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Correspondence-Free Activity Analysis and
Scene Modeling in Multiple Camera Views
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Abstract—We propose a novel approach for activity analysis in multiple synchronized but uncalibrated static camera views. In this
paper, we refer to activities as motion patterns of objects, which correspond to paths in far-field scenes. We assume that the topology
of cameras is unknown and quite arbitrary, the fields of views covered by these cameras may have no overlap or any amount of overlap,
and objects may move on different ground planes. Using low-level cues, objects are first tracked in each camera view independently,
and the positions and velocities of objects along trajectories are computed as features. Under a probabilistic model, our approach
jointly learns the distribution of an activity in the feature spaces of different camera’s views. Then it accomplishes the following tasks:
(1) grouping trajectories, which belong to the same activity but may be in different camera views, into one cluster; (2) modeling paths
commonly taken by objects across multiple camera views; (3) detecting abnormal activities. Advantages of this approach are that it
does not require first solving the challenging correspondence problem, and that learning is unsupervised. Even though correspondence
is not a prerequisite, after the models of activities have been learnt, they can help to solve the correspondence problem, since if two
trajectories in different camera views belong to the same activity, they are likely to correspond to the same object. Our approach is
evaluated on a simulated data set and two very large real data sets, which have 22, 951 and 14, 985 trajectories respectively.

Index Terms—Visual surveillance, Activity analysis in multiple camera views, Correspondence, Clustering.

✦

1 INTRODUCTION

IN visual surveillance, a key task is to monitor activ-
ities in the scene. People have interest in discovering

typical and abnormal activities, detecting activities of
some categories, and knowing some structures of the
scenes, such as paths commonly taken by objects, sources
and sinks where objects appear and disappear. Because
visual surveillance systems collect a huge amount of
data from many different scenes, people expect the al-
gorithms to be unsupervised with little human labeling
effort as possible. When modeling activities, while some
approaches [1], [2], [3], [4], [5], [6], [7], [8] directly extract
motion and appearance features from video streams
without relying on tracking and object detection, in
many surveillance systems [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], especially in far-field settings,
objects are first detected and tracked, and the activity of
an object is then treated as sequential movements along
its trajectory. Through tracking, an activity executed by
a single object can be separated from other co-occurring
activities, and features related to the activity can be
integrated as a track. In many far-field surveillance set-
tings, the captured videos are of low resolution and poor
quality, and it is difficult to compute more complicated
features, such as gestures, local motions, or appearance
of objects within the tracks. Usually only positions of
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objects are recorded along tracks, which are called tra-
jectories. Although quite simple, the motion patterns
of trajectories can distinguish many different activity
categories, especially in far-field settings. Examples can
be found in Figure 1 (a). The goal of this work is to model
activities by trajectory analysis: clustering trajectories
into different activities, detecting abnormal trajectories,
and modeling paths commonly taken by objects.

Many approaches [10], [20], [21], [22], [23], [24], [25],
[17], [19] were proposed to cluster or classify trajectories
into activities. They used the spatial proximity between
a pair of trajectories, measured in different ways, for
clustering. Activities are often closely related to the
structures of scenes, e.g. roads, paths, entry and exit
points, which can help not only high-level description
of activities [17], but also low-level tracking and classi-
fication [26]. The models of paths commonly taken by
objects can be obtained by finding the spatial extents of
trajectory clusters [21], [27], [28], [17], [29]. Entry and exit
points are detected at the ends of paths [17].

All these clustering and modeling approaches as-
sumed a single camera view whose visible area is finite
and limited by the structures of the scene. In order to
monitor activities in a wide area, video streams from
multiple cameras have to be used. Examples of activities
observed in different camera views can be found in
Figure 1 (b). Many systems [30], [31], [32], [33], [34], [35],
[36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46],
[47], [48] using multiple cameras for visual surveillance
have been developed in recent years and they are based
on various assumptions on the number of cameras,
the topology and geometry of camera views, and cam-
era calibration. Most of these approaches focused on



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 1, NO. 1, JANUARY 2009 2

(a) (b) (c)

Fig. 1. Simulated examples of activity categories distinguished by motion patterns. Trajectories of different activity
categories are marked by colors. Trajectories are obtained from simulation. (a) Activities observed in a single giant
camera view, which is usually unavailable in real life. (b) The same activities as in (a) are observed in four different
camera views, which are similar to the camera views available in real life. (c) The fields covered by four camera views.
They are marked by ploygons in colors: red (camera 1), blue (camera 2), cyran (camera 3) and black (camera 4).

tracking objects across multiple camera views or doing
correspondence of trajectories in different camera views.
In general, this is a very difficult problem. Because
of the structures of the scenes, the distribution and
configuration of these cameras could be quite arbitrary
and unknown. The camera views may have any combi-
nation of large, small, or even no overlap. The objects
in the views may move on one or multiple ground
planes. Analyzing activities over such a multi-camera
network is quite challenging. A natural way of doing
multi-camera surveillance is to first infer the topology
of camera views [39], [44], solve the correspondence
problem [30], [33], [34], [38], [35], [37], [40], [41], [42],
[43], [45], [47], stitching the trajectories of the same
object in different camera views into a complete long
trajectory, and then analyze the stitched trajectories using
the same approaches developed for a single camera view.
However both inferring the topology of camera views
and solving the multi-camera correspondence problem
are notoriously difficult especially when the number of
cameras is large and the topology of the cameras is
arbitrary. The ultimate goal of some surveillance systems
is activity analysis instead of solving correspondence. In
this paper, we show that activity analysis in multiple
camera views can be accomplished without solving the
correspondence problem.

We propose an approach to group trajectories, which
belong to the same activity but may be in different
camera views, into one cluster and model the paths
of objects across camera views. They are jointly learnt
under a probabilistic model. Our approach is completely
unsupervised and does not require the correspondence
problem to be solved in advance. The camera settings in
our approach are as follows.

• The cameras are static and synchronized but do not
have to be calibrated.

• The fields of view covered by these cameras may

have no overlap or any amount of overlap. However
we assume that when an object exits a camera view,
it is already in or will enter one of the other camera
views within time T .

• Objects may move on different ground planes.

Examples of multi-camera settings are shown in Figure 2.
We briefly explain several basic concepts and assump-

tions held in this paper. There are paths in the physical
world. Objects move along these paths and thus have
different moving patterns (examples of different moving
patterns can be found in Figure 1), which are called
activities. A path may be observed in multiple camera
views and has spatial distributions in these views. Al-
though some paths, such as roads of vehicles can be
recognized by their physical features, some paths cannot
be. For example, pedestrians take a short cut on a grass
field. A trajectory, which only records the positions of
an object, is a history of the movement of an object
in a camera view. The points on trajectories are called
observations. In this work, trajectories are clustered into
different activities, based on their spatial distributions
and moving directions. A cluster of trajectories is related
to a path in the physical world. The scene of a camera
view is quantized into small cells. When an object moves,
it connects two cells far apart in a camera view by
its trajectory. Our probabilistic model is based on some
simple, general assumptions on the spatial and temporal
features related to activities: (1) cells located on the
same path are likely to be connected by trajectories;
(2) trajectories passing through the same path belong
to the same activity; (3) it is likely for trajectories of
the same object observed in different camera views to
be on the same path in the real world and belong to
the same activity; otherwise, objects might switch paths
when crossing different camera views.

In our approach, a network is first built by connect-
ing trajectories that are in different camera views and
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Camera 1 Camera 2 Camera 3 Camera 4

Topology

(a) Parking lot scene

Camera 1 Camera 2 Camera 3 Camera 4 Topology
(b) Street scene

Fig. 2. Camera views and their topology in two data sets, a parking lot scene and a street scene. When the topology of
camera views is plotted, the fields of camera views are represented by different colors: blue (camera 1), red (camera
2), green (camera 3), yellow (camera 4). However, our approach does not require knowledge of the topology of the
cameras in advance.

whose temporal extents are close by edges. Then a
probabilistic model, in which different kinds of activities
have distributions in low-level feature spaces of different
camera views, is built. A trajectory is treated as a set
of observations that belong to different activities. A
smoothness constraint requires that two neighboring tra-
jectories connected by an edge have similar distributions
over activities. Trajectories are clustered according to the
assigned major activities among their observations. The
distributions of activities over feature spaces of different
camera views model the regions of paths across cameras.

1.1 Related Work

Many similarity-based trajectory clustering methods
have been proposed in past years. The spatial proximity
between a pair of trajectories is measured in differ-
ent ways, such as Euclidean distance [24], Hausdorff
distance [22] and its variations [17], hidden Markov
model [23], and dynamic time warping [20]. A com-
parison of different similarity measures can be found
in [25]. Based on the similarity matrix, some clustering
algorithms such as spectral clustering and graph-cut
were used to group trajectories in to different activity
categories. The complexity in both time and space of
these approaches is at least O(M 2) where M is the
number of trajectories. The complexity of labeling a
new trajectory as one of the activity categories or an
abnormality is O(M), since similarity-based approaches
required computing the similarity between the new tra-
jectory and each of the trajectories in the training set.
Visual surveillance systems often require processing data
collected over weeks or even months. These approaches
had difficulties with very large data sets. The spatial
extents of paths related to activities can be estimated
from trajectory clusters [28], [21], [17], [29]. All these

approaches assumed that trajectories are observed in a
single camera view. In order to extend these approaches
to multiple camera views, trajectories observed in differ-
ent camera views have to be stitched together.

Considerable work has been done to solve the chal-
lenging correspondence problem of trajectories observed
in multiple camera views. One way is to manually label
salient points in the scene and record their coordinates
in the 3D world. After mapping 2D image planes to the
3D world [49], [50], objects can be tracked in multiple
camera views. When the camera views overlap, static
features can be selected to compute an assumed ho-
mography between two camera views [51] and calibrate
camera views to a single global ground plane. Trajecto-
ries in different camera views can be stitched based on
their spatial proximity on the common ground plane. In
general, automatically finding correspondence of static
features between different views is difficult.

Lee et al. [33], Sheikh and Shah [47], and Stauffer
and Tieu [38] calibrated multiple camera views using
tracking data from moving objects. They also assumed
that camera views had significant overlap and that ob-
jects moved on the same ground plane. Lee et al. [33]
and Sheikh and Shah [47] assumed that the topological
arrangement of camera views was known. Stauffer and
Tieu [38] could automatically infer it, but with high
complexity (O(N2) where N is the number of camera
views).

When the camera views are disjointed or their over-
lap is small, automatic calibration is difficult and the
appearance of objects is often used as a cue to cor-
respondence [37], [42], [41], [43], [45], [52]. This is a
very challenging problem and not well solved yet. The
appearance of objects may significantly change because
of different cameras’ settings and different poses of
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objects. Many objects, such as cars or persons, have
similar appearance, confusing correspondence. In far-
field settings, objects may only cover a few pixels,
making matching difficult. Other approaches [39], [44]
inferred the topology of disjoint camera views using the
transition time between cameras.

Even given similarities between trajectories observed
in different camera views, solving the correspondence
problem is still difficult because of the large search space,
especially when there are many trajectories and cameras.
It requires searching in the solution space of N-partite
graphs, where N is the number of cameras [47]. In
general, if there are more than two cameras, the problem
is NP hard in the number of trajectories [53]. It has
solution in polynomial time only with some particular
topologies of camera views and the topology has to be
known [37].

In summary, all these trajectory correspondence ap-
proaches had various assumptions on the topology and
geometry of camera views, and they faced difficulties of
camera calibrations, appearance matching, inference on
the topology of camera views, and high computational
cost to search for the optimal solution. The contributions
of this paper are that we directly cluster trajectories
into activities and model regions of paths over a multi-
camera network without solving the correspondence
problem. Given a general setting of a camera network,
solving the correspondence problem is difficult. So our
method has less restriction on the topology of camera
views, the structures of the scene, and the number
of cameras. Furthermore, in our approach each trajec-
tory cluster is represented by a parametric probabilistic
model. It does not require computing the similarity
between each pair of trajectories. It has much lower
space complexity compared with those similarity-based
approaches. So it is more appropriate to process huge
data sets often required in visual surveillance applica-
tions.

The paper is organized as following. Section 2 explains
how to compute low-level features from trajectories and
quantize them into visual words. In Section 3, a trajec-
tory network is built by connecting trajectories which
are in different camera views. In Section 4 introduces the
models of activities (paths). In Section 5, our algorithms
are evaluated on a simulated data set and two real data
sets, a parking lot scene and a street scene, each of
which has four cameras. The views and topology of these
cameras are shown in Figure 2.

2 FEATURE SPACE

Objects are tracked in each of the camera views inde-
pendently using the Stauffer-Grimson tracker [10]. A
trajectory is treated as a set of observations. The locations
and moving directions of observations of an object are
computed as features and quantized to visual words ac-
cording to a codebook of its camera view. In each camera
view, the space of the view is uniformly quantized into

small cells and the velocity of objects is quantized into
several directions. A global codebook concatenates the
codebooks of all the camera views. Thus the word value
of an observation i is indexed by (ci, xi, yi, di) in the
global codebook. ci is the camera view in which i is
observed. (xi, yi) and di are the quantized coordinates
and moving direction of observation i in camera ci.
The set of visual words on the trajectory are modeled
as exchangeable (i.e., the distribution is invariant to a
permutation of the observations). The moving direction
encoded in the word value captures the first order tem-
poral information among observations. Although quite
simple, the position and velocity features can distinguish
many different activity patterns especially in far-field
settings.

3 TRAJECTORY NETWORK

A network is built connecting trajectories observed in
multiple camera views based on their temporal extents.
Each trajectory is a node on the network. Let tsi and tei

be the starting and ending time of trajectory i. T is a
positive temporal threshold. It is roughly the maximum
transition time of objects crossing the gap between ad-
jacent camera views. If trajectories a and b are observed
in different camera views and their temporal extents are
close,

(tsa ≤ tsb ≤ tea + T ) ∨ (tsb ≤ tsa ≤ teb + T ), (1)

then a and b will be connected by an edge on the
network. This means that a and b may be the same
object since they are observed by cameras around the
same time. There is no edge between two trajectories
observed in the same camera view. An example can be
found in Figure 3. As shown in (a), the views of cameras
1 and 2 overlap and are disjoint with the view of camera
3. Trajectories 1 and 2 observed by cameras 1 and 2
correspond to the same object moving across camera
views. Their temporal extents overlap as shown in (b), so
they are connected by an edge on the network as shown
in (d). Trajectories 3 and 4 observed by cameras 1 and
3 correspond to an object crossing disjoint views. Their
temporal extents have no overlap but the gap is smaller
than T as shown in (c), so they are also connected.
Trajectories 3 and 6, 5 and 7 do not correspond to the
same objects, but their temporal extents are close, so they
are also connected on the network. A single trajectory 3
can be connected to multiple trajectories (4 and 6) in
other camera views. An edge on the network indicates
a possible correspondence candidate only based on the
temporal information of trajectories. But we do not really
solve the correspondence problem when building the
trajectory network, since many edges are actually false
correspondences. The network simply keeps all of the
possible candidates.

4 PROBABILISTIC MODEL

In this section, we describe our probabilistic model
which clusters trajectories in different camera views into
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Fig. 3. An example of building a network connecting trajectories in multiple camera views. (a) Trajectories in three
camera views. (b) The temporal extents of trajectories 1 and 2. (c) The temporal extents of trajectories 3 and 4. (d)
The network connecting trajectories. See text for details.

activities and models paths across camera views. Our
work is related to topic models, such as Probabilistic
Latent Semantic Analysis (pLSA) [54] and Latent Dirich-
let Allocation (LDA) [55], which were used for word-
document analysis. These topic models assume that a
document is a mixture of topics and cluster words, such
as “professor” and “university”, that often co-occur in
the same documents into one topic, such as “education”.
In our domain, documents are trajectories, words are ob-
servations, and topics are activities (paths). Each activity
has a distribution over locations and moving directions
in different camera views, and corresponds to a path.
If two word values, which are indices of locations and
moving directions, often co-occur on the same trajec-
tories, they are on the same path. Trajectories passing
through the same path belong to the same activity. In
previous topic models, documents are generated inde-
pendently. However, we assume that if two trajectories
in different camera views are connected by an edge in the
network, which means that they may correspond to the
same object since they are observed by cameras around
the same time, they tend to have similar distributions
over activities. Thus the distributions of an activity (a
path of objects) in different camera views can be jointly
modeled. In Figure 4, we use an example to describe
the high level picture of our model. Trajectories a and
b are observed in different camera views and connected
by an edge on the network. Points on trajectories are
assigned to activity categories by fitting activity models.
Thus both a and b have distributions over activities. The
smoothness constraint requires that their distributions
over activities are similar in order to have small penalty.
In this example, both trajectory a and b have a larger
distribution on activity 1, so the models of activity 1 in
two different camera views can be related to the same
activity.

Let M be the number of trajectories. Each trajectory
j has Nj observations. Each observation i on trajectory
j has a visual word value wji which is an index of the
global codebook. Observations will be clustered to one

of the K activity categories. Let zji be the activity label
of observation i on trajectory j. Each activity k has a
multinomial distribution φk over the global codebook.
So an activity is modeled as distributions over space
and moving directions in multiple camera views. φk is
sampled from a Dirichlet prior

p(φk|β) = Dir(φk; β), (2)

where Dir(·; ·) is Dirichlet distribution and β is a flat
hyperparameter. If a visual word wji has activity label
zji, its data likelihood is

p(wji|zji, {φk}) = φzjiwji . (3)

Eq 2 and 3 are the same as modeled in LDA.
Each trajectory has a random variable θj which is the

parameter of a multinomial distribution over K activ-
ities. Activity labels {zji} of observations are sampled
from θj . If two trajectories j1 and j2 are connected by an
edge on the network, they are neighbors and the smooth-
ness constraint requires that θj1 and θj2 are similar and
the distributions of {zj1i} and {zj2i} are similar. The joint
distribution of {θj} and {zji} are modeled as,

p({θj}, {zji}|α, γ)

∝
M∏

j=1

K∏
k=1

(θjk)α−1
∏

{j1,j2}∈E

K∏
k=1

(θj1k)γ·nj2k(θj2k)γ·nj1k

M∏
j=1

Nj∏
i=1

θjzji

=
M∏

j=1

K∏
k=1

θ
α−1+γ

∑
j′∈Ωj

nj′k

jk

M∏
j=1

Nj∏
i=1

θjzji

=
M∏

j=1

[ ∏K
k=1 Γ(α + γ

∑
j′∈Ωj

nj′k)

Γ(K · α + γ
∑

j′∈Ωj

∑K
k=1 nj′k)

Dir(θj ; α + γ
∑

j′∈Ωj

nj′1, . . . , α + γ
∑

j′∈Ωj

nj′K)
Nj∏
i=1

θjzji

]
(4)
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Fig. 4. An example to describe the high level picture of our model. See detail in the text.

Γ(·) is the Gamma function. njk is the number of
observations assigned to activity k on trajectory j. E
is the set of pairs of neighboring trajectories which
are connected. Ωj is the set of trajectories connected
with j. α is a flat Dirichlet prior as a hyperparame-
ter. (

∑
j′∈Ωj

nj′1, . . . ,
∑

j′∈Ωj
nj′K) is the histogram of

observations assigned to K activity categories on the
neighboring trajectories of j. It is used as the Dirichlet
parameter for θj , after being weighted by a positive
scalar γ and added to a flat prior α. Let ρk = α + γ ·∑

j′∈Ωj
nj′k. According to the properties of the Dirichlet

distribution, if θj ∼ Dir(ρ1, . . . , ρK), the expectation of
θj is (ρ1/

∑
ρk, . . . , ρK/

∑
ρk) and its variation is small

if
∑

ρk is large. Notice that zji is sampled from θj and
θj has a constraint added by zj′i′ on its neighboring
trajectories. So trajectory j tends to have a similar dis-
tribution over activities as its neighboring trajectories,
which means that they are smooth. A larger γ puts a
stronger smoothness constraint. If γ = 0, Eq 4 is the same
as in LDA where {θj} are sampled from a Dirichlet prior
Dir(·; α) independently.

Given Eq 2, 3 and 4, finally the joint distribution of
{φk}, {θj}, {zji} and {wji} is

p({φk}, {θj}, {zji}, {wji}|α, β, γ)

=p({θj}, {zji}|α, γ)
K∏

k=1

p({φk}|β)

M∏
j=1

Nj∏
i=1

p({wji}|{zji}, {φk})

=
M∏

j=1

[ ∏K
k=1 Γ(α + γ

∑
j′∈Ωj

nj′k)

Γ(K · α + γ
∑

j′∈Ωj

∑K
k=1 nj′k)

Dir(θj ; α + γ
∑

j′∈Ωj

nj′1, . . . , α + γ
∑

j′∈Ωj

nj′K)
]

K∏
k=1

Dir(φk; β)
M∏

j=1

Nj∏
i=1

(
θjzji · φzjiwji

)
. (5)

4.1 Learning and Inference

Our goal is to estimate atcitivity labels {zji} and activity
models {φk}. We do inference by Gibbs sampling. It
turns out that {θj} and {φk} can be integrated out during
the Gibbs sampling procedure.

p({zji}, {wji}|α, β, γ)

=
∫
{φk}

∫
{θj}

p({θj}, {φk}, {zji}, {wji}|α, β, γ)d{θj}d{φk}

=
∫
{φk}

K∏
k=1

p(φk|β)
M∏

j=1

Nj∏
i=1

p({wji}|{zji}, {φk})d{φk}
∫
{θj}

p({θj}, {zji}|α, γ)d{θj}

∝
∫
{φk}

K∏
k=1

W∏
w=1

φβ−1
kw

M∏
j=1

Nj∏
i=1

φzjiwjid{φk}

∫
{θj}

M∏
j=1

K∏
k=1

θ
α−1+γ

∑
j′∈Ωj

nj′k

jk

M∏
j=1

Nj∏
i=1

θjzjid{θj}

=
∫
{φk}

K∏
k=1

W∏
w=1

(φkw)β+mkw−1
d{φk}∫

{θj}

∏
j

∏
k

(θjk)α+njk+γ·∑ j′∈Ωj
nj′k−1

d{θj}

=
∏
k

∏
w Γ(β + mkw)

Γ(W · β + mk·)

∏
j

∏
k Γ

(
α + njk + γ ·∑j′∈Ωj

nj′k

)
Γ

(
K · α + nj· + γ ·∑j′∈Ωj

nj′·
) , (6)

where W is the size of the global codebook, mkw is the
number of observations assigned to activity k with value
w, mk· is the total number of observations assigned to
activity k, njk is the number of observations assigned to
activity k on trajectory j, and nj· is the total number of
observations on trajectory j. The conditional distribution
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of zji given all the other activity labels z−ji is

p(zji = k|z−ji, {wji}, α, β, γ)

∝
β + m−ji

k,wji

W · β + m−ji
k,·
·

α + n−ji
jk + γ

∑
j′∈Ωj

nj′k

K · α + n−ji
j· + γ

∑
j′∈Ωj

nj′·
, (7)

where m−ji
kwji

, m−ji
k· , n−ji

jk , and n−ji
j· are the same statis-

tics as mkwji , mk·, njk, and nj· except that they have
excluded observation i on trajectory j. To have a large
posterior in Eq 7, the first term requires that the value of
observation i should fit the model of activity k, and the
second term requires that its activity label is consistent
with those of observations on the same trajectory and
neighboring trajectories, with γ controlling the weight
of neighboring trajectories. The models of activities can
be estimated from any single sample of {zji},

φ̂kw =
β + mkw

W · β + mk·
(8)

4.2 Labeling Trajectories into Activities

A trajectory is labeled as activity k, if most of its ob-
servations are assigned to k. The activity label of an
observation can be obtained during the Gibbs sampling
procedure based on Eq. 7. However, there may be an
over smoothing effect, since in some cases most of the
trajectories being the neighbors of trajectory j do not
correspond to the same object as j. In this work, we
adopt an alternative labeling approach which actually
achieves better performance in experiments. As shown
by the experimental results in Section 5, the activity mod-
els learnt from Gibbs sampling are distinctive enough
to label trajectories. After the activity models have been
learnt and fixed at the end of Gibbs sampling, which
uses Eq. 7 and 8, we ignore the smoothness constraint
among trajectories and label the observation as

zji = argmax
k

φ̂kwji (9)

This is also used to label an unseen new trajectory.

4.3 Detection of Abnormal Trajectories

When detecting abnormal trajectories, we also ignore the
smoothness constraint and fix the learnt activity models
{φ̂k}. A trajectory is detected as an abnormality if it
does not fit any activity model well. Then abnormality
detection is reduced to the Latent Dirichlet Allocation
model proposed in [55]. The likelihood of a trajectory j
under the learnt activity models {φ̂k} is

p(wj = {wji}|α, {φ̂k})

=
∫
{θj}

p(θj |α)

⎛
⎝ Nj∏

i=1

∑
zji

p(zji|θj)p(wji|φ̂zji )

⎞
⎠ , (10)

where p(θj |α) is a Dirichlet distribution, and both
p(zji|θj) and p(wji|φ̂zji ) are discrete distributions. Since
the computation of Eq. 10 is intractable, in [55] a varia-
tional approach was used to compute a lower bound of

Eq. 10. A trajectory is flagged as abnormal if its lower
bound is small.

4.4 Complexity

In order to simplify the notation, we assume that all
the trajectories have the same number of observations,
which is a fixed constant. The space complexity of our
approach is O(WK) + O(MK), while that of similarity
based approaches is at least O(M 2). The storage of
similarity based approaches is unmanageable when M is
huge. W is the size of the codebook, K is the number of
activity categories, and M is the number of trajectories.
In our approach, the time complexity of each Gibbs
sampling iteration is O(M), however it is difficult to
provide theoretical analysis on the convergence of Gibbs
sampling. Similarity based approaches have to compute
the similarity of O(M2) pairs of trajectories and if spec-
tral clustering is used, it is quite challenging to compute
the eigenvectors of a huge M×M similarity matrix when
M is large. The time complexity of our approach to label
a new trajectory into one of the activity categories or
detect a new trajectory as abnormal is O(K)1, while the
time complexity of similarity based approaches is at least
O(M). So our approach is much more efficient when the
number of trajectories is huge.

5 EXPERIMENTAL RESULTS

We evaluate our approach on two data sets, a parking
lot scene and a street scene. Each has four camera views.
Each camera view is in size of 320 × 240. To build the
codebook, each camera view is quantized into 64 × 48
cells. Each cell is of size 5 × 5. The moving directions
of moving pixels are quantized into four directions.
There are tracking errors in both of the two data sets.
For example, a track may break into fragments because
of interactions among objects. In order to obtain more
quantitative evaluation, we simulate some trajectories
whose activity categories are known as the ground truth,
and evaluate our approach on the simulated data.

5.1 Learning Activity Models

5.1.1 Parking Lot Scene
The parking lot data set has 22, 951 trajectories, collected
from 10 hours during the day time over 3 days. Inspec-
tion shows that it is a fairly busy scene. The topology
of its four camera views is shown in Figure 2 (a). The
view of camera 1 has no overlap with other camera
views. However, the gap between views of cameras 1
and 2 is small. The views of cameras 2 and 3 have
small overlap. The views of cameras 3 and 4 have large
overlap. Our approach does not require the knowledge
of the topology of cameras. Fourteen different activities
are learnt from this data set. Six of them are shown

1. In abnormality detection, a variational approach [55] is used to
compute a lower bound of the data likelihood (Eq. 10) in an iterative
process. We assume the number of iterations is small.
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in Figure 5. For each activity, we plot its distribution
over space and moving directions in the four camera
views and the trajectories clustered into this activity.
When visualizing activity models, moving directions are
represented by different colors, and the density of distri-
butions over space and moving directions is proportional
to the brightness of colors (high brightness means high
density). When plotting trajectories, random colors are
used to distinguish individual trajectories.

In Figure 5, activity 1 captures vehicles and pedestri-
ans entering the parking lot. It has a large extent in space
and is observed by all four cameras. Activity 2 captures
vehicles and pedestrians leaving the parking lot. In
activities 3 and 5, pedestrians are walking in the same
direction but on different paths. From the distributions
of their models, it is observed that the two paths are
side by side but well separated in space. The path of
activity 4 occupies almost the same region as that of
activity 3. However, pedestrians are moving in opposite
directions in these two activities, so the distributions of
their models are plotted in different colors. In activity 6,
pedestrians appear from behind the trees and a building
as observed by cameras 3 and 4 and disappear from a
gate of the parking lot in the view of camera 2.

5.1.2 Street Scene
The topology of the four camera views of the street scene
is shown in Figure 2 (b). Camera 1 has a distant view of
the street. Camera 2 zooms in on the top-right part in the
view of camera 1. The view of camera 3 has overlap with
the views of cameras 1 and 2. It extends the top-right
part of the view in camera 1 along the street. The view
of camera 4 partially overlaps with the bottom region
of the view in camera 1. There are 14, 985 trajectories in
this data set, collected from 30 hours during day time in
four days. Seventeen activities are learnt in this scene.
Six of them are shown in Figure 6.

Activity 1 (Figure 6) captures vehicles moving on the
road. It is observed by all of the four cameras. Vehicles
first move from the top-right corner to the bottom-left
corner in the view of camera 4. Then they enter the bot-
tom region in the view of camera 1 and move upward.
Some vehicles disappear at the exit points observed in
the views of cameras 2 and 3, and some move further
beyond the view of camera 3. In activities 3, 5 and 6,
pedestrians first walk along the sidewalk in the view
of camera 1, and then cross the street as observed by
camera 4. The paths of activities 5 and 6 occupy similar
regions in the view of camera 1, but their paths diverge
in the view of camera 4. The paths of activities 2 and
3, 4 and 5 occupy the same regions but pedestrians are
moving in opposite directions on them.

As shown in Figure 5 and 6, the models of activities
reveal some structures, such as paths commonly taken
by objects, and entrance and exit points in the scene.
Some paths are less related to the appearance of the
scene. For example, some paths cross the street outside
the crosswalk in the street scene. Usually paths have

TABLE 1
Negative log likelihood under our approach and two

alternative trajectory networks.

Our approach Unconnected Random
Parking Lot 130.3 200.3 176.8
Street 85.7 228.8 135.2

TABLE 2
Negative log likelihood with models trained on a variable

number of cameras. The test data is 200 trajectories
from a single camera. The activity models in that camera
are jointly learnt with different number of cameras (from
1 to 4). The last column is a baseline model trained on
data whose cluster labels of trajectories are randomly

assigned.

1 2 3 4 Random
Parking Lot 120.9 121.3 122.8 123.3 425
Street 40.0 41.5 44.9 42.2 168

spatial extents in multiple camera views. These regions
can be detected by simply thresholding the density of
the distributions of activities (φk in Eq 5). As observed,
in these two very large data sets there are many outlier
trajectories, which do not fit any activity model well,
such as those crossing the grass fields in the parking lot
scene. They are finally assigned some activity at random
or because part of the trajectory fits a particular activity.

5.1.3 Negative log likelihood on testing data

Since clustering trajectories into activities is unsuper-
vised learning, we compute the negative log likelihood
on testing data to evaluate its performance. It is the log
of perplexity proportion to the number of bits required
to encode the testing data. It measures how unseen
testing data fits the model learnt from training data.
Two hundred trajectories randomly sampled from each
camera serve as the test set; the remaining trajectories
are used for training. To compare models with different
trajectory networks, the activity models {φk} are learnt
with smoothness constraint added by the trajectory net-
work. Once {φk} are learnt and fixed, the negative log
likelihood is computed on the test data ignoring the
smoothness constraint.

First, we compare our approach with two alterna-
tives: (1) unconnected network; (2) network with random
correspondences2. The former completely abandons the
smoothing constraint, so it cannot jointly model the dis-
tributions of a single activity in multiple camera views.
The latter simulates the case when correspondence is
poor. Both alternatives result in higher negative log
likelihood as shown in Table 1.

2. First find correspondence candidates using Eq 1. Instead of fully
connecting these candidates as in our model, a trajectory is randomly
connected with only one of the candidates in a different camera view.
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Activity 1 Activity 2 Activity 3

Activity 4 Activity 5 Activity 6

Fig. 5. Distributions of activity models (1 − 6) and clusters of trajectories of the parking lot scene. When plotting the
distributions of activity models (in the four red windows on the top), different colors are used to represent different
moving directions:→ (red),← (cyan), ↑ (blue), ↓ (magenta). When plotting trajectories clustered into different activities
(in the four green windows at the bottom), random colors are used to distinguish individual trajectories.
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Activity 1 Activity 2 Activity 3

Activity 4 Activity 5 Activity 6

Fig. 6. Distributions of activity models (1− 6) and clusters of trajectories of the street scene. The meaning of colors is
the same as Figure 5.
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Fig. 7. Activity models learnt in an unsupervised way help
to solve the correspondence problem.

We also compare against models learned with trajec-
tories from a single to all of the camera views. Models
learned from a subset of the cameras will necessar-
ily have lower negative log likelihood for trajectories
within those camera views; however, they are limited to
modeling joint activities only in a subset of the camera
views. Our model captures joint activities in all cameras
simultaneously, and only exhibits a small increase in the
negative log likelihood as shown in Table 2.

5.1.4 Temporal Threshold
The temporal threshold T in Eq 1 determines the con-
nectivity on the trajectory network. If a camera view A
is disjoint from other views and it takes objects more
than T seconds to cross the smallest gap between A
and other views, then there is no way to extend a path
in A to other views. If T is large and the scene is
busy, the network will have too many “noisy” edges
which connect two trajectories actually corresponding
to different objects. Under-smoothing could lead to the
same activity separated into different clusters, while
over-smoothing could lead to different activities joining
into the same cluster. Empirically, we achieved similar
results with a wide range of values for T : for the street
scene data set, good results are achieved when T varies
between 0 and 30 seconds; for the parking lot data set,
the range of good values of T is roughly from 3 to 15
seconds because the parking lot scene is busier and the
view of camera 1 is disjoint from other camera views.
There is quantitative evaluation of T on a simulated data
set in Section 5.5.

5.2 Correspondence

Although our activity analysis approach does not require
correspondence among trajectories in different camera
views, after the models of activities have been learnt
in an unsupervised way, they can help to solve the
correspondence problem, since if two trajectories belong
to the same activity and are connected by an edge,

Fig. 8. Some trajectories with low likelihoods from the
parking lot scene. Random colors are used to distinguish
individual trajectories. In order to indicate the moving
direction of a trajectory, the starting and ending points of
a trajectory is marked by + in red and cyan colors.

Fig. 9. Some trajectories with low likelihoods from the
street scene. Random colors are used to distinguish
individual trajectories. In order to indicate the moving
direction of a trajectory, the starting and ending points of
a trajectory is marked by + in red and cyan colors.

they are likely to correspond to the same object. For
example, see Figure 7. We pick a query trajectory from
one of the camera views and mark it using green color
and a star. All the trajectories in other camera views
satisfying Eq 1 are plotted in random colors. The red
color and red stars mark the trajectories with the same
activity category as the query trajectory. They are likely
to correspond to the same object. So the information
on activity category can dramatically reduce the search
space when solving the correspondence problem. There
is a quantitative evaluation in Section 5.5.2.

5.3 Abnormality Detection

In Figure 8 and 9 we plot some trajectories with low
data likelihoods, which have been normalized by the
length of trajectories, and are detected as abnormality
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from the parking lot scene and the street scene. All
of the trajectories are sorted by abnormality and the
top 30 are shown. Some very short trajectories most
likely caused by tracking errors are not shown here. In
the parking lot scene, most of the detected abnormal
trajectories are pedestrians walking on the grass field. In
the street scene, abnormal activities include pedestrians
walking on the grass fields, pedestrians crossing the
street, pedestrians walking in the middle of the street,
and vehicles moving along a wrong lane.

5.4 Computational Cost

Running on a computer with 2GHz CPU, it takes about
two hours to learn the activity models from 22, 951
trajectories of the parking lot data set and 40 minutes to
learn the activity models from 14, 985 trajectories from
the street scene. When the activity models are learnt
and fixed, it takes less than 0.03 second to compute the
likelihood of a trajectory in order to detect abnormality,
and it is much faster to label a new trajectory as some
activity category.

5.5 Simulated Data

In order to quantitatively evaluate our algorithm, we
simulate data used as the ground truth. As shown in
Figure 1 (c), we choose a scene which covers almost the
same area of the street scene we used in Section 5.1.2.
On a satellite image, we manually draw the fields cov-
ered by four camera views. The fields are convex four-
sided polygons. These fields are converted to a standard
camera view in size of 240 × 360 through projective
transformation. The views observed by four cameras are
shown in Figure 1 (b). We manually draw the central
lines of eight paths on the satellite image (Figure 10 (a))
and simulate 8000 trajectories. We assume trajectories
have almost the same speed, since speed does not play
an important role in our algorithm. The starting points
of trajectories are generated sequentially as follows.

ts(i+1) = tsi + Δti+1, (11)

Δti+1 ∼ Exponential(λ). (12)

tsi is the starting time of the ith trajectory. The temporal
difference Δti+1 = ts(i+1) − tsi between two successive
trajectories is sampled from a exponential distribution
with mean λ. A trajectory i is randomly assigned to
one of the eight predefined activities, k. Trajectory i
samples the location of its starting point from a Gaussian
distribution centered at the starting point of path k
with variance σ1 (σ1 = 5 in this simulation). Then
i samples the remaining points sequentially with the
velocity specified by path k and being added to Gaussian
noise with variance σ2 (σ = 2 in this simulation). The
simulated trajectories in the global views and each of
the four camera views are shown in Figure 10 (b) and
(c).

Fig. 11. The accuracies of classifying trajectories into
different activities when λ takes different values and T is
fixed as 0.

5.5.1 Learning activity models

λ is the parameter controlling how busy the scene is.
When λ is smaller, more objects co-exist in the scene at
the same time, which means that there are more edges
on the trajectory network and it is harder for our algo-
rithm to jointly learn the models of activities in different
camera views. In our experiments, we change the value
of λ from 5 seconds to 40 seconds. Based on the speed
set for this experiment, the time an object spent to pass
through a path varies from 170 seconds to 410 seconds. It
depends on the length of the path. When λ takes values
from 5 seconds to 40 seconds, the averaged number of
objects co-existing in the scene varies from 57.5 to 7.1
(see Figure 11). After the trajectories are clustered by our
algorithm, we manually specify each of the eight clusters
as an activity category, so each trajectory is assigned
an activity label by our algorithm. By comparing with
the ground truth, the accuracy of activity classification
is computed. The accuracies when choosing different
λ values are shown Figure 11. The accuracy is high
(> 97.8%) when λ ≥ 30 seconds. The models of activities
in a single global view and four camera views learnt
from the simulated data when λ = 30 seconds are shown
in Figure 12 and Figure 13. Notice that when λ = 30
seconds, if we randomly sample a time point, there are
around 9.6 objects co-existing in the scene on average.
Each trajectory is connected to 12.4 trajectories by edges
on the network on average. When λ decreases, some
trajectories of different activities merge into one cluster.
When λ = 5 seconds, the scene is very busy (there
are 57.5 objects co-existing in the scene on average),
all of the trajectories are merged into one cluster and
our algorithm cannot learn any useful activity models
from this data set. Each trajectory is connected to 73.0
trajectories by edges on the network on average.

We further look into the structure of the trajectory
network constructed according to the temporal extents
of trajectories in the data set when λ = 30 seconds.
Figure 14 shows the number of edges which are related
to different combinations of activities and camera views
according to the ground truth. The entry of (k1, k2) on
the table of camera views i1 and i2 are the number
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(a) (b) (c)

Fig. 10. (a) The central lines of eight paths manually drawn in the scene. They are distinguished by colors: 1 (red), 2
(blue), 3 (dark green), 4 (magenta), 5 (black), 6 (cyan), 7 (yellow), and 8 (orange). (b) Trajectories generated from the
eight paths. (c) Trajectories observed in four cameras.

of edges connecting two trajectories, one of which is
in camera view i1 and belongs to activity k1, and the
other of which is in camera view i2 and belongs to
activity k2. There are six 8 × 8 tables. As we mentioned
earlier, the edges on the trajectory network indicate
possible correspondence candidates based on the tem-
poral extents of trajectories. If the correspondence can
be solved just using temporal information, all of the
nonzero numbers in the table will be on diagonal. Ac-
tually many off diagonal entries have nonzero numbers,
which indicate false correspondences, whose ambiguity
cannot be solved by only using temporal information.
The ratio between the numbers of edges on diagonal
and off diagonal is 0.2732. This ratio can be understood
as signal-to-noise ratio in some sense. There are many
more false correspondences than true correspondences.
However, these false correspondences almost uniformly
distribute among different combinations of activities and
work as background noise. So if a trajectory of activity
k1 is connected with another trajectory of activity k2, k2

is more likely to be the same as k1 than any one of the
other activties. When the scene is busier, the signal-to-
noise ratio is lower. When λ = 5, the ratio is 0.1692 and
our algorithm fails. Notice that the signal-to-noise ratio
is 1/7 = 0.1429, if trajectories are randomly connected
without using any temporal information.

Figure 15 plots the classification accuracies when λ
is fixed as 40 seconds and the temporal threshold T
in Eq. 1 changes from 0 seconds to 300 seconds. The
results stay at a high accuracy when T varies in a large
range between 0 second and 40 seconds. There is some
interesting correlation between Figure 11 and Figure 15.
The performance of our algorithm drops if there are too
many edges on the trajectory network, which means that
the “signal-to-noise” ratio is low. The number of edges
increases if λ decreases, which means that the scene is
busier and there are more objects co-existing in the scene,
or T increases. From Figure 11, when T is fixed at 0
second, λ = 30 seconds seems to be a turning point
on the accuracy curve. On average, there are around

Fig. 15. The accuracies of classifying trajectories into
different activities when the temporal threshold T change
from 0 to 300 seconds. Here, λ = 40 seconds.

two more objects co-occurring when λ = 30 seconds
compared with λ = 40 seconds. From Figure 15, when
λ is fixed at 40 seconds, T = 40 seconds seems to be
a turning point on the accuracy curve. Compared with
T = 0 second, the temporal window in Eq. 1 extends
for 2 × T = 80 seconds. In 80 seconds, there are around
two more objects appearing on average when λ = 40
seconds. So there are approximately the same number
of edges under two settings. For (λ = 30, T = 0), on
average each trajectory is connected to 12.4 trajectories
by edges on the network, and for (λ = 40, T = 40) this
number is 13.0.

5.5.2 Using activity models to solve the correspondence
problem

As mentioned in Section 5.2, the learnt activity models
can help to solve the correspondence problem. We eval-
uate the performance on simulated data. When there are
more than two cameras views, the correspondence prob-
lem is NP hard in the number of trajectories. Finding an
approximate solution to this NP hard problem is not the
focus of this paper. So we demonstrate the capability
of our activity models by doing correspondence among
trajectories in two camera views. Given the distances
between trajectories, correspondence of trajectories in
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Activity 1 Activity 2 Activity 3 Activity 4

Activity 5 Activity 6 Activity 7 Activity 8

Fig. 12. Distributions of activity models in a single global views learnt from the simulated data. The meaning of colors
is the same as Figure 5.

two cameras views can be solved by the Hungarian
algorithm [56] in polynomial time. The distance D(a, b)
between two trajectories a and b which are in different
views are define as follows. Each point on trajectories is
assigned to one of the activities according to Eq. 9. Thus
each trajectory j has a distribution pj over activities. If
trajectories a and b satisfy the temporal constraint Eq 1,

D(a, b) =
K∑

k=1

pa(k)log
(

pa(k)
pb(k)

)
+

K∑
k=1

pb(k)log
(

pb(k)
pa(k)

)
,

(13)
which is Jensen-Shannon divergence; otherwise
D(a, b) =∞.

We choose camera views 1 and 4 which are shown
in Figure 1. 1000 trajectories are simulated and they are
not in the data set of 8000 trajectories used to learn the
activity models. 1000 trajectories are observed in camera
view 1 and around 880 trajectories are observed in cam-
era view 4. Some trajectories of activity 7 (see Figure 10)
observed in camera view 1 have no corresponding tra-
jectories in camera view 4. We simulate different sets
of data by changing the parameter λ. The accuracies of
correspondence are plotted in Figure 16. It achieves very
good correspondence accuracy (higher than 97%) when
λ ≥ 30. The accuracy drops when the scene is busier
because of two reasons: (1) the activity models are not
well learnt; (2) some objects of the same activity exist
around the same time so they cannot be distinguished
by activity categories and temporal extents.

Fig. 16. Accuracies of correspondence. Solve the corre-
spondence problem of trajectories observed in the views
of camera 1 and camera 4. λ varies from 5 seconds to 40
seconds.

6 DISCUSSION

The performance of our algorithm depends on the num-
ber of edges on the trajectory network. If on average
a trajectory is connected to a large number of other
trajectories, which means that there are many false cor-
respondence candidates, the models of activities cannot
be well learnt. The number of edges increases because of
two reasons: the scene is busy or the temporal threshold
T is large. A large T allows a large transition gap be-
tween camera views. So if a scene is busy, the transition
gaps between cameras has to be small, which limits
the topology of camera views in some sense. In this
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Activity 1 Activity 2 Activity 3

Activity 4 Activity 5 Activity 6

Activity 7 Activity 8
Fig. 13. Distribution of activity models in four camera views learnt from the simulated data. The meaning of colors is
the same as Figure 5.

work, only temporal information is used to build the
trajectory network. That is why the algorithm is sensitive
to how busy the scene is. Some other features, such as
appearance, can also be used to eliminate some edges.
If two objects observed in different camera views are
poorly matched by appearance, their trajectories are not
connected by an edge even though their temporal extents
are close. Thus activity models may be well learnt even
in a busy scene. However, in this case the problem of
matching appearance across camera views has to be
addressed. It is a direction of our future study.

In this work, only positions and moving directions
are computed as features of trajectories, since in our
application they are enough to model paths of objects.
Some other features such as size of objects and speed
can also be added into this framework. They can be
used to cluster motion patterns into more categories,
such as separating vehicles and pedestrians moving on
the same path. However, the size of the codebook will
increase quickly as more features are included and thus
the computational cost will increase.

In our clustering method, the number of clusters K
has to be manually chosen. Some nonparametric models
such as Hierarchical Dirichlet Processes [57], [8] can learn
the number of clusters from data. They could be used to

improve our clustering method in the future work.

7 CONCLUSION

We propose a framework to model activities and cluster
trajectories over a multi-camera network. The models
of activities can be used to detect scene structures.
It is unsupervised and does not require first solving
the challenging multi-camera correspondence problem.
When the activity models have been learnt without
supervision, it can help to solve the correspondence
problem. Experiments on a simulated data set and two
data sets including a very large number of trajectories
demonstrate the effectiveness of this approach.
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