity expressed in
the Lagrange dynamics. Many contour-based segmentation al-
gorithms [2]-[9] have been developed in the past two decades.
One problem existing in these algorithms is that they are easy
to get trapped in local minima. In addition, they need manually
specified initial curves close to the objects of interest.

Region-based approaches try to classify an image into mul-
tiple consistent regions or classes. Thresholding is the simplest
segmentation method but its performance is usually far from sat-
isfactory. Watershed segmentation [10], [11] is one of the tra-
ditional region-based approaches. The watershed transform is
often used to segment touching objects. It finds intensity valleys
in an image if the image is viewed as a surface with mountains
(high intensity regions) and valleys (low intensity regions). Mor-
phological operations are always used to handle the over-seg-
mented problem in the output obtained by the watershed trans-
form. Usually, watershed is used for the segmentation of fore-
ground and background (two-class) of an image. For a general
color image with many different regions, it often gives a bad re-
sult. It is also sensitive to the morphological structuring element.

Another kind of approaches to region-based segmenta-
tion is finding compact clusters in a feature space [12]-[15].
The K-means algorithm [12] is the basic one. However, the
K -means is not good enough because it does not take account
of the spatial proximity of pixels. It is, thus, often used in the
initialization step for other approaches. Expectation-maximiza-
tion (EM) [13] performs segmentation by finding a Gaussian
mixture model in an image feature space. One shortcoming
of EM is that the number of regions is kept unchanged during
the segmentation, which often causes wrong results because
different images usually have different numbers of regions.
Theoretically, the minimum description length (MDL) principle
[13] can be used to alleviate this problem, but the segmentation
has to be carried out many times with different region numbers
to find the best result. This takes a large amount of computa-
tion, and the theoretically best result may not accord with our
perception. In [14] and [15], a mean shift algorithm is proposed
for image segmentation. Mean shift is a nonparametric clus-
tering technique which neither requires to know the number of
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Fig. 1. (a) Original color image. (b)—(d) Three components of (a) in L*a*b*
color space. (e) Texture contrast of (a).

clusters in advance nor constrains the shapes of the clusters.
However, it often obtains over-segmented results for many
natural images. In [16] the distribution of texture features are
modeled using a mixture of Gaussian functions. Unlike most
existing clustering methods, it allows the mixture components
to be degenerate or nearly-degenerate. A simple agglomerative
clustering algorithm derived from a lossy data compression
approach is used to segment such a mixture distribution.

Recently, a number of graph-based approaches are developed
for image segmentation. Shi and Malik’s [17] and Yu and Shi’s
[18] normalized cuts are able to capture intuitively salient parts
in an image. The normalized cut criterion is a significant ad-
vance over the previous work in [19] with a min cut criterion,
which tends to find too small components. Normalized cuts are
a landmark in current popular spectral clustering research, but
it is not perfectly fit to the nature of image segmentation be-
cause ad hoc approximations must be introduced to relax the
NP-hard computational problem. These approximations are not
well understood and often lead to unsatisfactory results. In ad-
dition, the heave computational cost is a disadvantage rooted in
spectral clustering algorithms. In [20], an efficient graph-based
image segmentation algorithm is developed, but the over-seg-
mentation problem remains in its results.

Tu and Zhu [21] presented a generative segmentation method
under the framework of maximum a posteriori (MAP) estima-
tion of Markov random fields (MRFs), with the Markov Chain
Monte Carlo (MCMC) used to solve the MAP-MREF estimation.
This method suffers from the computation burden. In addition,
the generative approach explicitly models regions in images
with many constraints, resulting in the difficulty of choosing
parameters to express objects in images. Segmentation by gen-
eralized Swendsen-Wang cuts [22] is a faster method than that
in [21]. The two methods produce similar results as they share
the same underlying model. Another popular segmentation ap-
proach based upon MRFs is graph cut algorithms [23]-[26].
These algorithms rely on human interaction, and solve the two-
class segmentation problem only, i.e., separating an image into
only background and object regions, with some manually given
seed points. In [27], Zabih and Kolmogorov used graph cuts to
obtain the segmentation of multiple regions in an image, but the
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number of clusters is given in the beginning and cannot be ad-
justed during the segmentation. Besides, the segmentation result
is sensitive to this number, as pointed out by the authors.
Recently, some researchers paid attention to learning-based
segmentation of objects of a particular class from images
[28]-[31]. Different from common segmentation methods, this
work requires to learn the parameters of a model expressing
the same objects (say, horse) from a set of images. These
techniques can generate impressive segmentation results for
specific objects, but they cannot be used for general image
segmentation and for object extraction without the priors learnt.

B. Outline of Our Work

This paper! proposes a new image segmentation algorithm
based upon a probability maximization model. An iterative op-
timization scheme alternately making the MAP and the max-
imum likelihood (ML) estimations is the key to the segmenta-
tion. We model the MAP estimation with MRFs and solve the
MAP-MREF estimation problem using graph cuts. The result of
the ML estimation depends upon what statistical model we use.
Under the Gaussian model, it is obtained by finding the means
of the region features. It is shown that other statistical models
can also fit in our framework. The main contributions of this
work include: 1) a novel probabilistic model and an iterative op-
timization scheme for image segmentation, and 2) using graph
cuts to solve the multiple region segmentation problem with the
number of regions automatically adjusted according to the prop-
erties of the regions.

Our algorithm can cluster relevant regions in an image well,
with the segmentation boundaries matching the region edges.
Extensive experiments show that our algorithm can obtain re-
sults highly consistent with human perception. The qualitative
and quantitative comparisons demonstrate that our algorithm
outperforms six other state-of-the-art image segmentation
algorithms.

The rest of this paper is organized as follows. In Section II,
we build the framework of our probabilistic model for image
segmentation. Section III discusses the detail of our algorithm
with its convergency proof. Extensive experimental results are
given in Section IV to show the performance of our algorithm.
Section V concludes the paper.

II. NEwW PROBABILISTIC MODEL

In this section, we first introduce the features used to describe
the properties of each pixel, and then present the new proba-
bilistic model.

For a given image P, the features of every pixel p are ex-
pressed by a 4-D vector

I(p) = (IL(p), La(p), Iu(p), Is(p))" 4))

where I7,(p), I.(p), and I;(p) are the components of p in the
L*a*b* color space, and I;(p) denotes the texture feature of
p. Several classical texture descriptors have been developed in
[13], [33], [34], and [35]. In this paper, the texture contrast de-
fined in [13] (scaled from [0, 1] to [0, 255]) is chosen as the tex-
ture descriptor. Fig. 1 shows an example of the features.

IThe preliminary version of this paper was presented in CVPR 2007 [32].
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The task of image segmentation is to group the pixels of an
image into relevant regions. If we formulate it as a labeling
problem, the objective is then to find a label configuration f =
{fp | p} where f, is the label of pixel p denoting which region
this pixel is grouped into. Generally speaking, a “good” seg-
mentation means that the pixels within a region ¢ should share
homogeneous features represented by a vector ¢(4) that does not
change rapidly except on the region boundaries. The introduc-
tion of ¢(4) allows the description of a region, with which high
level knowledge or learned information can be incorporated into
the segmentation. Suppose that we have k possible region labels.
A 4-D vector

(I1.(4), La(0), I (0), L ()T

(i) = 2
is used to describe the properties of label (region) ¢, where the
four components of ¢(7) have the similar meanings to those of
the corresponding four components of I(p) and will be derived
in Section II-B.

Let ® = {¢(¢)} be the union of the region features. If P
and @ are known, the segmentation is to find an optimal label
configuration f, which maximizes the posterior possibility of
the label configuration

f = argmax Pr(f|®, P) (3)
f

where ® can be obtained by either a learning process or an ini-
tialized estimation. However, due to the existence of noise and
diverse objects in different images, it is difficult to obtain  that
is precise enough. Our strategy here is to refine ¢ according to
the current label configuration found by (3). Thus, we propose
to use an iterative method to solve the segmentation problem.

Suppose that ™ and f™ are the estimation results in the nth
iteration. Then the iterative formulas for optimization are de-
fined as

f""‘l = argmax Pr(f|®", P) S
f

¢n+1 = arg max Pr(fn+1|‘1),l’). (5)
i3]

This iterative optimization is preferred because (4) can be solved
by the MAP estimation, and (5) by the ML estimation. Based
upon this framework, next we will explain how the MAP and
ML estimations are implemented.

A. MAP Estimation of f From ®

Given an image P and the potential region features ®, we
infer f by the Bayesian law, i.e., Pr(f|®, P) can be obtained
by

Pr(®, P|f)Pr(f)
Pr(®, P)
o Pr(®, P|f)Pr(f)

Pr(f|®,P) =

(6)

which is a MAP estimation problem and can be modelled using
MRFs.
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Assuming that the observation of the image follows an inde-
pendent identical distribution (i.i.d.), we define Pr(®, P|f) as

Pr(®, P|f) o ] exp (—=D(p, f,, ®)) @)

peEP

where D(p, f,, ®) is the data penalty function which imposes
the penalty of a pixel p with a label f, for given ®. The data
penalty function is defined as

D(p; fp: (I))
=|1(p) — ¢(f,)II?
=(IL(p) — I.(fp))* + (La(p) — Lu(fp))?
+(Io(p) — L(f,))? + (Ie(p) — Li(f))%. ®)

We restrict our attention to MRF’s whose clique potentials
involve pairs of neighboring pixels. Thus

Pr(f)ocexp [ =Y Y Voglfp fo)

PEP geN (p)

&)

where N (p) is the neighborhood? of pixel p. V. o(fp, fq)s
called the smoothness penalty function, is a clique potential
function, which describes the prior probability of a particular
label configuration with the elements of the clique (p, q). We
define the smoothness penalty function as follows using a
generalized Potts model [36]:

Val ) =c o (220 7, 2 1,
—c-exp <—|IL(P) - IL(G)|>

T(fp # fa) (10)

where A(p,q) = |IL(p) — I(q)|, called brightness contrast,
denotes how different the brightnesses of p and g are, ¢ > O is a
smoothness factor, o > 0 is used to control the contribution of
A(p, q) to the penalty, and T'(-) is 1 if its argument is true and O
otherwise. From our experiments, we found that o = 2(A(p, ¢))
is a good choice, where (-) denotes the expectation of all the
pairs of neighbors in an image. V, ,(f,, f,) depicts two kinds
of constraints. The first enforces the spatial smoothness; if two
neighboring pixels are labeled differently, a penalty is imposed.
The second considers a possible edge between p and ¢; if two
neighboring pixels cause a larger A, then they have greater like-
lihood to be partitioned into two regions. Fig. 2 is an example
of the brightness contrast. In our algorithm, the boundaries of
the segmentation result are pulled to match the darker pixels in
Fig. 2(b) and (c), which are more likely to be edge pixels.

2In this paper, the neighborhood of pixel p consists of the two horizontal and
two vertical neighbors of p.
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Fig. 2. Example of the brightness contrast. (a) The original image. (b) The

brightness contrast in the horizontal direction. (c) The brightness contrast in the
vertical direction.

From (6), (7), and (9), we have

Pr(f|®, P) x

TT s

pEP

p7 Ips ))

(11)

- exp

_Z Z Vp,q(fpqu)

PEP geN (p)

Taking the logarithm of (11), we have the following energy
function:

= ZD(p,fp,‘I’)

peEP

+3°N " Vealfor fo)

PEP geN (p)

12)

where E(f, ®) o< —log Pr(f|®, P). It includes two parts: the
data term

Eiata = Y D(p, @ (13)
peP
and the smoothness term
Esmooth = Z Z ‘/p,q(fp7fq>' (14)

PEP gEN(p)

From (12), we see that maximizing Pr( f|®, P) is equivalent
to minimizing the Markov energy E(f, ®) for a given ®. In this
paper, we use a graph cut algorithm to solve this minimization
problem, which is described in Section III.

B. ML Estimation of ® From f

If the label configuration f is given, the optimal ® should
maximize Pr(f|®,P), or minimize E(f,®) equivalently.
Thus, we have

Vo log Pr(f|®,P)=0 (15)
or
(16)

VoE(f,®)=0

where V¢ denotes the gradient operator. Since V), (fp, fq) is
independent of ¢, we obtain

V@ZD(pafP7¢):0

peEP

7)
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where different formulations of D(p, f,,, @) lead to different es-
timations of ®. For our formulation in (8), it follows that:

D D @)= ) —6@)°.  (8)
peEP e
Therefore, (17) can be written as
Z IT(p (i)|* =0, foreachi. (19)

From (19), we obtain the ML estimation ® = ¢(7), where

Bi) = i 3 T0)

fp=i

(20)

with num,; being the number of pixels within region <. Here (20)
is exactly the equation to obtain I, (4), I,(4), I;(7), and I;(7) in
(2).

Note that when the label configuration f = {f,|p} is un-
known, finding the solution of (17) is carried out by clustering
the pixels into groups. In this case, the ML estimation is
achieved by the K-means algorithm [12], which serves as the
initialization in our algorithm described in Section III.

C. Non-Gaussian Modeling

The definition of D(p, f,, ®) in (8) uses the Gaussian model
to describe a uniform region. Some other distributions in the
modeling of natural images, such as the exponential family dis-
tributions [37], [38], can also be used in our framework. Let
us take another popular model, the Laplace model [39], as an
example.

To replace the Gaussian model with the Laplace model, we
modify (7) as

Pr(®, P|f) o [] exp (=D’ (p, f,. ®)) (21)
peEP
where the data penalty is defined as
D'(p, fp, @) = [L(p) — ¢(fp)!- (22)

With this data penalty, the MAP estimation is the same as when
the Gaussian model is used. However, the ML estimation result
is different from (20) and becomes

(i)

where Median{-} denotes the median of the elements in a set
[40].

In addition to the above parametric models, we can also use
nonparametric distributions to describe the region features. Sim-
ilar to the parametric models, the data penalty functions are de-
fined as the negative logarithm of different likelihood functions
in different nonparametric models (e.g., a histogram clustering
model is used in [41]).

In summary, different statistical models lead to different def-
initions of the data penalty. Given different data penalties, the
MAP estimations are the same, but the ML estimation results

= Median{I(p)|f, = i} (23)
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Fig. 3. Relabeling of the regions. (a) Result before the relabeling. (b) Result
after the relabeling.

depend upon the used models. In the rest of this paper, we only
consider the Gaussian model.

III. PROPOSED ALGORITHM

We first give the description of the algorithm for image seg-
mentation, and then prove its convergence.

Algorithm Description

With E(f, ®) defined in (12), the estimations of f and ® in
(4) and (5) are now transformed to

fn-‘,—l

= argmin E(f, ®") (24)
f

(I)n-}—l —

arg min E(f"!, ®). (25)
[l

The two equations correspond to the MAP estimation and the
ML estimation, respectively. The algorithm to obtain f and d
is described as follows.

Algorithm: Image Segmentation: Input: an RGB color
image.

Step 1: Convert the image into L*a*b* space and calculate
the texture contrast.

Step 2: Use the K-means algorithm to initialize ®.

Step 3: Iterative optimization.

3.1: MAP estimation—Estimate the label con-
figuration f based upon current ® using the
graph cut algorithm [36].

3.2: Relabeling—Set a unique label to each con-
necting region to form a new cluster, obtaining
anew f.

3.3: ML estimation—Refine ¢ based upon cur-
rent f with (20).

Step 4: If ® and f do not change between two successive
iterations or the maximum number of iterations is
reached, go to the output step; otherwise, go to step
3.

Output: Multiple segmented regions of the image.

We explain step 3.2 in more details here. After step 3.1, it
is possible that two nonadjacent regions are given the same
label. For example, the upper-left and the lower-right regions
in Fig. 3(a) are both labeled by 1. After step 3.2, each of the
connected regions has a unique label [see Fig. 3(b)].

The MAP estimation is an NP-hard problem. Boykov et al.
[36] proposed to obtain an approximate solution via finding
the minimum cuts in a graph model. Minimum cuts can be ob-
tained by computing the maximum flow between the terminals
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(d

Fig. 4. Segmentation example. (a) Original image. (b) Result of initial
K -means clustering with X' = 10. (c) Result of the first iteration with K
adjusted to 8 automatically. (d) Converged result after 4 iterations with K
changed to 6 automatically.

of the graph. In [36], an efficient max-flow algorithm is given for
solving the binary labeling problem. In addition, an algorithm,
called o expansion with the max-flow algorithm embedded, is
presented to carry out multiple labeling iteratively. In our algo-
rithm, the « expansion algorithm is used to perform step 3.1.
Besides the graph cuts, other techniques such as belief prop-
agation can also be used to solve the MAP-MRF problem. A
comparative study can be found in [42].

One remarkable property of our algorithm is the ability to
adjust the region number automatically during the iterative
optimization with the relabeling step embedded into the MAP
and ML estimations. Fig. 4 gives an example to show how
the iterations improve the segmentation results. Comparing
Fig. 4(b)-(d), we can see that the final result is the best.

Another property of our algorithm is that it is insensitive to the
value of K in the initialization step with the K -means algorithm.
From Figs. 4 and 5 we can see that the converged results with
K =5, 10, and 20 are very close.

Now we analyze the computational complexity of the algo-
rithm. In step 2, the K -means algorithm takes O(NdK T}, ) time
[12], where N is the number of pixels in an image, d is the
number of features used to represent a pixel/region, K is the
number of clusters, and 7}, is the number of iterations. In our
application, d = 4, K is set to 10, and T}, is set to 100. Both
step 3.2 and step 3.3 take O(NN) time. In step 3, the main com-
putational burden is the use of the graph cut algorithm (the «
expansion) in step 3.1. The max-flow algorithm is linear in prac-
tice [36]. The « expansion algorithm takes O(NC,, T, ) time
to carry out the MAP estimation during the n-th execution of
step 3.1, where C,, is the number of label candidates and 7},
is the number of iterations inside the o expansion. Let 1" be the
number of executions of step 3.1. Then the computational com-
plexity of our algorithm is O(NdKTy,) + O(N Y1, CTa).
In general, C,, ranges from 1 to 50, T, is less than 5, and 7" is
less than 10. Using a PC with Pentium 2.4 G CPU and 2 G RAM,
our algorithm takes less than 2 minutes to handle a 321 x 481
image.
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Fig. 5. Segmentation results with different /X' values in the initial /A -means.
The original image is shown in Fig. 4(a). (a) Result of initial /{ -means clustering
with K = 5. (b) Converged result of (a). (c) Result of initial I -means clustering
with K = 20. (d) Converged result of (c).

Algorithm Convergence

We prove that the proposed algorithm is convergent in this
section. Suppose that after the nth iteration, the energy is E™,
the configuration is ™, and the union of region features is ®".
The MAP estimation is to estimate the configuration f"*! by
minimizing the energy. Therefore, after the MAP estimation
step of the (n + 1)th iteration, the energy Ey;h}, decreases or
keeps unchanged, i.e.,

EyiL < E™ (26)

Suppose that the configuration is frziztelin e after the rela-
beling step. This step only changes the labels of some regions
but not their features, i.e., for each pixel p

¢(f1?+1) = ¢(f;ri12be1ing)-

Therefore, from (8) and (13), the relabeling step does not change
the data term. On the other hand, after the relabeling, for two
neighboring pixels p and ¢, it is easy to see from Fig. 3 that

+1 +1y _ +1 +1
T(f;l 7é f; ) - T(f:relabeling # f;relabeling)

which implies that the relabeling step does not change the
smoothness term either [see (10) and (14)]. Thus, after the
relabeling step, the energy keeps unchanged, i.e.,

27)

(28)

E'n—l—l

relabeling

— En—|—1

MAP* (29)

Furthermore, since the ML estimation does not change the
smoothness term but may reduce the data term or keeps it un-
changed, we have

En+1 < En+1

relabeling*

(30)

So the energy keeps monotonically nonincreasing during the
iterations, i.e.,
Entl < Er €)))

which completes the proof of the convergence of our algorithm.

Fig. 6. Segmentation results on the “landscape” images.

IV. EXPERIMENTAL RESULTS

We test the proposed algorithm3 on the Berkeley benchmark
for evaluating segmentation algorithms [43] and compare the re-
sults with those obtained by six state-of-the-art image segmen-
tation algorithms. The Berkeley database contains 300 natural
images of size 321 x 481 (or 481 x 321), with ground truth seg-
mentation results obtained from human subjects.

The compared algorithms in our experiments include: nor-
malized cuts (NC) [17], blobworld (BW) [13], mean shift (MS)
[14], [15], efficient graph-based segmentation (EG) [20], seg-
mentation via lossy data compression (LDC) [16], and segmen-
tation by generalized Swendsen-Wang cuts (SWC) [22]. In our
algorithm, we set the initial cluster number in the K -means al-
gorithm to 10 and the smoothness factor ¢ in (10) to 4000. The
region number in NC is set to 20, which is the average number
of segments marked by the human subjects in each image. The
cluster number in BW is initialized as 3, 4, and 5, and then the
MDL is used to choose the best one, which is suggested in [13].
The MS algorithm is available online [44] where the default pa-
rameters hy = 15, h,, = 13, and the minimal region = 20
pixels are chosen. In the EG algorithm, the Gaussian smoothing
parameter 0 = 0.8, the threshold value & = 300, and the
minimal region = 50 pixels are set, as described in [20]. The
iteration number in SWC is 2000 and the default scale factor is
3, which are suggested in [22]. All these six algorithms are pro-
vided by their authors. Since NC and LDC cannot handle an

30ur algorithm code is available at http://mmlab.ie.cuhk.edu.hk/project.htm.
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Fig. 7. Segmentation results on the “grassplot and sky” images.

image of size 321 x 481 (or 481 x 321) due to the overflow of

the memory, all the input images for them are shrunk into a
size 214 x 320 (or 320 x 214), and the segmentation results are
enlarged to their original sizes.

A. Qualitative Comparisons

We classify part of the images in the Berkeley bench-
mark into 6 sets (“landscape,” “grassplot and sky,” “craft,”
“human,” “bird,” and “felid”’), and show the segmentation
results obtained by the seven algorithms in Figs. 6-11. All the
boundaries of the small regions with the numbers of pixels
less than 100 are removed. From these examples, we have the
following observations.

NC tends to partition an image into regions of similar sizes,
resulting in the region boundaries different from the real edges.
The boundaries generated by BW are rough and do not match
the real edges. This is because BW does not use edge informa-
tion for segmentation. MS and EG give strongly over-segmented
results. LDC usually obtains better visual results than NC, BW,
MS, EG, and SWC, but it often fails to find real edges and cre-
ates strongly over-segmented regions in many cases. Compared
with these six algorithms, it is easy to see that our algorithm ob-
tains the best results, in which the generated boundaries match
the real edges well and the segmented regions are in accordance
with our perception. We emphasize here again that our algo-
rithm can adapt the number of regions to different images au-
tomatically although all the initial numbers in the initialization
step are set to 10.
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Fig. 8. Segmentation results on the “craft” images.

B. Quantitative Comparisons

Quantitative comparisons are also important for objectively
evaluating the performance of the algorithms. There have been
several measures proposed for this purpose. Region differencing
and boundary matching are two of them. Region differencing
[43] measures the extent to which one segmentation can be
viewed as a refinement of the other. Boundary matching [45]
measures the average displacement error of boundary pixels be-
tween the results obtained by an algorithm and the results ob-
tained from human subjects. However, these two measures are
not good enough for segmentation evaluation [46]. For example,
a segmentation result with each pixel being one region obtains
the best score using these two measures. A strongly over-seg-
mented result, which does not make sense to our visual percep-
tion, may be ranked good.

In our experiments, two more stable and significant measures,
variation of information (Vol) [47] and probabilistic rand index
(PRI) [46] are used to compare the performances of the seven
algorithms, which are recently proposed to objectively evaluate
image segmentation algorithms.

Consider a set of ground truths, labeled by K persons,
{S1,82,...,5K}, of an image consisting of N pixels. Let
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Fig. 9. Segmentation results on the “human” images.

Stest be the segmentation result to be compared with the
ground truths. Then the PRI value is defined as

1
PRI(Stest, {Sk}) = INY Z [ﬁ;fzq(l - ﬁpq)l_cm]

(32)
( 2 ) r<q

where (p, q) is a pixel pair in the image, c,q = T'(IJ** =
I3w=t) denotes the event of a pair of pixels p and ¢
having the same label in the test result Sies, and ppy =
1/K S5 T(15 = I5%) is regarded as the probability of p
and ¢ having the same label. The Vol value is defined as

VoI(Syest, {Sk})
= % Z[H(Stest) + H(Sk) - 2I(Stesty Sk)] (33)
k

where H and I denote the entropy and the mutual information,
respectively. The detailed definitions of H and I can be found
from [47].

Vol is an information-based measure which computes a mea-
sure of information content in each of the segmentations and
how much information one segmentation gives about the other.
It is related to the conditional entropies between the region label
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Fig. 10. Segmentation results on the “bird” images.

distributions of the segmentations. PRI compares an obtained
segmentation result with multiple ground truth images through
soft nonuniform weighting of pixel pairs as a function of the
variability in the ground truth set. The value of Vol falls in
[0, 00), and the smaller, the better. The value of PRI is in [0, 1],
and the larger, the better.

The average values of PRI and Vol for the seven algorithms
are given in Table L. In this table, the second column shows the
average PRI and Vol values between different human subjects,
which are the best scores. From these results, we can see that
our algorithm outperforms the other algorithms because it ob-
tains the smallest VoI value and the largest PRI value. Among
other algorithms, EG and MS give close PRI values to our al-
gorithm. However, their Vol values are much larger than ours.
To demonstrate the performances of these algorithms on each
image, we show the PRI and Vol curves in Fig. 12. It is clearly
observed that our algorithm performs the best.

C. Running Time and Robustness

The average running times of the seven algorithms for each
image are reported in Table II. The computer used is a PC
with Pentium 2.4 G CPU and 2 G RAM. From this table, we
can see that MS and EG run fastest. Note that the sizes of the
images inputted to NC and LDC are 214 x 320 or 320 x 214,
while the sizes of the images inputted to the other algorithms
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are 321 x 481 or 481 x 321. NC and LDC cannot handle an
image of size 321 x 481 or 481 x 321 due to the overflow of
the memory. The source code (Matlab + C++) of our algorithm
has not been optimized. We believe that it can run faster after
the code optimization.

There is only one parameter, the smoothness factor ¢ in our
algorithm [see (10)], to be set. To demonstrate the robustness of
our algorithm, we test it with different values of c. The results
are given in Table III, from which we can see that our algorithm
is very robust, with the average PRI and Vol varying slightly
when c is changed greatly.

V. CONCLUSION

In this paper, we have developed a novel image segmentation
algorithm. Our algorithm is formulated as a labeling problem
using a probability maximization model. An iterative optimiza-
tion technique combining the MAP and ML estimations is em-
ployed in our framework. Under the Gaussian model, the MAP
estimation problem is solved using graph cuts and the ML esti-
mation is obtained by finding the means of the region features.
We have compared our algorithm with six state-of-the-art image
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Fig. 12. PRI and Vol values achieved on individual images by the seven algo-
rithms. The values are plotted in increasing order.

TABLE 1
AVERAGE VALUES OF PRI AND VOI FOR THE SEVEN ALGORITHMS ON THE
IMAGES IN THE BERKELEY SEGMENTATION DATABASE

Human Our NC BW MS EG LDC SWC
PRI | 0.8961 | 0.7967 | 0.7226 | 0.7138 | 0.7822 | 0.7877 | 0.7529 | 0.7644
Vol | 09219 | 1.9307 | 2.9247 | 2.6295 | 3.8152 | 2.8350 | 2.0288 | 3.0266

TABLE 11

RUNNING TIMES OF THE SEVEN ALGORITHMS FOR EACH IMAGE. THE SIZES

OF THE IMAGES INPUTTED TO NC AND LDC ARE 214 X 320 OR 320 X 214,

‘WHILE THE SIZES OF THE IMAGES INPUTTED TO THE OTHER ALGORITHMS
ARE 321 X 481 OR 481 x 321

Ours | NC | BW | MS | EG | LDC | SWC
Time | 100s | 60s | 120s | 3.5s | 0.6s | 240s 140s
TABLE III

AVERAGE VALUES OF PRI AND VOI OBTAINED BY OUR ALGORITHM
‘WHEN THE PARAMETER ¢ IS CHANGED

c 2000 4000 6000
PRI | 0.7862 | 0.7967 | 0.7859
VoI | 1.9950 | 1.9307 | 2.0026

segmentation algorithms. The qualitative and quantitative re-
sults demonstrate that our algorithm outperforms the others.
Our future work includes the extension of the proposed model
to video segmentation with the combination of motion informa-
tion, and the utilization of the model for specific object extrac-
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tion by designing more complex features (such as shapes) to
describe the objects.
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