IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 1,

JANUARY 2011 3

Decomposition of Complex Line Drawings with
Hidden Lines for 3D Planar-Faced
Manifold Object Reconstruction

Jianzhuang Liu, Senior Member, IEEE, Yu Chen, Student Member, IEEE, and
Xiaoou Tang, Fellow, IEEE

Abstract—Three-dimensional object reconstruction from a single 2D line drawing is an important problem in computer vision. Many
methods have been presented to solve this problem, but they usually fail when the geometric structure of a 3D object becomes
complex. In this paper, a novel approach based on a divide-and-conquer strategy is proposed to handle the 3D reconstruction of a
planar-faced complex manifold object from its 2D line drawing with hidden lines visible. The approach consists of four steps:

1) identifying the internal faces of the line drawing, 2) decomposing the line drawing into multiple simpler ones based on the internal
faces, 3) reconstructing the 3D shapes from these simpler line drawings, and 4) merging the 3D shapes into one complete object
represented by the original line drawing. A number of examples are provided to show that our approach can handle 3D reconstruction

of more complex objects than previous methods.

Index Terms—3D reconstruction, divide and conquer, internal face, line drawing, manifold.

1 INTRODUCTION AND RELATED WORK

line drawing is the 2D projection of the wireframe of an

object. Humans have no difficulty in perceiving the 3D
geometry from a 2D line drawing. Emulating this ability is
an important research topic in both computer vision and
graphics. Line drawings discussed in this paper are with
hidden lines visible. These line drawings can be generated
by sketching on the screen with a mouse or a tablet PC pen
and on paper with a pen. Though it takes more effort for the
user to draw such line drawings compared with line
drawings without hidden lines, they allow the reconstruc-
tion of complete and more complex objects. Much work
concerning line drawings with hidden lines has been
published in the computer vision literature [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12] and in CAD and graphics
[13], [14], [15], [16], [17], [18], [19], [20], [21]. The applications
of 3D reconstruction from this kind of line drawings include:

1. providing a flexible sketching interface in current
CAD systems [14], [16], [18],

2. providing a 2D sketch query interface for 3D object
retrieval from large databases or from the internet
[19], [22], [23],

o |. Liu and X. Tang are with the Department of Information Engineering,
The Chinese University of Hong Kong, Hong Kong, and with Shenzhen
Institutes of Advanced Technology, Chinese Academy of Sciences, China.
E-mail: {jzliu, xtang/@ie.cuhk.edu.hk.

o Y. Chen is with the Department of Engineering, University of Cambridge,
BE 457, Trumpington Street, CB2 1PZ, UK. E-mail: yc301@cam.ac.uk.

Manuscript received 28 Dec. 2008; revised 1 Sept. 2009; accepted 24 Dec.
2009; published online 25 Feb. 2010.

Recommended for acceptance by F. Kahl.

For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2008-12-0887.

Digital Object Identifier no. 10.1109/TPAMI.2010.49.

0162-8828/11/$26.00 © 2011 IEEE

3. interactive generation of 3D models from images [9],
[17], [20],

4. automatic conversion of existing industrial wire-

frame models to solid model [13], [14], and

5. building rich databases for object recognition sys-

tems and reverse engineering algorithms for shape
reasoning [13], [14].

The earliest work toward 3D reconstruction from single
line drawings is line labeling, which focuses on finding a set
of consistent labels from a line drawing to test the
correctness and/or realizability of the line drawing [3],
[4], [5], [16], [24], [25], [26], [27], [28], [29], but it does not
explicitly recover a 3D object from a line drawing. Most 3D
reconstruction methods from a line drawing assume that
the face topology of the line drawing is known in advance.
This information can greatly reduce the complexity of the
reconstruction. Face identification is not a trivial problem,
and many methods have been proposed to find faces from a
line drawing [1], [6], [7], [8], [12], [13], [14], [30].

Three-dimensional reconstruction from line drawings is
usually formulated as an optimization problem. Marill
proposed a criterion of minimizing the standard deviation
of the angles in the reconstructed object so that a 2D line
drawing can be inflated into a 3D shape [2]. Later, more
criteria, such as line parallelism, face planarity, object
symmetry, and so on, were proposed to do 3D reconstruc-
tion [1], [9], [11], [15], [18], [20], [21], [31], [32], [33]. The
methods in [26], [34], and [35] use line labeling and shading
information to recover the visible surfaces of 3D polyhedra
in images from the edges of these polyhedra. Recently,
some attempts [32], [33], [36] were made to recover a
complete solid from a line drawing with visible lines only,
but these methods are only applicable to simple objects.
Almost all previous work on 3D reconstruction from line
drawings focuses on planar-faced objects.

Published by the IEEE Computer Society

(@) (b)

Fig. 1. Decomposition of a line drawing and illustration of some terms.
(a) Cycle (1,3,4,1) is a real face. The four shadowed cycles f;_, are
internal faces. Edges {10,16} and {8,14} are two artificial lines
indicating the coplanarity of cycles (6,7,9,11,6) and (12,13,15,17,12).
Edge {1, 2} is a chord of cycle (1,5, 2, 3,1). Two real faces (1, 3,4, 1) and
(1,2,5,1) are connected. Edge {5,4} and the real face (1,3,4,1) are
connected. (b) Four simpler line drawings are decomposed from the four
internal faces f;_, in (a).

In previous optimization-based methods, the variables of
the objective functions are the missing depths of the vertices
of aline drawing. These methods work well for simple objects
with a small number N of the variables. As N grows,
however, it is very difficult for them to find expected objects.
This is because, with the nonlinear objective functions in a
space of large dimension N, the search for optimal solutions
can easily get trapped into local minima. To handle this
problem, Liu etal. proposed finding much lower dimensional
search spaces where desired objects can be found more easily
[9]. This method can tackle 3D reconstruction of more
complex objects than previous methods. From [9], we know
that the size (dimension) of the search space depends on the
degree of reconstruction freedom (DRF) of a line drawing,
and the DRF usually increases when the number of the
internal faces (see the next section for its definition) of the
object increases. In a high-dimensional space, the search for
desired objects becomes difficult [9]. Our experiments show
that the algorithm in [9] still often fails to obtain an expected
3D object from a line drawing when the geometry of the object
becomes more complex with many faces and internal faces.

In this paper, we propose a divide-and-conquer strategy
to handle the 3D reconstruction of complex planar-faced
manifold objects from line drawings, which is the compre-
hensive version of our preliminary work published in [10].
In addition to the contents in [10], we discuss how to find
internal faces, prove the existence and uniqueness of the
partition of a line drawing along an internal face, and
provide more experiments. Manifolds belong to a class of
most common solids, the definition of which is given in the
next section. This approach is based on the fact that a
complex object' is in general the combination of less
complex objects, each of which is easier to recover. Fig. 1
shows an example where a line drawing is decomposed into
four simpler ones. Obviously, the 3D reconstruction from
each of them is an easier task than the reconstruction from
the original line drawing. Our approach includes four steps:

1. The complexity of an object is an ambiguous term. In this paper, we
say that a manifold object is complex if it has both more than 30 faces and
nontrihedral vertices, which causes internal faces or holes.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 1,

JANUARY 2011

1. identifying the internal faces of an input line drawing,
2. decomposing the line drawing into less complex
ones based on the internal faces,
3. reconstructing the 3D shape from each of these
simpler line drawings, and
4. merging these 3D shapes into a complete object.
The rest of this paper is organized as follows: Section 2
states the assumptions for the reconstruction problem and
defines terms that are frequently used in the paper. In
Section 3, we propose our method for the decomposition of
a complex line drawing into simpler ones. Section 4
presents the reconstruction algorithm for merging the 3D
objects that are recovered from the simpler line drawings.
Our experimental results are shown in Section 5, and
finally, Section 6 concludes the paper.

2 ASSUMPTIONS AND TERMINOLOGY

In this paper, we focus on a class of common solids, called
manifolds, with planar faces. A line drawing, represented by
a single edge-vertex graph with the known z and
y coordinates of the vertices, is the parallel or near-parallel
projection of the edges of a manifold in a generic view where
all of the edges and vertices of the manifold are visible. The
generic view assumption means that the topology of the line
drawing is preserved under small variations of the view-
point, which is the assumption made in most previous
related work. We also assume that all of the faces of the
manifold have been identified from its input line drawing.
Face identification from line drawings with hidden lines
visible has been studied extensively [1], [6], [7], [8], [12], [13],
[14], [30], and the algorithms developed in [7] and [30] can be
used to find the faces from a line drawing. For better
understanding of the contents in the following sections, we
here summarize the terms that appear in the rest of the paper.
Many of them are illustrated with the line drawings in Fig. 1.

e Manifold. A manifold, or more rigorously two-
manifold, is a solid where every point on its surface
has a neighborhood topologically equivalent to an
open disk in the 2D euclidean space [37]. This paper
considers such manifolds that are made up of flat
surfaces. A basic property of a manifold is that each
edge is shared by exactly two faces [38].

e Face (real face). A face is one of the flat surfaces that
make up a manifold. In what follows, we call it a real
face to distinguish it from an internal face.

e Internal face. An internal face is an imaginary face
lying entirely inside a manifold M with only its
edges visible on the surface. It is not a real face, but
can be considered as two coincident real faces of
identical shape belonging to two manifolds or two
parts of the same manifold which have been glued
together to build M.

e Edge. An edge of a line drawing is the intersection of
two noncoplanar real faces. An edge e is also denoted
by {ve1, ve2 }, where v,y and v, are two vertices of e.

e Artificial line. An artificial line is a line used to
indicate the coplanar relationship of two cycles.

e Cycle. A cycle is formed by a sequence of vertices
vy, V1, - - -, Un, Where n > 3, vy = v, the n vertices are
distinct, and there exists an edge connecting v; and

LIU ET AL.: DECOMPOSITION OF COMPLEX LINE DRAWINGS WITH HIDDEN LINES FOR 3D PLANAR-FACED MANIFOLD OBJECT... 5

vip1 for i=0,1,...,n—1. A cycle is denoted by
(vo,v1,- .., vy,). Since the boundary of a face is a cycle,
a face is denoted the same way as a cycle.

e Chord. A chord of a cycle is an edge that connects
two nonadjacent vertices of the cycle.

e Vertexsetofacycle. The vertexset Ver(C) ofacycle C
is the set of all the vertices of C.

e Edgesetofacycle. Theedgeset Edge(C)ofacycleC is
the set of all the edges of C.

e Connected faces. Two faces f, and f, are called
connected if Ver(f,) NVer(f,) # 0.

e Connected edge and face. An edge e = {v.1, v} is
called connected to a face f if {ve1,vea} N Ver(f) # 0
and e ¢ Edge(f).

e Partition of a set. Given a nonempty set S, a partition
Pg = {51, S»} is a set of two nonempty subsets S} and
Sy of S such that S; US; = Sand S; NSy = 0.

An internal face is where two separate manifolds (or two
parts of one manifold) are glued together. It may be
nonplanar. However, we treat all of the internal faces as
planar in this paper, which is true for most manifolds with
internal faces. The advantage of this treatment is that when
an object is separated along an internal face, this internal
face becomes a real planar face and the decomposed line
drawings still represent planar-faced manifolds.

3 DECOMPOSITION OF A LINE DRAWING

There are many ways to separate the edge-vertex graph of a
line drawing into multiple smaller graphs. However, these
graphs are meaningless if they do not represent real objects.
Obviously, it is desirable that each of the separated line
drawings still represents a manifold. We have this as a
requirement to design our method for line drawing
decomposition. By observing numerous complex objects,
especially man-made objects, we can see that most of them
are formed by gluing two or more smaller objects together,
resulting in internal faces. Therefore, our strategy is to find
the internal faces from a line drawing first and then
decompose it along the internal faces.

3.1 Classification of Internal Faces

Letan internal face f* be generated by gluing two real faces f;
and f>. Let C; and C) be the two cycles corresponding to f;
and f>, respectively, in the original line drawing. We can
classify f* into one of the two types: 1) C; and C5 have no
contact, and 2) C; and C, have contact (partly or
completely). Fig. 1a shows four examples of internal faces,
in which f; belongs to type 1 and f;, f;, and f; belong to
type 2. For f;, Ci and C; merge into one in the line drawing,.

3.2 Decomposition along Internal Faces of Type 1

When f* belongs to type 1, since C; and C, do not touch,
additional information must be used to indicate the
coplanarity of C and Cj so that correct face identification
and reconstruction from the line drawing are possible. Using
artificial lines to indicate this coplanarity is the simplest and
most straightforward way, which has been used in solid
modeling [7], [13]. Two artificial lines connecting two edges
of C) to two edges of C; are added by the user who designs
the line drawing. Note that, in general, one artificial line is

Fig. 2. Part of a line drawing with an artificial line {v, v.}.

not enough to indicate the coplanarity because each edge is
shared by two real faces in a manifold.

For an internal face of type 1, if we can detect the two
artificial lines, then we can remove them and thus
decompose the line drawing along this internal face. In
fact, the detection of artificial lines is not difficult, as
described below.

Let {v,v,}, {v,u}, and {v,v.} be the three edges
connected to a vertex v of degree 3, as shown in Fig. 2. If
{v,v,} and {v, v} are collinear, then {v,v.} is an artificial
line. This statement is easy to verify.

Assume, on the contrary, that {v,v.} is not an artificial
line but an edge. Since the line drawing denotes a manifold,
every edge is passed through by two real faces and, hence,
three real faces fi, fo, and f; pass through v (see Fig. 2).
According to the assumption that the line drawing is the
projection of a manifold in a generic view, the three vertices
vq, v, and v are also collinear in 3D space. Thus, the straight
line T,vv, and vertex v, define a plane in 3D space, implying
that f, and f; are coplanar, which contradicts the definition
that an edge is the intersection of two noncoplanar real
faces. Therefore, {v,v.} is an artificial line.

After artificial lines are detected, they are removed from
the line drawing. Note that when an artificial line is
removed, its two vertices in the original line drawing are
also removed. For example, when the artificial line {10, 16}
in Fig. 1a is removed, the two collinear edges {11,10} and
{10,9} become one edge {11,9}. An internal face of type 1
turns out to be a real face in the decomposed line drawing.
The face (6,7,9,11,6) in Fig. 1b is such an example.

3.3 Detecting Internal Faces of Type 2

Even with the real faces known from a line drawing,
detecting internal faces of type 2 is not a trivial problem. In
this paper, the detection is performed through a cycle-
searching scheme. Since exhaustive searching is computa-
tionally expensive, we here develop properties related to
internal faces of type 2 so that most cycles that cannot be
such an internal face can be eliminated during the search.
In the rest of Section 3, we only consider internal faces of
type 2. For concision, we simply use “internal face(s)” to
denote “internal face(s) of type 2”. When we say two cycles
overlap, we mean that their enclosed regions overlap on the
2D line drawing plane. The first two properties below come
from the definition and observation of common internal faces.
They are useful to develop other subsequent properties. The
assumption that all internal faces are planar is also implied.

Property 1. An internal face except its boundary is invisible from
any viewpoint.

Property 2. Two coplanar internal faces do not overlap.

Property 3. A self-intersecting cycle is not an internal face.

Fig. 3. (a) A cycle Cy =(f,a,b,...,c,de,...f) with a chord {a,d}
enclosed completely by C;. (b) Another cycle Cy = (f,a,b...c,e,d,
g,- .. f) with a chord {a,d} enclosed partially by C5.

Proof. Since the projection of the boundary of a planar face
cannot form a self-intersecting cycle [7], an internal face,
which is formed by gluing the real faces of two planar
manifolds, cannot be self-intersecting either.]

Property 4. If two cycles share two or more noncollinear edges
and overlap, then they cannot both be internal faces.

Proof. Since the two cycles share two or more noncollinear
edges, they must be coplanar if they are internal faces.
From Property 2, they cannot both be internal faces. 0O

Property 5. A cycle cannot be an internal face if the cycle has a
chord that is completely or partially enclosed inside the cycle.

Proof. If this cycle is an internal face (see Fig. 3), the chord is
obviously on the same plane with the cycle. An edge of a
line drawing lies on the surface of the manifold and is
visible from a certain viewpoint in 3D space. Hence, it
causes an interior part of the internal face to be visible,
which contradicts Property 1.]

Property 6. A cycle cannot be an internal face if this cycle and a
real face share two or more noncollinear edges and they have an
overlapping region.

Proof. If this cycle is an internal face and shares two or more
noncollinear edges with a real face, then the cycle and
the real face lie on the same plane. If they further have an
overlapping region in the line drawing, then this region
is visible, which contradicts Property 1.]

Property 7. A cycle cannot be an internal face if this cycle and a
real face share two or more noncollinear edges and they have
edges intersecting in the line drawing.

Proof. If this cycle is an internal face and shares two or
more noncollinear edges with a real face, then the cycle
and the real face lie on the same plane. If they further
have intersecting edges, then part of the real face must
be enclosed by the internal face, which contradicts
Property 1. O
Fig. 4 shows several cases where a cycle and a real face

share two noncollinear edges and they have an overlapping

region in the line drawing. In fact, Property 7 is a special case
of Property 6. It is stated explicitly as a separate property
because it can be used to reduce fruitless search for internal
faces before a path becomes a cycle. For other cases such as

Figs. 4b, 4c, and 4d, where the cycle and the real face have no

intersecting edges, the cycle can be determined not to be an

internal face after the cycle is formed.

Property 8. A cycle cannot be an internal face if 1) this cycle
shares two or more noncollinear edges with a real face and
shares another two or more noncollinear edges with another

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 1,

JANUARY 2011

(a) (b) (c) (d)

Fig. 4. Several cases where a cycle C and a real face f share two
noncollinear edges and they have an overlapping region in the line
drawing. (a) C and f have intersecting edges. (b)-(d) C' and f have an
overlapping region without intersecting edges.

real face, and 2) the two real faces share an edge or they have an
overlapping region.

Proof. Let the cycle, the two real faces, be C, fi, and f,,
respectively. Assume, on the contrary, that C'is an internal
face. From the first condition, we know that C, f;,and fs all
lie on the same plane. If f; and f; share an edge, as shown
in Fig. 5a, the definition that an edge is the intersection of
two noncoplanar real faces is violated. In another case, f;
and f> overlap, as shown in Fig. 5b. However, two coplanar
real faces of an manifold must not overlap in the line
drawing. Therefore, C cannot be an internal face. 0
With these properties, we can develop an algorithm to

detect the internal faces of a line drawing, which is
summarized in Algorithm 1. It is a depth-first search
algorithm with the properties incorporated to guide the
search. The properties can cut most fruitless branches during
the search, and thus considerably speed up the algorithm.

Algorithm 1. Depth-first search of internal faces.
Input: An line drawing £ = (V, &, F) where V, £, and F are
the sets of vertices, edges, and real faces, respectively, the
adjacency lists AdjList(v) for every vertex v € V, a 2D array
Shortest(v,vy) indicating the length of the shortest path
between any two vertices v; and v, and the maximum
search depth D,
1) Initialization: F* « (J; Label(v) < 0, for every vertex
vey;
2) for every edge {u,v} € £ do
a) index — 1; Label(u) « 1; Label(v) — 1;
b) Path(0) — v; Path(1l) < u;
c) for every vertex w; € AdjList(u) and w; # v
do INTERNAL(u,w;);
d) Path(0) < w; Path(l) < v;
e) for every vertex wy € AdjList(v) and wy # u
do INTERNAL(v,ws);
3) Detect if there are incompatible internal faces in F~
according to Property 4;

Fig. 5. A cycle C sharing two noncollinear edges with two real faces f;
and f,. (@) fi and f, having a common edge {a,b}. (b) f, and f>
overlapping.

LIU ET AL.: DECOMPOSITION OF COMPLEX LINE DRAWINGS WITH HIDDEN LINES FOR 3D PLANAR-FACED MANIFOLD OBJECT... 7

Fig. 6. An example where multiple solutions exist.

Output: The set of internal faces in F* if there are no
incompatible internal faces, or the sets of internal faces if
there are incompatible internal faces.
procedure INTERNAL(u,v)
4) index — index + 1; Label(v) — 1;
5) Path(index) «— v;
6) Check if edge {u,v} intersects any previous edges in
Path (according to Property 3). If yes, goto 9;
7) With the set of real faces that share two or more
edges with the current path in Path, check if this path
can form an internal face according to Properties 7
and 8. If no, goto 9;
8) for every vertex w € AdjList(v) and w # u do
a) if Label(w) = 0 and index + Shortest(Path(0), w)
< Diae, then extend the path by calling
INTERNAL(v,w);
b) else if w = Path(0) (a cycle is obtained in this
case) then
i) Check if edge {v, w} intersects any previous
edges in Path (according to Property 3). If yes,
goto 9;
ii) With all the chords of the cycle in Path, check
if this cycle can form an internal face according
to Property 5. If no, goto 9;
iii) With all the real faces, check if this cycle can
form an internal face according to Property 6.
If no, goto 9;
iv) Put this cycle into F™ if it is not a real face and
is not in F* yet;
9) index «— index — 1; Label(v) «— 0;
end of INTERNAL.

In the algorithm, an array Path is used to keep the
vertices in the current search path; the variable index gives
the position of the last-added vertex in Path during the
search. A binary label Label(v) is used for every vertex v to
denote whether v is in Path or not. In practical applications,
we can often set the maximum length D,,,, of internal faces
to avoid fruitless search. D,,,, is used with a 2D array
Shortest in step 8(a), which indicates the smallest number
of edges in a path between any two vertices.

The algorithm starts the search from every edge in the
line drawing (see step 2), and calls the procedure
INTERNAL recursively to detect possible internal faces.
Obviously, this search does not miss any internal faces. In
addition, all of our experiments show that the cycles output
are indeed internal faces, which suggests that the properties
not only speed up the search but also effectively distinguish

(@) (b)

-~0-@

() (d)

Fig. 7. Union and subtraction that generate internal faces. (a) A
manifold. (b) Two manifolds whose union results in the manifold in (a).
(c) Another manifold. (d) Two manifolds with which the subtraction of the
smaller one from the bigger one results in the manifold in (c). C; and C»
are two internal faces.

internal faces from other cycles. The complexity of the
algorithm depends on the structure of a line drawing and is
exponential in the worst case. However, our experiments in
Section 5 indicate that its computational time is acceptable
even for complex line drawings.

For some line drawings, there exist incompatible internal
faces, resulting in multiple solutions from a line drawing
(see step 3 and “Output” in the algorithm). One example is
shown in Fig. 6, which has 15 real faces. From this line
drawing, Algorithm 1 finds three internal faces, C; = (1,2,
3,4,5,6,7,8,1), Co=(1,2,3,4,5,8,1), and C3=(5,8,9, 10, 5).
Since C} and C; are incompatible according to Property 4,
the algorithm finally outputs two solutions: One is C; and
C3 and the other is (5 and (3. Note that when C; is an
internal face, C; and the real face (5,6,7,8,5) are on the
same plane; when C, is an internal face, Cs and this real face
are on different planes.

The reader may wonder why Cj in Fig. 6 is also an
internal face. In fact, holes and cavities may also generate
internal faces, but the definition of internal faces needs to be
extended a little. Here, a hole is one that passes through the
surface of a manifold while a cavity does not. The manifold
in Fig. 1 has a hole, while the manifold in Fig. 6 has a cavity.
Next, we discuss this extension with two simple objects in
Figs. 7a and 7c.

In Section 2, we define an internal face as a face inside a
manifold only with its edges visible on the surface, and it is
formed by gluing two manifolds together. One such example
is shown in Fig. 7a, where C (denoted by the bold cycle) is
the internal face. Obviously, the object in Fig. 7a can be
considered as the union (gluing) of the two smaller objects in
Fig. 7b. In another case, the object shown in Fig. 7c can be
considered as the subtraction of the smaller object from the
bigger object shown in Fig. 7d. Comparing the two line
drawings (a) and (c), we can see that they have very similar
structures and the same topology. The region enclosed by C;
is invisible and is the common part of the two separate
objects in Fig. 7b. There is also such a region enclosed by C

Fig. 8. An example of decomposing a line drawing along its internal
faces. (a) The line drawing with one internal face shadowed. (b) The
correct partition along this internal face. (c) Partitions along the four
internal faces. The hidden edges are shown in dashed lines for easier
observation.

(the bold cycle) that is invisible since it is not a real face and is
the common part of the two objects in Fig. 7d. Therefore, we
also call C, an internal face. Note that Algorithm 1 also finds
it as an internal face because Properties 1-8 do not prevent it
from being so. Now we see that an internal face can be
formed either by gluing two manifolds together or by cutting
a manifold from another. On the other hand, it is easy to
know that gluing two manifolds or cutting a manifold from
another may not necessarily result in an internal face.

The cycle C3 = (5,8,9,10,5) in Fig. 6 is similar to the
cycle C, in Fig. 7c. In Fig. 6, since (' is compatible with both
C and Cy while ¢ and C, are incompatible, Algorithm 1
obtains the two solutions {Cy, C3} and {C5, C5}. Both of them
are valid but lead to different decompositions of the line
drawing, which is discussed at the end of the next section.

3.4 Decomposition along Internal Faces of Type 2
From an internal face, we decompose the line drawing by
recovering the two touching faces that form the internal
face. Given a line drawing and its identified real and
internal faces, it is not a trivial problem to decompose the
line drawing. The main difficulties are: 1) the 3D geometry
of the manifold is not available yet, 2) in the 2D projection,
the lines connecting to an internal face can be in any
direction with respect to the internal face, and 3) when a
line drawing is decomposed into two sides along an
internal face, for a line that is connected to the internal face
in the original line drawing, it is not obvious to which side
this line should be connected. For example, the correct
decomposition of the line drawing along the shadowed
internal face in Fig. 8a is given in Fig. 8b. If the edge {a, b} is
not connected to a; but to ay, then a wrong decomposition
occurs because the real face (a,b, ¢, d, a) is broken after such
a decomposition.

Through the observation of numerous line drawings, we
find that the human decomposition of aline drawing along an
internal face f* always satisfies the following two properties:

Property 9. All of the real faces connected to f* are partitioned
into two sets, Fo(f*) and F(f*).

Property 10. Two real faces sharing a common edge connected to
f* (not including any edge of f*) both appear in either Fo(f*)
or F1(f*).

These two properties are easy to verify based on the
definition of an internal face. Since f* is formed by two

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 1,

JANUARY 2011

Outside Region

Inside Region

Fig. 9. Part of a line drawing where the internal face f* is denoted by the
bold solid and dashed edges, and all of the neighborhoods N,
1 < <t, are stretched into 2D disks.

parts of one manifold or two manifolds, F(f*) and F;(f*)
contain the real faces connected to f* of the two parts,
respectively. Besides, two real faces sharing a common edge
connected to f* belong to one of the two parts instead of
belonging to both parts.

From the decompositions of the line drawings in Fig. 1a
and Fig. 8a, it is easy to see that the resulting line drawings
in Fig. 1b and Fig. 8c satisfy the two properties. Mathema-
tically, we formulate such a decomposition in the following
definition and call it a partition along an internal face.

Definition 1. Let f* bean internal face, F(f*) = { f;};", be theset
of all the m real faces connected to f*,and E(f*) = {e;};_, bethe
set of all the n edges connected to f*. A partition along f* is to
find a face set partition Pr -y = {Fo(f*), F1(f*)} and an edge
set partition Pgpy = {Eo(f*), E1(f*)} simultaneously such
that for any e € E,(f*), it holds that e & Edge(f),Vf €
F1-s(f*), where s = 0,1. This partition along f* is denoted

by Py = (Pr(sy, Pesey)-

The following Property 11 shows that such a partition
along an internal face is unique, and the proof of it leads to
an algorithm to find this partition.

Property 11. The partition along an internal face of a line
drawing representing a manifold exists and is unique.

Proof. Let f* = (v1,v9,...,v;,v1) be the internal face with
t vertices. Let NV, 1 < i < ¢, be a neighborhood around v;
on the surface of the manifold such that \V,,, is topologically
equivalent to a 2D open disk and is small enough so that
only the edges connected to v; are contained in N,,.
According to the definition of a manifold, every NV, can be
stretched into a 2D disk where the real faces passing
through v; are located side by side around v; and do not
overlap, as shown in Fig. 9. Next, we show four properties
after all the AV, have been stretched into 2D disks.

1. Aty 1<i<t, the two edges of f* partition the
real faces passing through v; into two nonempty
sets Fo(v;) and Fi(v;). This is because f* is
formed by gluing two manifolds or two parts of
one manifold (or cutting one from another) and
the real faces in Fy(v;) and F;(v;) belong to the
two manifolds (parts), respectively.

LIU ET AL.: DECOMPOSITION OF COMPLEX LINE DRAWINGS WITH HIDDEN LINES FOR 3D PLANAR-FACED MANIFOLD OBJECT... 9

2. Whenall of the VV,,, 1 < i < ¢, are stretched into 2D
disks and drawn in the 2D plane, f* separates the
2D planeintoinside and outside regions (see Fig.9).
The two faces both passing through edge {v;, v; 41}
in the same region are the same face where1 < < ¢
and v¢;; = v1. Without loss of generality, consider
v; and vy in Fig. 9. We will prove that f; =
(Ug,Ul, b, ey UQ) and fé = (1)1, V2, d7 N ,Ul) are the
same face, and so are f; = (a,v1,v9,...,a) and
f1 = (¢,v9,v1,...,¢). Since each edge is shared by
exactly two real faces, f, can only pass through
edge {vs,d} or edge {vs,c}. However, f, cannot
pass through {vs, ¢} because if we walk clockwise
on the surface of the object along the edges of a
planar real face, the region enclosed by these edges
isalways on our right-hand side. Thus, f; and f} are
the same face, and so are f; and f].

3. If all of the real faces and the edges connected to
f* in the outside region form two sets, F(f*) and
Eo(f*), respectively, and all of the real faces and
the edges connected to f* in the inside region
form another two sets, F1(f*) and &;(f*), respec-
tively, then Py = (Pg(p, Pe(py) with Ppipy =
{Fo(F). Fo(f)} and Pepy = {E(J),E4(f)} is a
partition along f*. From Fig. 9, it is easy to see that
every edge connected to f* (not including the
edges of f*) appears in two real faces that both
belong to the same face set, either Fy(f*) or
Fi(f*). This fact and the above property 1 that
indicates Fo(f*) # 0 and Fi(f*) #0 verify this
property 3, which shows the existence of a
partition Py along f*.

4. The partition Py defined above is unique. Let us
consider whether there are other partitions along
f*. If one or more but not all of the real faces are
removed from F,(f*) and putinto F,_,(f*), where
s =0,1, we can see from Fig. 9 that at least two
edges connected to f* will violate Property 10 thata
partition along f* should satisfy, i.e., the two faces
sharing such an edge do not both appear in either
Fo(f*)or F1(f*).If all of the real faces connected to
f* are putin Fo(f*) or F1(f*), this does not form a
partition along f*. 0

After the partition along f*, f* becomes a new real face in
the two parts separated from f*. It is easy to see from Fig. 9
that every point on the edges of f* has a neighborhood that is
topologically equivalent to an open disk in the 2D euclidean
space. For example, for a point in the middle of edge {vi, v2}
in Fig. 9, the disk is formed by points in f, and the new real
face f*.Itis also true for every point inside f*. Therefore, we
have the following property:

Property 12. After the partition along an internal face, the line
drawing (line drawings) still represents (represent) a manifold
(manifolds).

The proof of Property 11 with Fig. 9 already provides all
of the elements for developing a simple algorithm to find
the partition Py = (Pg(s+), Pg(s+)) along an internal face f*.
The outline of the algorithm is given in Algorithm 2.

(a) (b)

Fig. 10. (a) A line drawing with a hole passing through the internal face
(1,2,3,4,1). (b) The decomposition result of the line drawing.

Algorithm 2. Partition along an internal face.
1) Set Fo(f*), F1(f*), Eo(f*), and &1 (f*) to be empty sets;
2) Put all the real faces connected to f* into Fy(f*);
3) Remove any one face from F,(f*) and put it into
Folf*);
4) for every f € Fi(f*) do

5) if f and any real face in F(f*) share an edge
connected to f* (not including the edges of f*)
then

6) Remove f from F,(f*), put it into F(f*),

and goto 4;

7) Put all the edges that are connected to f* and in the
faces in Fo(f*) and F1(f*) into E(f*) and & (f*),
respectively.

Since there may be more than one internal face in a line
drawing, the algorithm is run repeatedly until all the internal
faces have been split. For the line drawing in Fig. 8a, four
partitions along the four internal faces decompose it into four
simpler line drawings as shown in Fig. 8c.

In Fig. 10, an example is given to show how to decompose
a line drawing of an object with a hole passing through an
internal face. The hole passes through the object and the
internal face (1,2, 3,4, 1). Two artificial lines {a, b} and {c, d}
indicate that two cycles (5,6,7,8,5) and (9,10,11,12,9) are
coplanar. Our algorithm can decompose the line drawing
into three simpler ones, as shown in Fig. 10b. Note that when
the “hole object” (the right one in Fig. 10b) is removed from
the original line drawing, there is no hole in the internal face
(1,2,3,4,1).

Now let us see what decomposition results look like
when Algorithm 1 finds multiple solutions from a line
drawing. Take the line drawing shown in Fig. 6 as an
example in which {C},C3} and {Cs,C5} are two solutions
with C; = (1,2,3,4,5,6,7,8,1), Cy = (1,2,3,4,5,8,1), and
C3; = (5,8,9,10,5). For convenient observation, it is re-
drawn in Fig. 11a.

Consider the first solution {C;,Cs} and suppose that
Algorithm 2 does the partition beginning with C;. Then the
resultis shown in Fig. 11b. Note that since C'; has been broken
in Fig. 11b, a partition based on it is impossible. Furthermore,
since the two line drawings in Fig. 11b have no internal faces,
the result in Fig. 11b is final. Now suppose that Algorithm 2
starts with C5 instead of C. The first partition result is shown
in Fig. 11c. Again C has been broken after the first partition
and a partition based on it is impossible. However, from the
bigger line drawing in Fig. 11c, Algorithm 1 can find an

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 1,

) L
(a) (b) (c)
(d) (e))
Fig. 11. (a) The original line drawing. (b) Partition result along C; from
(a). (c) Partition result along C5 from (a). (d) Further partition result along

Cy from (c). (e) Partition result along C, from (a). (f) Further partition
result along C5 from (e).

internal face Cy = (1,2, 3,4, 1). Therefore, Algorithm 2 per-
forms the second partition along C; and the final result is
given in Fig. 11d.

Consider the second solution {C5, C3} and suppose that
Algorithm 2 carries out the partition along C; first. The result
is shown in Fig. 11e. Since Cj is not broken in the upper line
drawing in Fig. 11e, further partition along it is performed
and the final result is generated as shown in Fig. 11f. If
Algorithm 2 starts the partition along Cs first and then along
C,, the same final result as the one in Fig. 11f will be obtained.

From this example, we can see that even though we have
proven that the partition along any internal face is unique,
we may obtain multiple decompositions of a line drawing
when the line drawing has more than one internal face. In
this example, since the results in Figs. 11d and 11f are the
same, there are only two different decomposition results, as
shown in Figs. 11b and 11d. It should be mentioned that
although we have two different decompositions from this
line drawing, after combining the manifolds reconstructed
from these separate line drawings by our 3D reconstruction
method described in the next section, the two combined 3D
manifolds based on the two decompositions can be
expected to have similar 3D shapes.

4 3D RECONSTRUCTION

After decomposing a line drawing along its internal faces of
type 1 or 2 (see Section 3.1), we obtain several simpler line
drawings, each representing a part of the 3D manifold. Our
strategy to obtain the manifold is to reconstruct the 3D
shapes from these simpler line drawings first and then
merge these 3D shapes together.

As most of the previous methods for 3D reconstruction
from a line drawing, we consider that a line drawing is a
parallel or near parallel projection of the edges and vertices of
a 3D manifold in a generic view. Thus, the x and y coordinates
of each vertex are already known, and only the depth
(z coordinate) needs to be derived. Since the cycles of the real

JANUARY 2011

faces are already available too, the surface of the 3D manifold
is recovered if the depths of all the vertices are obtained.
The five steps to reconstruct a complete object from a line
drawing are listed in Algorithm 3. Among previous
methods, the one in [9] can handle 3D reconstruction from
simple line drawings most efficiently. So we use it to carry
out steps 3 and 5, with five regularities used for the 3D
geometry reconstruction, which are minimizing the stan-
dard deviation of angles in the reconstructed object, face
planarity, line parallelism, isometry, and corner orthogon-
ality [1], [2], [9], [18]. Step 5 is performed on the complete
object with the merged object as the initial shape. Our
experiments show that using this step usually generates a
better result. When there are multiple decompositions of a
line drawing, as discussed in Section 3.4, we can either do
the reconstruction from all of these decompositions and
output multiple complete manifolds, or just pick any one
decomposition to carry out the 3D reconstruction. In the
remainder of this section, we give the details of step 4.

Algorithm 3. 3D reconstruction from a line drawing.

1) Find all the internal faces of an input line drawing;

2) Decompose the line drawing along the internal
faces;

3) Reconstruct the 3D objects from these decomposed
line drawings independently;

4) Merge these 3D objects to form a complete object;

5) Fine-tune the complete object.

When all of the 3D simple manifolds are available, the
next step is to combine them in an appropriate way so that a
complete 3D object is obtained. The basic idea of our merging
process is to well match two manifolds” real faces that
correspond to one internal face of the original line drawing.

Suppose that two 3D manifolds O, and O, share an
internal face f* with K vertices in the original line drawing,
the depths of all O,’s vertices are z,, za2, - - -, z4n,, and the
depths of all of O}’s vertices are zy1, 22, - - . , zn, - Without loss
of generality, also suppose that 2,1, 242, - - . , zax are the depths
of f*’s vertices in O,, and zj1, 22, . . ., 2k are the depths of
f*’s vertices in Oy, where z,, corresponds to z,, 1 <1i < K.
Since O, and Oy, are reconstructed independently, we usually
have a large difference between z, and z,, 1 <¢ < K, and
different sizes of f*in O, and O,. We align them according to
the depth means (1, and ;) and the standard deviations (o,
and o) of f*in O, and Oy, where

1 & ,
/’LJ:_ZZ]H]:a7b7 (1)
Ki:1

1 & ‘
= (- m)s i=ab. (2)
i=1

While fixing O,, we modify the depths of all the vertices of
O, by

Z;i:)ub_‘_?(zui_;ua)? i:1727"'7Nu' (3)

a

LIU ET AL.: DECOMPOSITION OF COMPLEX LINE DRAWINGS WITH HIDDEN LINES FOR 3D PLANAR-FACED MANIFOLD OBJECT... 11

5y e

Fig. 12. (a) A line drawing. (b) Two decomposed line drawings.
(c) Incompatible objects O,; and O,,. (d) Compatible object O, and O,.

Finally, O, and O, are merged by forcing their correspond-
ing vertex depths of f* to be the same:
" y_ Zai T i

Zm':zbi: 2 s 221727,[((4)

Our visual system can interpret a line drawing as a 3D
object in two ways, which is well known as the Necker cube
reversal perception, and this phenomenon also exists in 3D
reconstruction from a line drawing [2]. One example is shown
inFig. 12, where the lower line drawing in Fig. 12b may lead to
one of the two 3D objects O, in Fig. 12c and O, in Fig. 12d.
Incompatible combination of O,; and Oy happens. To solve
this problem, we can turn O, into O,2 by multiplying by —1
all the depths of the vertices of O,;. Before doing this, we need
to check if two objects O, and O, are compatible. Let

s =san((3 = e~) 6

i=1

If s =1, O, and Oy, are compatible; if s = —1, O, and O, are
not. Step 4 can be generalized to the case in which O, and
O, share more than one internal face.

It is not difficult to understand adding objects together.
In the last section, we also talk about subtracting one object
from another. One example is in Fig. 7d. In fact, the
subtraction and the addition of objects in 3D reconstruction
work the same way. We always merge objects from their
common faces (internal faces). Since we already know the
face topology from the original line drawing, we can show
the surface of the reconstructed 3D object correctly. For the
object in Fig. 7c, the area enclosed by the cycle C, is not on
the surface of the object because it is not a face.

5 EXPERIMENTAL RESULTS

This section shows a set of examples to demonstrate the
performance of our approach. The algorithms are imple-
mented using Visual C++, running on a PC with an Intel
Core(TM)2 Quad CPU Q6600 @ 2.4 GHz (only one CPU is
used). The maximum search depth D,,,, in Algorithm 1 is
set to 10.

For some line drawings, there are multiple decomposi-
tions. Let us take the one in Fig. 11a as an example. Fig. 13
shows the two reconstruction results (each displayed in
three views) based on the two decompositions in Figs. 11b
and 11f. Although the two decompositions are different, the
two final complete objects, as expected, do look similar.

4

(b)
(d) (e) U]
Fig. 13. (a)-(c) The reconstruction result based on the decomposition in

Fig. 11b, displayed in three views. (d)-(f) Another reconstruction result
based on the decomposition in Fig. 11f, displayed in three views.

q

The two objects in the views in Figs. 13a and 13d result in
the same projection (the original line drawing), which is
called the original view. Even though the two shapes look
similar, they are not exactly the same. We may use the
following formula to measure the difference between them in
their original view:

6(Oq, Op) mln{ Z |2ai — (20 + € \} (6)

where O, and O, denote the two objects, n is the number of
vertices of each object, and z,;'s and ;s are the z coordinates
(depths) of the two objects, respectively, with z,; correspond-
ing to z,, 1 <i<mn. Since the corresponding z and
y coordinates of the objects in their original view are the
same, we only need to compare the differences between their
corresponding z coordinates. Note that if a line drawing
comes from the projection of an object O(z1, 22, . . ., 2,), then it
is also the projection of the object shifted along the z axis by
some amount ¢, i.e.,, O(z; +¢,23 +¢, ..., 2, +¢). This is why
the ¢ in (6) is used. To compute 6, the range of ¢ is easy to
determine according to the ranges of the z coordinates of the
two objects.

For the two objects in Figs. 13a and 13d, the size of their
projections (i.e., the line drawing in Fig. 11a) is 161 x 185.
The average difference ¢ of their z coordinates is 6.3.

Fig. 14 shows a set of complex line drawings. There is only
one decomposition from line drawing (a), (e), (f), or (g), but
there are 8, 4, 8, and 4 decompositions from line drawings (b),
(c), (d), and (h), respectively. In Fig. 14, only one decomposi-
tion of each line drawing is given, together with the
reconstructed 3D object displayed in two views. From these
results, we can see that our algorithm successfully decom-
poses the line drawings and generates desired 3D objects. It
should be emphasized that the objects in Fig. 14 are more
complex than the objects given in the previous related papers,
in terms of the numbers of real faces and internal faces.

The method in [9] can do 3D reconstruction of more
complex objects than other previous methods. However, it

12 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 1,

—m—m—\g‘

£A
Vmy, =0
Com N 1
)

1 VA v v —

,“"\"A

()

JANUARY 2011

Fig. 14. A set of complex line drawings and their decomposition and reconstruction results.

is still unable to handle these complex line drawings due to
too many real and internal faces in each object. From [9], we
know that the dimension of the object search space depends
on the number of the internal faces of an object. A high
dimensional search space renders the search for desired
objects more difficult [9]. For example, from the line
drawing (e) in Fig. 14, the algorithm in [9] generates an

unexpected result as shown in Fig. 15. On the contrary, the
3D objects are easy to reconstruct from the decomposed
simple line drawings, and the combination of them into one
is not difficult.

From the 3D reconstruction results in Fig. 14, we can see
that some are not perfect. For example, in the two second
views of the results reconstructed from Figs. 14g and 14h, the

LIU ET AL.: DECOMPOSITION OF COMPLEX LINE DRAWINGS WITH HIDDEN LINES FOR 3D PLANAR-FACED MANIFOLD OBJECT... 13

Fig. 15. A failed result in two views reconstructed from the line drawing
(e) in Fig. 14 by the algorithm in [9].

88
v

() (d) (e)

Fig. 16. (a) The line drawing of an irregular object. (b) Decomposition
result. (c)-(e) Reconstruction result displayed in three views.

TABLE 1
Times (Seconds) Taken by Searching
for the Internal Faces (T1) and Fine-Tuning
the Complete Objects (T2) for the Line Drawings in Fig. 14

a|b[c|d]e f |l gl|h
TI [3]4[11]9 8|23]6
12 |3]16] 5 8211415] 32

four walls of the castle are a little twisted and the two ends of
the base of the house are not of the same thickness. These
imperfections come from several factors: inaccurate sketches
of line drawings, the superstrictness problem in this
reconstruction problem [9], approximately optimal solutions
obtained by the optimization algorithm used in steps 3) and 5)
in Algorithm 3, and the imperfect regularities used to
construct the objective function for 3D reconstruction [9], [18].

Common man-made objects such as those in Fig. 14 are
usually symmetric or regular with parallel or perpendicular
faces. Our algorithm can also cope with irregular objects.
Fig. 16a shows the line drawing of such an object. The
decomposition and reconstruction results are shown in
Figs. 16b, 16c, 16d, and 16e.

The computational time of Algorithm 3 varies with
different drawings, depending on their complexity. The
main computational cost comes from steps 1 and 5. Table 1
lists the times taken by these two steps for all the line
drawings in Fig. 14.

Fig. 17. Seven line drawings of increasing size denoted by seven loops.

Time (seconds)

2 L 22.712

20 |
18 |
16 |-
14 -
12+

17.505

13.142

7.830

0.138 L L ! L L L
1 2 3 4 5 6 7

Object

Fig. 18. The time used by Algorithm 1 to find the internal faces of the line
drawings in Fig. 17.

The next experiment is to show how the computational
time of Algorithm 1 varies for line drawings of increasing
size. In Fig. 17, seven objects O;_7 (line drawings) are denoted
by seven loops with O; C O;41, 1 <i < 6. They are shown
this way to save space. The time used to find the internal faces
of each object is plotted in Fig. 18. It can be seen that the time
is not an exponential function of the size for these line
drawings, indicating the usefulness of the proposed proper-
ties and the efficiency of Algorithm 1 for internal face
identification, even though the numbers of non-self-inter-
secting cycles (potential internal faces) of these line drawings
increase exponentially. For O, _s, these numbers are 79, 5,310,
368,465, 4,479,584, and 50,108,386, respectively.

There are two kinds of objects that Algorithm 1 cannot
decompose: objects without internal faces, such as the one in
Fig. 19a, and objects whose internal faces are self-intersect-
ing, such as the one in Fig. 19b with the self-intersecting
internal face (1,2,3,4,1). Here, we explain more about the
second case. In this paper, we reconstruct 3D planar-faced

14 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 1,

(c) (d) (e)

Fig. 19. (a) An object without internal faces. (b) An object with a self-
intersecting internal face. (c)-(e) Objects with non-self-intersecting
internal faces.

manifold objects from line drawings. It is reasonable to
assume that internal faces are also planar and thus non-self-
intersecting. If internal faces are allowed to be self-intersect-
ing, two problems will occur: 1) Without the non-self-
intersecting constraint, many more cycles in a complex line
drawing can be the candidates of internal faces and it is
difficult to determine the internal faces. 2) When a line
drawing is decomposed, their internal faces become real
faces in the decomposed line drawings. These self-intersect-
ing real faces may cause previous 3D reconstruction methods
to fail because they are based on planar non-self-intersecting
faces. In Figs. 19¢, 19d, and 19, the internal faces (1, 2, 3,4, 1)
are not self-intersecting and our algorithm can handle them
easily. Dealing with the cases as in Figs. 19a and 19b is part of
the future work.

6 CONCLUSION

In this paper, we have proposed a novel divide-and-
conquer approach to complex 3D planar-faced manifold
reconstruction from single line drawings. Our strategy is to

1. identify the internal faces of an input line drawing,

2. decompose the line drawing into simpler ones along

its internal faces,

3. reconstruct the 3D shapes from these simpler line

drawings, and

4. merge the shapes into a complete object.

The experiments show that our approach can handle more
complex objects than previous methods.

Future work includes 1) the improvement of the
computational efficiency of the approach, 2) the beautifica-
tion of the reconstructed objects, and 3) the extension of the
work to handle more general planar-faced objects and
objects with curved faces.

ACKNOWLEDGMENTS

This work was supported by grants from Natural Science
Foundation of China (No. 60975029, 61070148), the Research
Grants Council of the Hong Kong SAR, China (Project

JANUARY 2011

No. CUHK 415408), and the Shenzhen Bureau of Science
Technology & Information, China (No. JC200903180635A).

REFERENCES

[1] Y. Leclerc and M. Fischler, “An Optimization-Based Approach to
the Interpretation of Single Line Drawings as 3D Wire Frames,”
Int’l]. Computer Vision, vol. 9, no. 2, pp. 113-136, 1992.

[2] T.Marill, “Emulating the Human Interpretation of Line-Drawings
as Three-Dimensional Objects,” Int’l]. Computer Vision, vol. 6,
no. 2, pp. 147-161, 1991.

[3] K. Sugihara, “A Necessary and Sufficient Condition for a Picture
to Represent a Polyhedral Scene,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 6, no. 5, pp. 578-586, Sept. 1984.

[4] K. Sugihara, Machine Interpretation of Line Drawings. MIT Press,
1986.

[5] L. Ros and F. Thomas, “Overcoming Superstrictness in Line
Drawing Interpretation,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 24, no. 4, pp. 456-466, Apr. 2002.

[6] J.Liuand Y. Lee, “A Graph-Based Method for Face Identification
from a Single 2D Line Drawing,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 23, no. 10, pp. 1106-1119, Oct. 2001.

[7] J. Liu, Y. Lee, and W.K. Cham, “Identifying Faces in a 2D Line
Drawing Representing a Manifold Object,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 24, no. 12, pp. 1579-1593,
Dec. 2002.

[8] J. Liu and X. Tang, “Evolutionary Search for Faces from Line
Drawings,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 27, no. 6, pp. 861-872, June 2005.

[9] J. Liu, L. Cao, Z. Li, and X. Tang, “Plane-Based Optimization for
3D Object Reconstruction from Single Line Drawings,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 2,
pp. 315-327, Feb. 2008.

[10] Y. Chen,]. Liu, and X. Tang, “A Divide-and-Conquer Approach to
3D Object Reconstruction from Line Drawings,” Proc. IEEE Int’l
Conf. Computer Vision, 2007.

[11] K. Shoji, K. Kato, and F. Toyama, “3-D Interpretation of Single
Line Drawings Based on Entropy Minimization Principle,” Proc.
IEEE Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 90-
95, 2001.

[12] M. Shpitalni and H. Lipson, “Identification of Faces in a 2D Line
Drawing Projection of a Wireframe Object,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 18, no. 10, pp. 1000-1012, Oct.
1996.

[13] S.C. Agarwal and J.W.N. Waggenspack, “Decomposition Method
for Extracting Face Topologies from Wireframe Models,” Compu-
ter-Aided Design, vol. 24, no. 3, pp. 123-140, 1992.

[14] S. Bagali and J. Waggenspack, “A Shortest Path Approach to
Wireframe to Solid Model Conversion,” Proc. Third Symp. Solid
Modeling and Application, pp. 339-349, 1995.

[15] P. Company, M. Contero, J. Conesa, and A. Piquer, “An
Optimisation-Based Reconstruction Engine for 3D Modeling by
Sketching,” Computers & Graphics, vol. 28, pp. 955-979, 2004.

[16] P. Company, A. Piquer, M. Contero, and F. Naya, “A Survey on
Geometrical Reconstruction as a Core Technology to Sketch-Based
Modeling,” Computer & Graphics, vol. 29, no. 6, pp. 892-904, 2005.

[17] P. Debevec, C. Yaylor, and J. Malik, “Modeling and Rendering
Architecture from Photograph: A Hybrid Geometry and Image-
Based Approach,” Proc. ACM SIGGRAPH '96, pp. 11-20, 1996.

[18] H. Lipson and M. Shpitalni, “Optimization-Based Reconstruction
of a 3D Object from a Single Freehand Line Drawing,” Computer-
Aided Design, vol. 28, no. 8, pp. 651-663, 1996.

[19] P. Min, J. Chen, and T. Funkhouser, “A 2D Sketch Interface for a
3D Model Search Engine,” Proc. ACM SIGGRAPH ‘02, Technical
Sketches, p. 138, 2002.

[20] A. Turner, D. Chapman, and A. Penn, “Sketching Space,”
Computer and Graphics, vol. 24, pp. 869-879, 2000.

[21] A. Piquer, RR. Martin, and P. Company, “Using Skewed Mirror
Symmetry for Optimisation-Based 3D Line-Drawing Recogni-
tion,” Proc. Fifth IAPR Int’l Workshop Graphics Recognition, pp. 182-
193, 2003.

[22] S. Ortiz, “3D Searching Starts to Take Shape,” Computer, vol. 37,
no. 8, pp. 24-26, 2004.

LIU ET AL.: DECOMPOSITION OF COMPLEX LINE DRAWINGS WITH HIDDEN LINES FOR 3D PLANAR-FACED MANIFOLD OBJECT... 15

(23]

[24]
[25]
(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

[37]
[38]

L. Cao, J. Liu, and X. Tang, “3D Object Retrieval Using 2D Line
Drawing and Graph Based Relevance Feedback,” Proc. ACM Int’l
Conf. Multimedia, pp. 105-108, 2006.

M. Clowes, “On Seeing Things,” Artificial Intelligence, vol. 2,
pp. 79-116, 1971.

D. Huffman, “Impossible Objects as Nonsense Sentences,”
Machine Intelligence, vol. 6, pp. 295-323, 1971.

K. Sugihara, “An Algebraic Approach to Shape-from-Image
Problem,” Artificial Intelligence, vol. 23, pp. 59-95, 1984.

M.C. Cooper, “Wireframe Projections: Physical Realisability of
Curved Objects and Unambiguous Reconstruction of Simple
Polyhedra,” Int’l |. Computer Vision, vol. 64, no. 1, pp. 69-88, 2005.
M.C. Cooper, “Constraints between Distant Lines in the Labelling
of Line Drawings of Polyhedral Scenes,” Int’l . Computer Vision,
vol. 73, no. 2, pp. 195-212, 2007.

M.C. Cooper, “A Rich Discrete Labeling Scheme for Line
Drawings of Curved Objects,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 30, no. 4, pp. 741-745, Apr. 2008.

H. Li, Q. Wang, L. Zhao, Y. Chen, and L. Huang, “nD Object
Representation and Detection from Single 2D Line Drawing,”
Lecture Notes in Computer Science, vol. 3519, pp. 363-382. Springer,
2005.

P.A.C. Varley and R.R. Martin, “Estimating Depth from Line
Drawings,” Proc. Seventh ACM Symp. Solid Modeling and Applica-
tion, pp. 180-191, 2002.

L. Cao, J. Liu, and X. Tang, “3D Object Reconstruction from a
Single 2D Line Drawing without Hidden Lines,” Proc. IEEE Int’l
Conf. Computer Vision, vol. 1, pp. 272-277, 2005.

L. Cao, J. Liu, and X. Tang, “What the Back of the Object Looks
Like: 3D Reconstruction from Line Drawings without Hidden
Lines,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 30, no. 3, pp. 507-517, Mar. 2008.

I. Shimshoni and]J. Ponce, “Recovering the Shape of Polyhedra
Using Line-Drawing Analysis and Complex Reflectance Models,”
Computer Vision and Image Processing, vol. 65, no. 2, pp. 296-310,
1997.

H. Shimodaira, “A Shape-from-Shading Method of Polyhedral
Objects Using Prior Information,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 28, no. 4, pp. 612-624, Apr. 2006.

P.A.C. Varley and R.R. Martin, “A System for Constructing
Boundary Representation Solid Models from a Two-Dimensional
Sketch—Topology of Hidden Parts,” Proc. First UK-Korea Workshop
Geometric Modeling and Computer Graphics, pp. 113-128, 2000.
M.A. Armstrong, Basic Topology. Springer, 1983.

D.E. LaCourse, Handbook of Solid Modeling. McGraw-Hill, 1995.

Jianzhuang Liu received the BE degree from
Nanjing University of Posts and Telecommuni-
cations, P.R. China, in 1983, the ME degree
from Beijing University of Posts and Telecom-
munications, P.R. China, in 1987, and the PhD
degree from The Chinese University of Hong
Kong in 1997. From 1987 to 1994, he was a
faculty member in the Department of Electronic
Engineering, Xidian University, P.R. China.
From August 1998 to August 2000, he was a
research fellow at the School of Mechanical and Production Engineer-
ing, Nanyang Technological University, Singapore. Then he was a
postdoctoral fellow at The Chinese University of Hong Kong for several
years. He is now an assistant professor in the Department of Information
Engineering, The Chinese University of Hong Kong. His research
interests include computer vision, image processing, machine learning,
and graphics. He is a senior member of the |IEEE.

Yu Chen received the BE degree from the
Department of Electronics Engineering, Tsin-
ghua University, P.R. China, in 2006, and the
MPhil degree from the Department of Informa-
tion Engineering, The Chinese University of
Hong Kong, in 2008. He is currently working
toward the PhD degree in the Department of
Engineering, University of Cambridge, United
Kingdom. His research interests include compu-

2 ter vision, image processing, and machine
learning. He is a student member of the IEEE.

Xiaoou Tang received the BS degree from the
University of Science and Technology of China,
Hefei, in 1990, the MS degree from the
University of Rochester, New York, in 1991,
and the PhD degree from the Massachusetts
Institute of Technology, Cambridge, in 1996. He
is a professor in the Department of Information
Engineering and Associate Dean (Research) on
the Faculty of Engineering of the Chinese
University of Hong Kong. He worked as the
group manager of the Visual Computing Group at Microsoft Research
Asia from 2005 to 2008. He received the Best Paper Award from the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
2009. He was a program chair of the IEEE International Conference on
Computer Vision (ICCV) 2009 and is an associate editor of the IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI) and
the International Journal of Computer Vision (IJCV). His research
interests include computer vision, pattern recognition, and video
processing. He is a fellow of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

