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Abstract. Subspace face recognition often suffers from two problems: (1) the training sample set is small compared
with the high dimensional feature vector; (2) the performance is sensitive to the subspace dimension. Instead of
pursuing a single optimal subspace, we develop an ensemble learning framework based on random sampling on
all three key components of a classification system: the feature space, training samples, and subspace parameters.
Fisherface and Null Space LDA (N-LDA) are two conventional approaches to address the small sample size problem.
But in many cases, these LDA classifiers are overfitted to the training set and discard some useful discriminative
information. By analyzing different overfitting problems for the two kinds of LDA classifiers, we use random
subspace and bagging to improve them respectively. By random sampling on feature vectors and training samples,
multiple stabilized Fisherface and N-LDA classifiers are constructed and the two groups of complementary classifiers
are integrated using a fusion rule, so nearly all the discriminative information is preserved. In addition, we further
apply random sampling on parameter selection in order to overcome the difficulty of selecting optimal parameters
in our algorithms. Then, we use the developed random sampling framework for the integration of multiple features.
A robust random sampling face recognition system integrating shape, texture, and Gabor responses is finally
constructed.
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1. Introduction

Subspace methods for face recognition have been ex-
tensively studied in recent years (Turk and Pentland,
1991; Belhumeur et al., 1997; Chen et al., 2000;
Moghaddam et al., 2000; Wang and Tang, 2004a,
2004b, 2004c). Although having achieved great suc-
cess, they still suffer from two problems: (1) the train-
ing sample set is small compared with the high di-
mensional feature vector; (2) the performance of sub-
space methods is sensitive to the subspace dimension.
In this paper, we focus on Linear Discriminant Anal-
ysis (LDA), since it is a popular and widely studied
subspace method in face recognition. But the conclu-
sion can be extended to other subspace methods.

According to the Fisher criteria, LDA determines a
set of projection vectors maximizing the between-class
scatter matrix and minimizing the within-class scatter
matrix in the projective feature space. But when dealing
with the high dimensional face data, LDA often suffers
from the small sample size problem. Since usually there
are only a few samples in each face class for training,
the within-class scatter matrix is not well estimated and
may become singular. So the LDA classifier is often
biased and sensitive to slight changes of the training
set.

To address this problem, a two-stage PCA+LDA ap-
proach, i.e. Fisherface (Belhumeur et al., 1997) is pro-
posed. Using PCA, the high dimensional face data is
projected to a low dimensional feature space and then
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LDA is performed in the low dimensional PCA sub-
space. Usually, the eigenfaces with small eigenvalues
are removed in the PCA subspace. Since they may also
encode some information helpful for recognition, their
removal may introduce a loss of discriminant infor-
mation. To construct a stable LDA classifier, the PCA
subspace dimension depends on the training set size.
When the PCA subspace dimension is relatively high,
the constructed LDA classifier is often biased and un-
stable. The projection vectors may be greatly changed
by the slight disturbance of noise on the training set.
So when the training set is small, some discriminative
information has to be discarded in order to construct a
stable LDA classifier.

Chen et al. (2000) suggested that the null space
spanned by the eigenvectors of the within-class scatter
matrix with zero eigenvalues contains the most discrim-
inative information. A LDA method in the null space of
the within-class scatter matrix was proposed. It chose
the projection vectors maximizing the between-class
scatter matrix with the constraint that the within-class
scatter matrix is zero. However, as explained in Chen
et al. (2000), with the existence of noise, when the
training sample number is large, the null space of the
within-class scatter matrix becomes small, so much dis-
criminative information outside this null space will be
lost. The constructed classifier may also be over tuned
to the training set.

In our previous work (Wang and Tang, 2004), based
on a unified framework for subspace analysis, it is
shown that LDA can be performed by three steps. Both
Bayesian subspace analysis and PCA can be viewed as
intermediate steps of LDA. It is shown that the subspace
dimensions of the PCA subspace, the intrapersonal sub-
space, and the LDA subspace in the three steps can sig-
nificantly affect the face recognition performance. It is
a trade-off on how much noise and transformation dif-
ference is excluded, and how much intrinsic difference
is retained. This eventually leads to the construction of
a 3D parameter space that uses the three subspace di-
mensions as axes. The conventional subspace methods
are all limited to local areas of the parameter space.
Using this framework, much better recognition can be
achieved by searching through the parameter space.
However, the strategy to find the optimal parameters
was not provided in that work. One possible way is to
find the parameters based on experimental evaluation.
But it is time consuming and requires to redesign the
parameters for different applications.

Because of the complexity of face recognition prob-
lem, it is difficult to pursue a single optimal classifier
to meet all the requirements. The methods described
above all have distinctive shortcomings. Therefore, in-
stead of developing a single optimal classifier, we pro-
pose an ensemble learning framework based on ran-
dom sampling on all the three key components of a
classifier: feature space, training samples, and parame-
ter space. The complex face data distribution is learned
through multiple subspaces. In our preliminary study
(Wang and Tang, 2004), random subspace and bag-
ging were applied to Fisherface and Null Space LDA
(N-LDA) and achieved promising performance. In this
paper, we conduct a more thorough study, and further
extend random sampling to parameter space to com-
plete our framework.

Random subspace (Kam Ho, 1998, 1999) and bag-
ging (Breiman, 1996) are two popular random sampling
techniques to enforce weak classifiers. In the random
subspace method, a set of low dimensional subspaces
is generated by randomly sampling from the original
high dimensional feature vector and multiple classifiers
constructed in random subspaces are combined in the
final decision. In bagging, random bootstrap replicates
are generated by sampling the training set. A classifier
is constructed from each replicate, and the results of all
the classifiers are finally integrated.

Both Fisherface and Null Space LDA (N-LDA) en-
counter the overfitting problem, but for different rea-
sons. So we will improve them in different ways ac-
cordingly. In Fisherface, overfitting happens when the
training set is small compared to the high dimensional-
ity of the feature vector. We apply random subspace to
reduce the feature vector dimension in order to decrease
the discrepancy. In N-LDA, the null space is small when
the training sample number is large. This problem can
be alleviated by bagging, since each replicate has a
smaller number of training samples. Both Fisherface
and N-LDA discard some discriminative information.
However, the two kinds of classifiers are also comple-
mentary, since they are computed in two orthogonal
subspaces. Using a fusion rule we combine the two
groups of classifiers together to form a more power-
ful and stable classifier that covers most of the face
feature space thus preserves most of the discriminative
information. To further boost the performance of the
classifier, we also perform random sampling on the pa-
rameters of the classification system. This helps us to
get around the difficult task of finding the optimal pa-
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rameters. Multiple LDA classifiers are constructed by
randomly selecting the subspace dimension parameters
and combined using a fusion rule. Experiments show
that the fusion result is close to the classifier with op-
timal parameters and it avoids the performance drop
because of incorrectly setting the parameters.

We also apply this random sampling approach to
the integration of multiple features. Zhao et al. (2003)
pointed out that both holistic feature and local features
are crucial for face recognition, and have different con-
tributions. Three typical kinds of features, shape, tex-
ture, and local Gabor wavelet responses are selected.
They undergo a scale normalization and decorrelation
by PCA to form a combined long feature vector. Al-
though combining multiple features may worsen the
small sample size problem of a traditional LDA, it
can be easily resolved under our random sampling
framework. The final random sampling face recogni-
tion system integrating shape, texture, and Gabor re-
sponses achieves 99.83% recognition accuracy for the
XM2VTS database.

2. LDA Based Face Recognition

In this section, we briefly review the two conventional
LDA face recognition approaches, Fisherface and N-
LDA. For appearance-based face recognition, a 2D face
image is viewed as a vector with length N in the high
dimensional image space. The training set contains
M samples {⇀

xi }M
i=1 belonging to L individual classes

{X j }L
j=1. LDA tries to find a set of projecting vectors W

best discriminating different classes. According to the
Fisher criteria, it can be achieved by maximizing the
ratio of determinant of the between-class scatter ma-
trix Sb and the determinant of the within-class scatter
matrix Sw,

W = arg max

∣∣∣∣ W T SbW

W T SwW

∣∣∣∣ . (1)

Sb and Sw are defined as,

Sw =
L∑

i=1

∑
⇀
x k∈Xi

(
⇀

xk − ⇀

mi )(
⇀

xk − ⇀

mi )
T , (2)

Sb =
L∑

i=1

ni (
⇀

mi − ⇀

m)(
⇀

mi − ⇀

m)T , (3)

where
⇀

mi is the mean face for class Xi with ni samples.
W can be computed from the eigenvectors of S−1

w Sb

(Fukunnaga, 1991). The rank of Sw is at most M-L.
But in face recognition, usually there are only a few
samples for each class, and M-L is far smaller than the
face vector length N. So Sw may become singular and
it is difficult to compute S−1

w .
In the Fisherface method (Belhumeur, 1997), the

face data is first projected to a PCA subspace spanned
by M-L largest eigenfaces. LDA is then performed
in the M-L dimensional subspace, such that Sw is
nonsingular. But in many cases, M-L dimensionality is
still too high for the training set. When the training set
is small, Sw is not well estimated. A slight disturbance
of noise on the training set will greatly change the
inverse of Sw. So the LDA classifier is often biased and
unstable.

Different subspace dimensions are selected in other
studies. In Monn and Phillips (1998), the dimension of
PCA subspace was chosen as 40% of the total number
of eigenfaces. In Swets and Weng (1996), the selected
eigenfaces contains 95% of the total energy. They all
remove eigenfaces with small eigenvalues. However,
eigenvalue is not an indicator of the feature discrim-
inability. In fact, the PCA subspace dimension depends
on the training set. When the training set is small, some
discriminative information has to be discarded in order
to construct a stable LDA classifier.

Chen et al. (2000) suggested that the null space of Sw,
in which W T SwW = 0, also contains much discrimina-
tive information. It is possible to find some projection
vectors W satisfying W T SwW = 0 and W T SbW �= 0,
thus the Fisher criteria in Eq. (1) definitely reaches its
maximum value. A LDA approach in the null space of
Sw was proposed. First, the null space of Sw is com-
puted as,

V T SwV = 0. (4)

The between-class scatter matrix is projected to the null
space of Sw,

S̃b = V T SbV . (5)

The LDA projection vectors are defined as W = V �,
where � contains the eigenvectors of S̃b with the largest
eigenvalues.

N-LDA may also overfit the training set. The rank
of Sw, r(Sw) is bounded by min (M − L , N ). Be-
cause of the existence of noise, r (Sw) is almost equal
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to this bound. The dimension of the null space is
max (0, N − M + L). As shown by experiments in
Chen et al., (2000), when the training sample number
is large, the null space of Sw becomes small, thus much
discriminative information outside this null space will
be lost. An extreme case is that the training set is so
large that we have M−L = N. Then no information can
be obtained in this space, since the dimension of the
null space is zero.

3. Random Sampling Based LDA for
Face Recognition

The above LDA approaches have two common prob-
lems: the constructed classifier is unstable and much
discriminative information is discarded. In this section,
we use random sampling to improve LDA based face
recognition. We construct many weak classifiers and
combine them into a powerful decision rule. Although
Fisherface and N-LDA share the same kind of prob-
lems, they are due to different reasons. According to
the cause of the problem, we design different random
sampling algorithms to improve the two LDA methods.
We then combine two improved methods in a multi-
classifier structure.

3.1. Random Sampling in Feature Space

Although the dimension of image space is very high,
only part of the full space contains discriminant infor-
mation. This subspace is spanned by all the eigenvec-
tors of the ensemble covariance matrix with nonzero
eigenvalues. For the covariance matrix computed from
M training samples, there are at most M−1 eigenvectors
with nonzero eigenvalues. On the remaining eigenvec-
tors with zero eigenvalues, all the training samples have
zero projections and no discriminative information can
be obtained. Therefore we first project the high dimen-
sional image data to the M−1 dimension PCA subspace
before random sampling.

In Fisherface, overfitting happens when the training
set is relatively small compared to the high dimension-
ality of the feature vector. In order to construct a stable
LDA classifier, we sample a small subset of features to
reduce discrepancy between the training set size and the
feature vector length. Using such a random sampling
method, we construct a multiple number of stable LDA
classifiers. We then combine these classifiers to con-
struct a more powerful classifier that covers the entire

feature space without losing discriminant information.
The proposed random subspace LDA algorithm con-
tains the following steps:

At the training stage,

(1) Apply PCA to the face training set. All the eigen-
faces with zero eigenvalues are removed, and M−1
eigenfaces Ut = {u1, . . . , uM−1} are retained as
candidates to construct random subspaces.

(2) Generate K random subspaces {Si }K
i=1. Each ran-

dom subspace Si is spanned by N0 + N1 dimen-
sions. The first N0 dimensions are fixed as the N0

largest eigenfaces in Ut . The remaining N1 di-
mensions are randomly selected from the other
M − 1 − N0 eigenfaces in Ut .

(3) K LDA classifiers {Ci (x)} are constructed from the
K random subspaces.

At the recognition stage,

(1) The input face data is projected to K random sub-
spaces and fed to K LDA classifiers in parallel.

(2) The outputs of the K LDA classifiers are com-
bined using a fusion scheme to make the final
decision.

This algorithm has several novelty features. First,
this is the first time that random subspace is applied
to face recognition. Second, unlike the traditional ran-
dom subspace method that samples the original fea-
ture vector directly, our algorithm samples in the PCA
subspace. We first remove all the eigenfaces with zero
eigenvalues, because all the training samples have zero
projections on these vectors. The dimension of fea-
ture space is first greatly reduced without loss on dis-
criminative information. After PCA, the features on
different eigenfaces are uncorrelated, thus are more in-
dependent. Better accuracy can be achieved if differ-
ent random subspaces are more independent from each
other (Kuncheva et al., 2001).

Third, our random subspace is not completely ran-
dom. The random subspace is composed of two parts.
The first N0 dimensions are fixed as the N0 largest eigen-
faces, and the remaining N1 dimensions are randomly
selected from

{
uM−N0−1, . . . , uM−1

}
. The N0 largest

eigenfaces encode much face structural information.
If they are not included in the random subspace, the
accuracy of LDA classifiers may be too low. Although
many multiple classifier systems (Kittler and Roli) have
been proposed to enforce weak classifiers, the fusion
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method will be more complicated if each individual
LDA classifier is poor. In our approach, LDA classi-
fier in each random subspace has satisfactory accuracy.
The N1 random diensions cover most of the remaining
small eigenfaces. So the ensemble classifiers also have
a certain degree of error diversity. Good performance
can be achieved using very simple fusion rules such as
majority voting.

3.2. Random Sampling on Training Samples

Contrary to Fisherface, in N-LDA, the overfitting prob-
lem happens when the training sample number is large,
since the null space is too small to contain enough dis-
criminative information. This problem can be allevi-
ated by bagging. In bagging, random bootstrap repli-
cates are generated by sampling the training set, so
each replicate has a smaller number of training sam-
ples. Based on this strategy, we propose the following
algorithm:

(1) Apply PCA to the face training set with M sam-
ples for L classes. Project all the face data to the
M−1 eigenfaces Ut = {u1, . . . , uM−1} with posi-
tive eigenvalues.

(2) Generate K bootstrap replicates {Ti }K
i=1. Each repli-

cate contains the training samples of L1 individuals
randomly selected from the L classes.

(3) Construct a N-LDA classifier from each replicate
and combine the multiple classifiers using a fusion
rule.

Our algorithm randomly selects the individual
classes, but does not randomly sample data within each
class. This is because in face recognition usually there
are a large number of people to be classified but there
are very few samples in each class. For example, in our
experiment, there are 295 people in the gallery and each
personal has only two samples for training. Because
human faces share similar intrapersonal variations, the
N-LDA constructed from the replicate Ti also can dis-
tinguish persons outside Ti , although may not be opti-
mal. The K classifiers can cover all the L classes in the
training set.

3.3. Integrating Random Subspace and Bagging for
LDA Based Face Recognition

While Fisherface is computed from the principal sub-
space of Sw, in which W T SwW �= 0, N-LDA is

Figure 1. Integrate multiple Fisherface and N-LDA classifiers gen-
erated by random sampling. C F

i is the LDA classifier constructed
from the random subspace Si and C N

i is the N-LDA classifier con-
structed from the bagging replicate Ti .

computed from its orthogonal subspace in which
W T SwW = 0. Both of them discard some discrimina-
tive information. Fortunately, the information retained
by the two classifiers complements each other. So we
combine the two sets of complementary multiple LDA
classifiers generated by random sampling to construct
the final classifier as illustrated in Fig. 1.

Many methods on combining multiple classifiers
have been proposed (Kittler and Roli; Xu et al., 1992;
Ross and Jain, 2003; Hong and Jain, 1998; Kegelmeyer
and Bowyer, 1997; Kuncheva, 2002; Yacoub et al.,
1999). In this paper, we use two simple fusion rules
to combine LDA classifiers: majority voting and sum
rule. More complex combination algorithms may fur-
ther improve the system performance.

3.3.1. Majority Voting Each LDA classifier Ck (x)
assigns a class label to the input face data, Ck (x) = i .
We represent this event as a binary function,

Tk (x ∈ Xi ) =
{

1, Ck (x) = i
0, otherwise

. (6)
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By a majority voting, the final class is chosen as,

β(x) = arg max
Xi

K∑
k=1

Tk (x ∈ Xi ). (7)

3.3.2. Sum Rule We assume that P(Xi |Ck (x)) is the
probability that x belongs to Xi under the measure of
LDA classifier Ck (x). According to the sum rule, the
class for the final decision is chosen as,

β(x) = arg max
Xi

K∑
k=1

P (Xi |Ck (x)) (8)

P(Xi |Ck (x)) can be estimated from the output of the
LDA classifier. For LDA classifier Ck (x), the center mi

of class Xi , and input face data x are projected to LDA
vectors Wk ,

wi
k = W T

k mi (9)

wx
k = W T

k x (10)

P(Xi |Ck (x)) is estimated as

P̂(Xi |Ck (x)) =
(

1 +
(
wx

k

)T (
wi

k

)∥∥wx
k

∥∥ · ∥∥wi
k

∥∥
)

/2, (11)

which has been mapped to [0,1].

3.4. Random Sampling of Parameters

In this section, we consider the problem of subspace di-
mension parameter for LDA. In Wang and Tang (2004),
we proposed a unified framework for subspace analy-
sis. Here we give a brief description to help readers un-
derstand this paper, and details can be found in Wang
and Tang (2004). In this framework, PCA and Bayesian
subspace analysis can be viewed as intermediate steps
of LDA, and LDA is performed in three steps:

1. Project face vectors to PCA subspace and adjust the
PCA dimension (dp) to reduce most noise.

2. Apply Bayesian analysis in the reduced PCA sub-
space and adjust the dimension (di) of intrapersonal
subspace to reduce the transformation difference.

3. Project all the face class centers onto the di intraper-
sonal eigenvectors, and then normalize the projec-
tions by intrapersonal eigenvalues to compute the
whitened class centers. Apply PCA on the whitened

Figure 2. 3D parameter space. dp, di and dl are the dimensionality
of PCA subspace, intrapersonal subspace, and LDA subspace.

class centers to compute a discriminant feature vec-
tor of dimensional dl. The face class is recognized
using the dl discriminant features.

We could improve each step of subspace analysis by
choosing the optimal subspace dimensions in 3D pa-
rameter space in Fig. 2. It is a trade-off on how much
noise and transformation difference is excluded, and
how much intrinsic difference is retained. In conven-
tional subspace methods, the parameters are fixed or
constrained to some local regions in Fig. 2. If the se-
lected parameters are not appropriate for a particular
data set, the recognition performance may be very poor.
We expect to achieve better performance since now the
parameters can be freely selected under this framework.
However, in Wang and Tang (2004), optimal parame-
ters are only empirically searched by experiments. It is
time consuming and requires redesigning the parame-
ters for different applications.

Following the random sampling framework, we con-
struct multiple classifiers performing LDA in three
steps. In each step, the subspace dimension is ran-
domly selected. The multiple classifiers are integrated
using majority voting. Some individual classifiers with
inferior parameters will not seriously deteriorate the
system performance because of the ensemble learning.
Experiments show that the performance of the multiple
classifiers system is close to the classifier with optimal
parameters. So our system is more stable and we do not
have to pursue the optimal parameters for a particular
data set. It can be easily implemented in practice.
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3.5. Theoretical Analysis on the Random
Sampling Framework

A theoretical explanation on how bagging predictors
work was given in Breiman (1996). In a similar way,
we generalize this discussion to our random sampling
framework including random subspace, bagging, and
random sampling on parameters. We analyze how dif-
ferent random sampling strategies work in subspace
face recognition.

Let x be a sample, and y be the corresponding
class label or a score vector indicating the probabili-
ties of x belonging to different classes, β(x, �), where
� = (T, S, �), is a single predictor (classifier) learnt
from sample set T, in the feature space S, with param-
eter setting �. If majority voting is used as the fusion
rule, β(x, �) is the class label. If sum rule is used,
β(x, �) is a score vector with (0 . . . 0 1

i
0 . . . 0) indi-

cating that x belongs to class i. Here we assume that
β(x, �) is a score vector. A set of different configu-
rations {�(B)

k = (T (B)
k , S(B)

k , �k)} are generated by ran-
dom sampling replicate T (B)

k from the whole training
set T (A), random subspace S(B)

k from the whole feature
space S(A), parameter �k from the parameter space.
Aggregate individual predicators as

βB (x) = 1

K

K∑
k=1

β
(

x, �
(B)
k

)
≈ E�(B)

(
β

(
x, �(B))) ,

(12)

where E�(B) (β(x, �(B))) is the expectation of β(x, �(B))
over �(B). Different configurations {�B

k } are indepen-
dently sampled based on an identical distribution. Take
x to be a fixed input sample and y the desired output
value, and we have

E�(B)

(
y − β

(
x, �(B)))2 = y2 − 2yE�(B)

(
β

(
x, �(B)))

+ E�(B)

(
β2(x, �(B))) . (13)

Since

E�(B)

(
β2(x, �(B)))≥[

E�(B)

(
β
(
x, �(B)))]2= [βB(x)]2 ,

(14)
Eq. (13) can derive

E�(B)

(
y − β

(
x, �(B)))2 ≥ (y − βB(x))2 . (15)

Thus we can get some observations and insights on
how to improve subspace face recognition. The mean-
squared error of the combined classifier is smaller than
the mean-squared error of β

(
x, �(B)

)
under random

sampled configuration �(B), averaged over �(B). How
much improvement we can get depends on the differ-
ence between the two sides in (14). If β

(
x, �(B)

)
has

large error diversity over �(B), significant improvement
can be obtained by aggregating these classifiers. In
Wang and Tang (2004), we have shown that the recog-
nition accuracy has great variation choosing different
subspace dimensionalities as parameters. When we do
LDA in different random subspaces, we are actually
extracting discriminative information in different por-
tions of the face space. The subspace obtained by N-
LDA on a training subset is optimal to recognize the
people in that replicate, not necessarily optimal to the
people in other replicates. So the classifiers obtained
under our random sampling framework have large er-
ror diversity. Furthermore, because of the fact that LDA
is sensitive to noise, a slight change on the configura-
tion �(B) may lead to different classifiers. Classifier
aggregation may overcome the unstability problem of
LDA to some extent.

However, it does not mean that we can arbitrarily
design the random sampling strategy and expect it to
work well in all the cases. Actually, we should com-
pare the performance of βB(x) with that of β

(
x, �(A)

)
instead of β

(
x, �(B)

)
. �(A) = (

T (A), S(A), �
)

includes
the whole training set and the whole feature space. If
β
(
x, �(B)

)
is much worse than β

(
x, �(A)

)
and the error

diversity is not large enough, the random sampling and
aggregation strategy may even worsen the recognition
accuracy. In our framework, �(B) and �(A) share the
same parameter space. Without knowledge on the op-
timal parameters, random sampling on parameters can
improve the overall system performance. In random
subspace LDA and bagging N-LDA, the individual
classifiers generated by random sampling are not much
worse or even better than the original classifier using
the whole training set in the whole feature space. This
is because we correctly design the random sampling
strategy according to different problems in LDA and
N-LDA. Actually they are less sensitive to noise com-
pared with the original classifier, although they have
lost some features or training samples. The problem of
LDA is that the training set is small relative to the high
dimensional feature vector. Using a smaller feature vec-
tor by random sampling the feature space can improve
the performance of β

(
x, �(B)

)
. In N-LDA, when the

training set is very large, the null space is too small to
contain enough discriminative information. Using only
part of the training data, β(x, �(B)) might achieve even
better performance than β

(
x, �(A)

)
using the entire
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training set. For comparison, it may not be a good strat-
egy to apply bagging to LDA or apply random subspace
to null space LDA. Although classifiers generated by
random sampling still have large error diversity, they
are much worse than the original classifier. In bagging,
each replicate has a smaller number of training sam-
ples, and thus it makes the small sample problem even
worse. Random subspace makes the null space of the
within-class scatter matrix smaller. The above analysis
will be further explained in our experiments.

3.6. Discussion on the Random
Sampling Framework

Our random sampling framework is proposed to over-
come the overfitting problem and the difficulty of se-
lecting optimal parameters in subspace face recogni-
tion. It can be further improved in several aspects. First,
the current framework assumes that the face intraper-
sonal variation has a Gaussian distribution. It works
well on the data set without very large intrapersonal
variations as shown in the experiments. However, un-
der large pose, illumination changes or occlusion, the
manifold of the face intrapersonal variation may be too
complicated to be modeled as a single Gaussian dis-
tribution. In this case, all the subspace methods based
on a single Gaussian model may fail. One possible so-
lution is to extend the current framework to Gaussian
mixture models. More detailed discussion can be found
in Wang and Tang (2005).

Another problem with the current approach is that we
randomly select the classifiers without much consider-
ation on the error diversity. An extra step of classifier
selection, for example, using a validation set to measure
the classifier error diversity and clustering classifiers
based on error diversity, may further improve the sys-
tem performance (Roli et al., 2001). Finally, the random
sampling framework achieves higher and more stable
recognition accuracy at higher computational cost. This
may become a problem in some online application re-
quiring high speed.

3.7. Integration of Multiple Features

Zhao et al. (2003) pointed out that both face holistic
features and local features are critical for recognition
and have different contributions. We apply this random
sampling LDA approach to the integration of multiple
features including shape, texture, and Gabor responses.

Figure 3. Face graph model.

A face graph containing 35 fiducial points is designed
as shown in Fig. 3. Using the method in Active Shape
Model (Lanitis, 1997), we separate the face image into

shape and texture. The shape vector
⇀

Vs is formed by
concatenating the coordinates of the 35 fiducial points
after alignment. Warping the face image onto a mean

face shape, the texture vector
⇀

Vt is obtained by sam-
pling intensity on the shape-normalized image. As de-
scribed in Elastic Bunch Graph Matching (Wiskott
et al., 1997), a set of Gabor kernels in five scales and
eight orientations are convolved with the local patch
around each fiducial point. The Gabor feature vector
⇀

Vg combines 35 × 40 magnitudes of Gabor responses
to represent the face local texture. The multi-feature
multi-calssifier face recognition algorithm is then de-
signed as following:

• Apply PCA to the three feature vectors respectively
to compute the eigenvectors Us, Ut , Ug and eigenval-
ues λs

i , λ
t
i , λ

g
i . All the eigenvectors with zero eigen-

values are removed.
• For each face image, project each kind of feature to

the eigenvectors and normalize them by the sum of
eigenvalues, such that they are in the same scale.

⇀
w j = U T

j

⇀

Vj/

√∑
λ

j
i , ( j = s, t, g). (16)

• Combine ⇀
wt ,

⇀
ws,

⇀
wg into a large feature vector.

• Apply the random sampling algorithm to the com-
bined feature vector to generate multiple LDA clas-
sifiers.

While most other multi-feature integration systems
are based on match score level or decision level
by designing one classifier for each kind of feature
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(Ross and Jain, 2003; Hong and Jain, 1998), our inte-
gration approach starts from the feature level. Integra-
tion at feature level conveys the richest information, but
it is more difficult because of two reasons. First, differ-
ent kinds of features are incompatible in scale. Second,
the new combined feature vector has a higher dimen-
sionality and it will make the small sample size problem
even worse. Our approach overcomes both problems.
Different features are scaled by PCA normalization and
the small sample size problem is resolved by random
sampling.

4. Experiments

We conduct experiments on the XM2VTS face
database (Messer et al., 1999). There are 295 people,
and each person has four frontal face images taken in
four different sessions. Some examples are shown in
Fig. 4. In our experiments, two face images of each
face class are selected for training and reference, and
the remaining two for testing. We adopt the recogni-
tion test protocol used in FERET (Phillips et al., 1998).
All the face classes in the reference set are ranked. We
measure the percentage of the “correct answer in top 1
match.”

4.1. Random Subspace LDA

We first compare random subspace LDA with the con-
ventional Fisherface approach using the holistic fea-
ture. In preprocessing, the face image is normalized
by translation, rotation, and scaling, such that the cen-
ters of two eyes are in fixed positions. A 46 by 81

Figure 4. Examples of face images in XM2VTS database taken in
four different sessions.

Figure 5. Recognition accuracy of Fisherface classifier using dif-
ferent number of eigenfaces in the reduced PCA subspace.

mask removes most of the background. So the im-
age space dimensionality is 36 × 81 = 3726. His-
togram equalization is applied as photometric normali-
zation.

Figure 5 reports the accuracy of a single LDA classi-
fier constructed from the PCA subspace with different
number of eigenfaces. Since there are 590 face im-
ages of 295 classes in the training set, there are 589
eigenfaces with non-zero eigenvalues. According to the
Fisherface (Wang and Tang, 2004), the PCA subspace
dimension should be M−L = 295. However, the re-
sult shows that the accuracy is only 79% using a single
Fisherface classifier constructed from 295 eigenfaces,
because this dimension is too high for the training set.
We observe that LDA classifier has the best accuracy
92.88% when the PCA subspace dimension is set at
100. So for this data set 100 seems to be a suitable di-
mension to construct a stable LDA classifier. In the fol-
lowing experiments, we choose 100 as the dimension
of random subspaces to construct the multiple LDA
classifiers.

First, we randomly select 100 eigenfaces from 589
eigenfaces with nonzero eigenvalues. The result of
combining 20 LDA classifiers using majority voting is
shown in Fig. 6. With random sampling, the accuracy
of each individual LDA classifier is low, between 50%
and 70%. Using majority voting, the weak classifiers
are greatly enforced, and 87% accuracy is achieved.
This shows that LDA classifiers constructed from dif-
ferent random subspaces are complementary of each
other. In Fig. 7, as we increase the classifier number K,
the accuracy of the combined classifier improves, and
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Figure 6. Recognition accuracy of combing 20 LDA classifiers con-
structed from random subspaces using majority voting. Each random
subspace randomly selects 100 eigenfaces from 589 eigenfaces with
non-zero eigenvalues.

Figure 7. Accuracy of combining different number of LDA clas-
sifiers constructed from random subspaces using majority voting.
Each random subspace randomly selects 100 eigenfaces from 589
eigenfaces with non-zero eigenvalues.

Table 1. Recognition accuracy of combining LDA classifiers using different number (K) of random subspaces (sum rule). In each random
subspace, the first 50 dimensions are fixed as the 50 largest eignfaces, and another 50 dimensions are randomly selected from the remaining 593
eigenfaces with positive eigenvalues. We run ten times on the same training set and testing set, and record the accuracy means and variances.

K 5 10 15 20 25 30

Mean 0.954 0.958 0.959 0.961 0.961 0.962
Variance 0.0133 0.0127 0.0094 0.0101 0.0068 0.0049

Figure 8. Recognition accuracy of combing 20 LDA classifiers
constructed from random subspaces using majority voting and the
sum rule. For each 100 dimensional random subspace, the first 50
dimensions are fixed as the 50 largest eigenfaces, and another 50
dimensions are randomly selected from the remaining 539 eigenfaces
with non-zero eigenvalues.

even becomes better than the highest accuracy in Fig. 5.
Although increasing classifier number and using more
complex combining rules may further improve the per-
formance, it will increase the system burden.

A better approach to improve the accuracy of the
combined classifier is to increase the performance of
each individual weak classifier. To improve the accu-
racy of each individual LDA classifier, as illustrated
in Section 3.1, in each random subspace, we fix the
first 50 dimensions as the 50 largest eigenfaces, and
randomly select another 50 dimensions from the re-
maining 539 eigenfaces. As shown in Fig. 8, individ-
ual LDA classifiers are improved significantly. They
are similar to the LDA classifier based on the first 100
eigenfaces. This shows that {u51, . . . , u100} are not nec-
essarily more discriminative than those smaller eigne-
faces. These classifiers are also complementary of each
other, hence much better accuracy is achieved when
they are combined. In Table 1, we run the random sam-
pling algorithm 10 times on the same training set and
testing set, and then compute the accuracy means and
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Figure 9. Recognition accuracy of combining 20 N-LDA classifiers
from random subspaces.

variances. Using more random subspaces, the accuracy
is higher and more stable.

We also apply random subspace to N-LDA. Similar
to the method in Section 3.1, the random subspaces
with dimension D (295 < D < 590) are generated from
PCA subspace and a N-LDA classifier is constructed
from each random subspace. As shown in Fig. 9, there
is no improvement in recognition performance. When
the random subspace dimensionality D is low, the null
space dimension (D-295) is small, so the recognition
accuracy drops greatly.

Figure 10. Recognition accuracy of combining 20 N-LDA classi-
fiers constructed from bagging replicates using majority voting and
sum rule. Each replicate contains 150 training people.

Table 2. Recognition accuracy of combining N-LDA classifiers us-
ing different number (K) of bagging replicates (sum rule). We run
ten times on the same training set and testing set, and record the
accuracy means and variances.

K 5 10 15 20 25 30

Mean 0.929 0.934 0.942 0.956 0.951 0.961
Variance 0.0120 0.0109 0.097 0.009 0.036 0.027

4.2. Bagging LDA

Figure 10 reports the performance of bagging based
N-LDA. We generate 20 replicates and each replicate
contains 150 people for training. As expected, the in-
dividual N-LDA classifier constructed from each repli-
cate is less effective than the original classifier trained
on the full training set. However, when the multiple
classifiers are combined, the accuracy is significantly
improved, and becomes much better than the original
N-LDA. Table 2 reports performance of bagging based
N-LDA using different number of replicates, but fix-
ing training sample number in each replicate as 300.
Similar to results in Table 1, the results are more stable
using a relatively large number of replicates.

We also study using bagging to improve Fisherface
classifiers. The PCA subspace is spanned by the 100
largest eigenfaces and 20 replicates are generated. The
accuracies with the replicate containing different num-
ber of people are shown in Fig. 11. As expected, the
combined classifier shows no improvement over the
original Fisherface classifier.

Figure 11. Recognition accuracy of combining 20 Fisherface clas-
sifiers constructed from bagging replicates containing different num-
ber (L) of people for training. The PCA space is spanned by 100
largest eigenfaces. The combining rule is majority voting.
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Table 3. Compare random sampling based LDA with conven-
tional methods. R-LDA (1): random subspace based Fisherface;
R-LDA (2): bagging based N-LDA; R-LDA (3): unified subspace
analysis by random sampling on parameter space. R-LDA (4): in-
tegration of random sampling on feature space, training samples
and parameter space.

Feature Method Accuracy (%)

Holistic feature Eigenface 85.59
Fisherface 92.88
Bayes 92.71
R-LDA (1) 96.10
R-LDA (2) 95.59
R-LDA (3) 97.12
R-LDA (4) 98.47

Texture Euclid distance 85.76
Shape Euclid distance 49.50
Gabor EBGM 95.76
Integration of multi-feature R-LDA (4) 99.83

Integrating the multiple Fisherface classifiers gen-
erated by random subspace and N-LDA classifiers
generated by bagging, the recognition accuracy can
be further improved. We combine 10 Fisherface clas-
sifiers constructed from random subspaces and 10
N-LDA classifiers constructed from bagging repli-
cates, and get an even better result as shown in
Table 3.

Figure 12. Recognition accuracy of combining 20 LDA classifiers random sampling in the parameter space.

4.3. Unified Subspace Analysis Based on Random
Sampling in Parameter Space

In this section, we discuss the experiment on random
sampling in the parameter space. We still use the holis-
tic feature as in Section 4.1 and 4.2. Figure 12 plots the
recognition accuracy of combining 20 LDA classifiers
random sampling in the parameter space. As described
in unified subspace analysis (Wang and Tang, 2004),
for each classifier we perform LDA by three steps,
but randomly select the subspace dimension in each
step. Choosing different parameters, the LDA classi-
fiers have great variation. That explains the importance
of parameter selection in LDA. With inferior param-
eters, the accuracy of LDA is even lower than 50%.
However, in our random sampling framework, the in-
ferior parameter selection does not affect the system
performance much. The result of combining 20 LDA
classifiers is even better than the best LDA classifier
with good parameters. So the random sampling frame-
work successively boosts the system performance and
solves the parameter selection problem.

4.4. Integration of Multiple Features

In Table 3, we report the recognition accuracy of
integrating shape, texture, and Gabor features using
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random sampling LDA. Combining 20 classifiers us-
ing the sum rule, we achieve 99.83% recognition ac-
curacy. For 590 testing samples, it misclassifies only
one! For comparison, we also compute the accuracies
of some conventional face recognition approaches in
Table 3. Eigenface (Turk and Pentland, 1991), Fish-
erface (Wang and Tang, 2004), and Bayesian analy-
sis (Moghaddam et al., 2000) are three subspace face
recognition approaches based on holistic feature. Elas-
tic Bunch Graph Matching as described in (Wiskott
et al., 1997) uses the correlation of Gabor features as
similarity measure. Experiments clearly demonstrate
the superiority of our new algorithm.

5. Conclusion

Face recognition is a challenging pattern recognition
problem. Most previous researches focus on pursu-
ing a single optimal classifier. In this paper, we sug-
gest an alternative approach based on ensemble learn-
ing, i.e. using multiple classifiers to solve the complex
problem. We develop a robust face recognition system
by randomly sampling feature space, training samples,
and parameter space. In this paper, our discussion fo-
cuses on the LDA method, however, the random sam-
pling framework can also be extended to other sub-
space methods based on similar consideration. In this
study, we use the simplest fusion rules to combine mul-
tiple LDA classifiers and achieve notable improvement.
Many more complex combination algorithms (Kittler
and Roli) have been proposed. They may further im-
prove the performance. Using random subspace, a large
set of LDA classifiers can be generated. Instead of com-
bining them directly, it is helpful to select a small set of
complementary LDA classifiers with high accuracy for
combination. This is a direction for our further study.
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