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Abstract

In this paper, a new Mixture model of Dynamic

pedestrian-Agents (MDA) is proposed to learn the collective

behavior patterns of pedestrians in crowded scenes. Col-

lective behaviors characterize the intrinsic dynamics of the

crowd. From the agent-based modeling, each pedestrian in

the crowd is driven by a dynamic pedestrian-agent, which

is a linear dynamic system with its initial and termination

states reflecting a pedestrian’s belief of the starting point

and the destination. Then the whole crowd is modeled as

a mixture of dynamic pedestrian-agents. Once the model

is unsupervisedly learned from real data, MDA can simu-

late the crowd behaviors. Furthermore, MDA can well in-

fer the past behaviors and predict the future behaviors of

pedestrians given their trajectories only partially observed,

and classify different pedestrian behaviors in the scene. The

effectiveness of MDA and its applications are demonstrat-

ed by qualitative and quantitative experiments on the video

surveillance dataset collected from the New York Grand

Central Station.

1. Introduction

Automatically understanding the behaviors of pedestri-

ans in crowd is of great interest to video surveillance, and

has drawn more and more attentions in recent years [26]. It

has important applications, such as event recognition [12],

traffic flow estimation [23], behavior prediction [2], and

crowd simulation [20]. One of the underlying challenges

of these problems is to model and learn the collective dy-

namics of pedestrian behaviors in crowded scenes.

Crowd behavior analysis has been studied in social sci-

ence with a long history. French sociologist Le Bon

(1841∼1931) described collective crowd behaviors in his
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Figure 1. A) The crowd of pedestrians walking in a train station.

Pedestrians have clear beliefs of the starting points and the des-

tinations in mind. These beliefs and scene structures (e.g. the

border of walls) influence their past behaviors (indicated as solid

green lines) as well as the future behaviors (indicated as dashed

green lines). The shared beliefs and dynamics of movements gen-

erate several dominant collective dynamic patterns in the scene.

B) MDA learns the collective dynamic patterns of the crowd from

fragmented trajectories and simulates the collective behaviors of

the crowd. Yellow circles and red arrows represent the current po-

sitions of the simulated pedestrians and their velocities, along with

their past trajectories in different colors.

book The Crowd: A Study of the Popular Mind as, “the

crowd, an agglomeration of people, presents new charac-

teristics very different from those of the individuals com-

posing it, the sentiments and ideas of all the persons in the

gathering take one and the same direction, and their con-

scious personality vanishes. ” It leads to the motivation of

this work: the crowd has its intrinsic collective dynamic-

s. Although individuals in crowd might not acquaint with

each other, their shared movements and destinations make

them coordinate collectively and follow the paths common-

ly taken by others [13]. An illustrative example is shown in

Figure 1A.

In this paper, a new Mixture model of Dynamic

pedestrian-Agents (MDA) is proposed to learn the collec-

tive dynamics of pedestrians from a large amount of obser-

vations without supervision. Observations are trajectories

of feature points on pedestrians obtained by a KLT track-

er [19]. Because of frequent occlusions in crowded scenes,
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there are many tracking failures, and most trajectories are

highly fragmented with large portions of missing observa-

tions. The movement of a pedestrian is driven by one of

the pedestrian-agents, which are modeled as linear dynamic

systems with initial and termination states (reflecting pedes-

trians’ beliefs of the starting points and the destinations).

Furthermore the timings of pedestrians entering the scene

with different dynamic patterns are modeled as Poisson pro-

cesses. Then, the collective dynamics of the whole crowd

are modeled as a mixture dynamic system. The effective-

ness of MDA is demonstrated by three applications: simu-

lating collective crowd behaviors, clustering trajectories in-

to different collective behaviors, and predicting the behav-

iors of pedestrians. Both qualitative and quantitative experi-

mental evaluations are conducted on data collected from the

New York Grand Central Station.

The novelty and contributions of this work are summa-

rized as follows. 1) Although there exist some approaches

[6, 23, 10, 25] to learn motion patterns in crowded scenes,

they do not explicitly model the dynamics of pedestrian-

s. Many of them only took local location-velocity pairs as

input, while discarding the temporal order of trajectories,

which is important for both classification and simulation.

Instead, MDA takes trajectories as input, and models the

temporal generative process of trajectories. Compared with

those approaches, it is much more natural for MDA to simu-

late collective crowd behaviors and predict pedestrians’ fu-

ture behaviors, once its parameters are learned from real

data. 2) Under MDA, pedestrians’ beliefs, which strongly

regularize their behaviors, are explicitly modeled and in-

ferred from observations. In order to be robust to tracking

failures, the states of missing observations on trajectories

are modeled and inferred. Because of these two facts, MDA

can well infer the past behaviors and predict the future be-

haviors of pedestrians given their trajectories only partially

observed. They also lead to better accuracy of recognizing

the behaviors of pedestrians. 3) To the best of our knowl-

edge, MDA is the first agent-based model to learn collective

dynamics from the crowd videos. Besides the collective dy-

namics, the behavior of a pedestrian is also driven by the

interactions with his/her neighbors. In the future work, it

would be much easier for MDA to integrate with the mod-

ule of interactive dynamics such as the social force model

[5, 15], which is also an agent-based model.

1.1. Related Works

In recent years, there has been significant amount of

work on learning the motion patterns in crowded scenes due

to growing interest in crowd behavior analysis and crowd

management. For example, Ali et al. [1] and Lin et al.

[10] computed the flow fields and segmented the patterns

of crowd flows using Lagrangian coherent structures or Lie

algebra. Wang et al. [23] explored the co-occurrence of

moving pixels without tracking objects to learn the motion

patterns in crowded scenes. These approaches took the local

location-velocity pairs as input while ignoring the temporal

order of observations in order to be robust to tracking fail-

ures. The beliefs of pedestrians were not considered either.

Some approaches learned the motion patterns through clus-

tering trajectories [11, 21, 22], and faced the challenge of

fragmentation of trajectories in crowded scenes. None of

the above methods used agent-based models, which could

model the process of a pedestrian making decisions based

on the current states. It is difficult for them to simulate or

predict collective crowd behaviors.

To analyze the interaction between pedestrians, the so-

cial force model, first proposed by Helbing et al. [5, 4] for

crowd simulation, was introduced to the computer vision

community recently and was applied to multi-target track-

ing [15], abnormality detection [12], and interaction analy-

sis [16]. The social force model is also an agent-based mod-

el and assumes that pedestrians’ movements for the nex-

t step are affected by their destinations, the states of their

neighbors, and the borders of buildings, walls, streets, and

obstacles. It is complementary to MDA, since it models

the interactive dynamics among pedestrians but requires the

scene structures and the beliefs of pedestrians to be known

in advance. MDA better models the collective dynamic-

s, automatically learns the regularization added by scene

structures, and infers the beliefs of pedestrians. Both M-

DA and the social force model are agent-based models and

have the potential to be well combined. Therefore it would

be very interesting to integrate both collective dynamics and

interactive dynamics which characterize the crowd behav-

iors from different perspectives into a single model in the

future work.

A number of pedestrian models for crowd simulation

were proposed in computer graphics. Continuum-based

pedestrian models [8, 20] treated the crowd motion as flu-

id with manually assigned parameters. Agent-based pedes-

trian models [3] treated pedestrians as autonomous agents

based on a set of defined rules and known scene struc-

tures. Differently under MDA the collective dynamics for

crowd behavior simulation are automatically learned from

real videos without any prior knowledge about scene struc-

tures.

2. MDA Model

The crowd is an agglomeration of pedestrians. Although

every pedestrian has his own movement dynamics and be-

lief of the starting point and the destination, some statistical

dynamic patterns would appear when enough pedestrians’

behaviors are observed over time, because pedestrians in a

specific scene share common movement dynamics and be-

liefs. These shared dynamic patterns could be abstracted as

different pedestrian-agents with various dynamics and be-
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Figure 2. A) The behavior of a pedestrian in the crowd is influ-

enced by three key factors, the dynamics of movements, the belief

of starting point and destination, and the timing of entering in the

scene. B) Graphical representation of the Mixture model of Dy-

namic pedestrian-Agents. The shadowed variables are partial ob-

servations of the hidden states due to frequent tracking failures in

crowded environment.

liefs. In our model, dynamics and beliefs of pedestrians are

modeled as two key modules D and B in the agent system.

Meanwhile, the timings of the event that a pedestrian enter-

s in the scene vary, because each pedestrian-agent emerges

at different frequency from the entry in the scene. We aug-

ment MDA with another module, timing of emerging, for

the dynamic pedestrian-agent. Thus, the crowd in the scene

is formulated as a mixture model of dynamic pedestrian-

agents as shown in Figure 2. In the following sections, each

module will be explained in details.

2.1. Modeling Pedestrian Dynamics

Trajectories extracted in the scene are time-series obser-

vations of pedestrian dynamics. If we treat a pedestrian as

a dynamic agent system which actively senses the environ-

ment and makes decisions, the trajectory of the pedestrian

is a set of observations of the hidden dynamic states of this

system. We model the dynamics of a pedestrian-agent as a

linear dynamic system defined by

xt = Axt−1 + ωt, (1)

yt = Cxt + εt. (2)

xt = [x1
t , x

2
t , 1]

⊤ is the current state of the agent system and

represents the position of the agent in homogeneous coor-

dinates. yt ∈ Rm is the observation of xt. A ∈ R3×3 is

the state transition matrix and C ∈ Rm×3 is the observation

matrix. ω is the system noise, and ε is the observation noise.

Since the observations of the agent system are its position,

m is 3 and C is simplified as a 3 × 3 identity matrix. The

conditional distributions of the state and the observation are

p(xt|xt−1) = N (xt|Axt−1,Γ), (3)

p(yt|xt) = N (yt|xt,Σ), (4)

where N is the 3-dimensional multivariate Gaussian distri-

bution, Γ and Σ are covariance matrices. Σ is assumed to

be a known diagonal matrix. We denote D = (A,Γ) as the

dynamics parameters to be learned for the agent system.

2.2. Modeling Pedestrian Beliefs

A pedestrian normally has a clear belief of the starting

point and the destination when walking in a scene. This be-

lief is a key factor driving the overall behavior of the pedes-

trian, and it is also considered as the source and sink of the

scene [18, 25]. We model it as the initial state xs and the

termination state xe of the agent system. xs and xe are sam-

pled from Gaussian distributions,

p(xs) = N (xs|µ
s,Φs),

p(xe) = N (xe|µ
e,Φe). (5)

µs and µe are the means of the initial states and termina-

tion states. Φs and Φe are the corresponding covariance

matrices. We denote B = (µs,Φs, µe,Φe) as the belief pa-

rameters for the agent system.

For a trajectory k, the joint distribution of the system

states and observations is

p(xk, yk, xks , xke) = p(xk
s)p(x

k
e)p(x

k
1 |x

k
s)p(x

k
e |x

k
Tk
)

Tk∏

t=2

p(xkt |x
k
t−1)

τk∏

t=1

p(yk
t |x

k
ak+t), (6)

where xk = {xkt }
Tk

t=1 and yk = {ykt }
τk
t=1. yk is the par-

tial observation of the whole state xk. In crowded environ-

ments, the trajectories of objects are highly fragmented due

to the frequent occlusions among objects. Therefore, most

trajectories are only partially observed. We assume that tra-

jectory k is only observed from step ak + 1 to ak + τk. If

ak = 0 and τk = Tk, the complete trajectory is observed.

The initial/termination states as well as the states of missing

observations have to be estimated from the model.



2.3. Mixture of Dynamic PedestrianAgents

There are numerous pedestrians with various dynamics

and beliefs in a scene. To model the diversity of pedestrian

patterns, we extend the single agent system described above

to a mixture system of agents, with M possible dynamic-

s and beliefs (D1, B1), ..., (DM , BM ). A hidden variable

zk = 1, . . . ,M indicates the mixture component, i.e. one

pedestrian-agent system from which a trajectory k is sam-

pled. zk is sampled from a discrete prior distribution pa-

rameterized by (π1, . . . , πM ). The joint distribution is

p(xk, yk, xk
s , xke , z

k)

=p(zk)p(xks |z
k)p(xke |z

k)p(xk1 |x
k
s , z

k)p(xke |x
k
Tk
, zk)

Tk∏

t=2

p(xkt |x
k
t−1, z

k)

τk∏

t=1

p(ykt |x
k
a+t, z

k). (7)

2.4. Model Learning and Inference

Given the trajectories {yk}Kk=1, we would like to learn

the model parameters Θ = {(D1, B1), ..., (DM , BM )} by

maximizing the likelihood of observations,

Θ∗ = argmax
Θ

K∑

k=1

log p(yk; Θ). (8)

Since there are three kinds of hidden variables in the graph-

ical model, 1) the index zk of assigning a trajectory k to

a mixture component, 2) the complete sequence of states

xk that produce the partial observation yk, and 3) the num-

ber tek of steps with missing observations between xka+τ and

the termination state xk
e , and the number tsk of steps with

missing observations between the initial state xks and xa+1

(Tk = tek+tsk+τk, τk is the length of the fragmented trajec-

tory k). We apply the EM algorithm to estimate parameters.

Each iteration of EM consists of

E-step:Q = E
X,T,Z|Y;Θ̂

(log p(X,Y,T,Z; Θ)),

M-step:Θ̂∗ = argmax
Θ

Q(Θ; Θ̂).

where p(X,Y,T,Z; Θ) is the complete-data likelihood

of the partial observations Y, complete hidden states

X(including the initial states and termination states), the

numbers of steps with missing observations T, and hidden

assignment variables Z.

To initialize the estimation of the belief parameters, we

first roughly draw the boundaries of entry/exit regions in the

scene as shown in Figure 3A. For trajectories which start or

end within these boundaries, their starting points or ending

points are used to estimate the belief parameters.

We summarize the derived EM algorithm on MDA as

follows. In the E-step, the posterior probabilities and the

expectation of complete-data likelihood are,

Q =E
X,T,Z|Y;Θ̂

(log p(X,Y,T,Z; Θ))

=EZ,T|Y(EX|Y,Z(log p(X,Y,T,Z; Θ)))

=
∑

k,m,g,h

γk(m, g, h)Exk|yk,zk=m,ts
k
=g,te

k
=h(p(x

k, yk, xks , xke , z
k))

where γk(m, g, h) is defined as

γk(m, g, h) =p(zk = m, tsk = g, tek = h | yk)

=
πmp(yk|zk = m, ts

k
= g, te

k
= h)

∑M
m′=1

∑
g′,h′ πm′p(yk|zk = m′, ts

k
= g′, te

k
= h′)

.

Here we assume the priors for p(ts) and p(te) are uniform

distributions, and they are independent with label zk.

In the M-step, the model parameters are updated as

Anew
m =

∑
k,g,h γk(m, g, h)

∑Tk

t=2 P
k
t,t−1

∑
k,g,h γk(m, g, h)

∑Tk

t=2 P
k
t−1,t−1

, (9)

Γnew
m =

∑
k,g,h γk(m, g, h)(

∑Tk

t=2 P
k
t,t − Anew

m

∑Tk

t=2 P
k
t,t−1)∑

k,g,h γk(m, g, h)(Tk + 1)
,

(10)

µs,new
m =

∑
k,g,h γk(m, g, h)x̂ks∑
k,g,h γk(m, g, h)

, (11)

Φs,new
m =

∑
k,g,h γk(m, g, h)(x̂ks − µs

m)(x̂ks − µs
m)⊤

∑
k,g,h γk(m, g, h)

, (12)

µe,new
m =

∑
k,g,h γk(m, g, h)x̂ke∑
k,g,h γk(m, g, h)

, (13)

Φe,new
m =

∑
k,g,h γk(m, g, h)(x̂ke − µe

m)(x̂ke − µe
m)⊤

∑
k,g,h γk(m, g, h)

, (14)

πnew
m =

∑
k,g,h γk(m, g, h)

∑M
m′=1

∑
k,g,h γk(m′, g, h)

. (15)

τk is the length of the trajectory k.

x̂k =Exk|yk,zk=m,ts
k
=g,te

k
=h(x

k),

Pk
t,t =Exk|yk,zk=m,ts

k
=g,te

k
=h(xtx⊤t ),

Pk
t,t−1 =Exk|yk,zk=m,ts

k
=g,te

k
=h(xtx⊤t−1),

and γk(m, g, h) are all computed efficiently by modified

Kalman smoothing filter [14, 17], which can recursively es-

timate the hidden states given the partial observations. Note

that γk(m, g, h) has three discrete variables, it is time con-

suming to enumerate and compute all their possible combi-

nations. However, for most (g, h), γk(m, g, h) are approxi-

mately to 0. We first get the most plausible ĥ = argmint ‖
µe
m − At

myk
τ ‖, ĝ = argmint ‖ µs

m − A−t
m yk1 ‖ by gra-

dient descent. Then we limit the plausible range of tsk as

[ĝ−∆, ĝ−∆+1, ..., ĝ, ..., ĝ+∆−1, ĝ+∆], and the plausible

range of tek as [ĥ−∆, ĥ−∆+1, ..., ĥ, ..., ĥ+∆−1, ĥ+∆],
where ∆ is an integer and empirically determined. When

it is out of the plausible range, γk(m, g, h) is approximat-

ed as 0. For each combination, the total step of all states

T̂k = τk + tek + tsk.



Table 1. Algorithm for fitting a dynamic pedestrian-agent.

INPUT: trajectory k from any tracker.

OUTPUT: the optimal fitted z∗.

01: for m = 1 : M do

02: compute γ(zk = m) =
∑

g,h γk(m, g, h)

03: end for

04:z∗ = argmaxm γ(zk = m)
05:compute the future state or past state with Az∗ .

predict its belief with Bz∗ .

Table 2. Algorithm for sampling a dynamic pedestrian-agent.

INPUT: time length T , pedestrian-agent m

OUTPUT: simulated trajectories.

01:sample temporal order δ1∼T from PoissonP (λm)
02:for ω = 1 : T

03: if δω == 1

04: sample xs from pm(xs)
05: τ = argmint ‖ µe

m − At
mxs ‖.

06: generate trajectory {yt}
τ
t=1 by sequentially

sampling pm(xt|xt−1) and pm(yt|xt).
07: end if

08:end for

2.5. Algorithms for Model Fitting and Sampling

After the parameters of MDA are learned, given the frag-

mented trajectory of a pedestrian in the scene, our mod-

el can fit it to the optimal pedestrian-agent and predict the

pedestrian’s past and future paths, as well as the belief of

the starting point and the destination. Meanwhile, by sam-

pling from the pedestrian-agent model we can generate the

trajectories characterized by this pedestrian-agent. These t-

wo important properties of MDA model will be used in the

following experiments. The algorithms of fitting a dynamic

pedestrian-agent and sampling trajectories from it are listed

in Table 1 and 2.

3. Modeling Pedestrian Timing of Emerging

To fully capture the dynamics of pedestrians in the scene,

we model pedestrian timings of emerging, i.e. the frequen-

cy of new pedestrians entering in the scene over time, and

integrate this module into MDA.

Considering the event that a pedestrian emerges in an

entry region, we assume the timing of that event follows

a homogeneous Poisson process PoissonP (λ), whose un-

derlying distribution is a Poisson distribution

p(n;λ) =
λne−λ

n!
, (16)

where n is the number of events that occur during an unit

time interval. λ is the rate parameter of the Poisson process,

and indicates the expected number of events that occur per

unit time interval.

After {(D1, B1), ..., (DM , BM )} being learned by the

EM algorithm, every trajectory k has the most likely zk, and

its emerging time can also be estimated. Thus we can coun-

t the number of emerging pedestrians in each time interval

(here we use 5 seconds), and estimate the rate parameter

λm for each pedestrian-agent m by maximum likelihood

estimation,

λ̂m =
1

L

L∑

i=1

nm
i , (17)

where L is the number of time intervals over the whole

video sequence, and nm
i is the number of emerging pedes-

trians generated from the dynamic pedestrian-agent m in

time interval i.

4. Experiments and Applications

Experiments are conducted on a 15 minute long video se-

quence collected from the New York Grand Central Station.

The video is 24fps with a resolution of 480×7201. A KLT

keypoint tracker [19] is used to extract trajectories. Track-

ing terminates when ambiguities caused by occlusions and

scene clutters arise, and new tracks will be initialized later.

After filtering some short or stationary trajectories, around

20,000 trajectories are extracted and shown in Figure 3A.

Figure 3B plots the histogram of the lengths of trajectories.

It shows that most trajectories are highly fragmented, and

exist only for short periods.

4.1. Model Learning
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Figure 3. A) Extracted trajectories and entry/exit regions indicated

by yellow ellipses. The colors of trajectories are randomly as-

signed. B) Histogram of the lengths of trajectories. Most of them

are short and fragmented.

To initialize the belief parameters of MDA, we first

roughly label 8 entry/exit regions with ellipses indexed by

1∼8 in Figure 3A. The parameters will be updated at the

learning stage. Trajectories which start/end within these

regions have observed initial/termination states. Their s-

tarting/ending points are used to initialize the estimation of

parameters (µs
m,Φs

m, µe
m,Φe

m). After initialization, all the

1Data is available at http://www.ee.cuhk.edu.hk/∼xgwang/grandcentral.html
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Figure 4. A) Illustration of eight representative dynamic pedestrian-agents through sampling pedestrians from them. Green and red circles

indicate the distributions of initial/termination states for each pedestrian-agent. Yellow circles indicate the current positions of sampled

pedestrians along their trajectories, and red arrows indicate current velocities. The timings of pedestrians entering the scene sampled from

the Poisson process are shown below. One impulse indicates a new pedestrian entering the scene driven by the corresponding pedestrian-

agent. B) Flow fields generated from dynamic pedestrian-agents. C) Flow fields learned by LAB-FM [10].

parameters of MDA are automatically learned from the ob-

servations. It takes around one hour for the EM algorithm

to converge, running on a computer with 3GHz Core Quad

CPU and 4GB RAM with Matlab implementation. Totally

M = 20 agent components are learned. In this work, M

is chosen empirically, but it also could be estimated with

Dirichlet process [23].

Figure 4A illustrates eight representative dynamic

pedestrian-agents. Trajectories are sampled from each

pedestrian-agent using the algorithm in Table 2. Results

show that the learned dynamic pedestrian-agents have dif-

ferent dynamics, beliefs and timings of emerging, and they

characterize various collective behaviors. By densely sam-

pling, MDA also can estimate the velocity flow field for

each pedestrian agent as shown in Figure 4B. For compari-

son, the representative flow fields learned by LAB-FM [10],

which tried to learn motion patterns using Lie algebra, are

shown in Figure 4C. MDA performs better in terms of cap-

turing long-range collective behaviors and separating dif-

ferent collective behaviors. For example, some flow fields

learned by LAB-FM are locally distributed, without cov-

ering the complete paths. The upper parts of the first two

flow fields in Figure 4B, which represent two different col-

lective behaviors, are merged by LAB-FM as shown in the

first flow field in Figure 4C. This is due to the facts that 1)

MDA better models the shared beliefs of pedestrians and

states of missing observations, and takes the whole trajec-

tories instead of local position-velocity pairs as input, and

also that 2) LAB-FM assumes that the spatial distributions

of the flow fields are Gaussian (indicated by cyan ellipses).

4.2. Collective Crowd Behavior Simulation

Compared with other approaches [6, 23, 25] of modeling

global motion patterns in crowded scenes, one of the dis-

tinctive features of MDA is to simulate collective crowd be-
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Frame No. 1752: Current pedestrian number=221

Figure 5. Four exemplar frames from the crowd behavior simula-

tion. Simulated trajectories are colored according to the indices of

their dynamic pedestrian-agents. The middle plots the population

of pedestrians over time.

haviors once it is learned from observations. According to

the superposition property of Poisson process [9], the tim-

ings of overall pedestrians entering the scene also follow a

Poisson distribution with λ =
∑M

m=1 λm. To simulate a tra-

jectory, its pedestrian-agent index is first sampled from the

discrete distribution (π1, ..., πM ) then its trajectory is sam-

pled from the pedestrian-agent using the algorithm in Table

2.

Figure 5 shows four exemplar frames of the simulated

crowd behaviors. At the first frame pedestrians begin to

enter the empty scene. After 1500 frames the crowd reach-

es the equilibrium population with around 200 pedestrians.

Our model well learns the dynamics of the crowd, and the

simulated pedestrian behaviors are similar to those observed

in the real data.
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Figure 6. A) The plot of all the simulated trajectories. Col-

ors of trajectories are assigned according to pedestrian-agent in-

dices. B) The number of pedestrians entering the scene at d-

ifferent frames. C) The capacity of the train station with λ =

0.5λ0, λ0, 1.5λ0, 2λ0 in simulation, where λ0 is the value learned

from data. D) The population density map of the train station com-

puted from the simulation. Color measures the relatively populat-

ed area.

Figure 6A plots all the simulated trajectories over 4500

frames. Figure 6B shows the timings of emerging of the

crowd, i.e. the numbers of new pedestrians entering the

scene over time. The crowd simulation with MDA can pro-

vide some valuable information about the dynamics of the

crowd in the scene. For example, in Figure 6C, we inves-

tigate the relationship between the different rate parameter

λ and the capacity of the train station, where pedestrians

begin and stop to enter the scene at the Frame 1 and 6000

respectively. As pedestrians keep entering the scene with a

constant birth rate, the scene will reach its capacity, which

is the equilibrium state of the system. When λ = λ0, which

is learned from data, the system reaches its equilibrium state

after 1500 frames with around 200 pedestrians in the scene.

So the capacity of the scene could be measured as 200. And

the equilibrium state will change with different birth rates

as shown in Figure 6C. In Figure 6D we compute the aver-

aged population density map when λ = λ0, the populated

areas of the scene are detected. These areas should deserve

high attention of security since accidents would most likely

happen there when panic or abnormal event strikes. These

types of information are very useful for the crowd manage-

ment and the public facility optimization.

4.3. Collective Behavior Classification

Once MDA is learned from observations without super-

vision, it can be used to cluster the trajectories of pedes-

trians into different collective dynamics. We simply take

the inferred index zk of every trajectory as its cluster index.

A lot of works have been done on trajectory clustering in

video surveillance. This problem is especially challenging

in crowded scenes because trajectories are highly fragment-

ed with many missing observations. Generally speaking,
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Figure 8. A) An example of predicting behaviors with different

methods. B) The averaged prediction errors with different meth-

ods tested on 30 trajectories.

existing approaches are in two categories: distance-based

[24, 7] and model-based [21]. We choose one representa-

tive approach from each category for comparison: Haus-

dorff distance-based spectral clustering [24] and hierarchi-

cal Dirichlet processes (HDP) [21].

Figure 7A shows some representative clusters of trajec-

tories obtained by MDA. Even though most trajectories are

fragmented and are far away from each other in space, they

are still well grouped into one cluster because they share the

same collective dynamics. For example, the first cluster in

Figure 7A explains the collective behavior of “pedestrians

walking from entry 7 to exit 2”. Figure 7B and Figure 7C

show the representative clusters obtained by spectral clus-

tering [24] and HDP [21]. They are all in short spatial range

and it is hard to interpret their semantic meanings, because

they cannot well handle the fragmentation of trajectories.

4.4. Behavior Prediction

MDA can predict pedestrians’ behaviors given that their

trajectories are only partially observed. We manually la-

bel 30 trajectories of pedestrians as ground-truth. For each

ground-truth trajectory, we use the observations of the first

20 frames to estimate its pedestrian-agent index z with

the algorithm in Table 1. Then, the model of the select-

ed pedestrian-agent is used to recursively generate the fol-

lowing states as the predicted future trajectory. The per-

formance is measured by the averaged prediction error, i.e.

deviation between the predicted trajectories and the ground-

truth trajectories.

Two baseline methods are used for comparison. In the

first comparison method(referred as ConVelocity), a con-

stant velocity which is estimated as the averaged velocity

of the past observations, is used to predict the future po-

sitions. In the second comparison method LAB-FM [10],

the learned flow field which best fit the first 20 frame ob-

servations, is used to predict future positions. The results in

Figure 8 show that MDA has better prediction performance.

5. Concluding Remarks

In this paper, we propose a Mixture model of Dynam-

ic Pedestrian-Agents to learn the collective dynamics from
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Figure 7. Representative clusters of trajectories by A)MDA model, B)Spectral Clustering [24] and C)HDP [21]. Colors of trajectories are

randomly assigned.

video sequences in crowded scenes. Through modeling the

beliefs of pedestrians and the missing states of observation-

s, it can be well learned from highly fragmented trajectories

caused by frequent tracking failures. It can not only classify

collective behaviors, but also simulate and predict collective

crowd behaviors.

This model has various potential applications and exten-

sions to be explored in the future work. It can be integrated

with the social force model to characterize both the collec-

tive dynamics and interactive dynamics of crowd behaviors

at both the macroscopic and microscopic levels. It will lead

to better accuracies on object tracking, behavior classifica-

tion, simulation, and prediction. The extended model also

has the potential to simulate other interesting crowd behav-

iors such as panic rising and evacuation.
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