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Abstract

In this paper, a Random Field Topic (RFT) model is pro-
posed for semantic region analysis from motions of objects
in crowded scenes. Different from existing approaches of
learning semantic regions either from optical flows or from
complete trajectories, our model assumes that fragments
of trajectories (called tracklets) are observed in crowded
scenes. It advances the existing Latent Dirichlet Allocation
topic model, by integrating the Markov random fields (MR-
F) as prior to enforce the spatial and temporal coherence
between tracklets during the learning process. Two kinds
of MRF, pairwise MRF and the forest of randomly span-
ning trees, are defined. Another contribution of this model
is to include sources and sinks as high-level semantic prior,
which effectively improves the learning of semantic regions
and the clustering of tracklets. Experiments on a large s-
cale data set, which includes 40, 000+ tracklets collected
from the crowded New York Grand Central station, show
that our model outperforms state-of-the-art methods both
on qualitative results of learning semantic regions and on
quantitative results of clustering tracklets.

1. Introduction

In far-field video surveillance, it is of great interest to
automatically segment the scene into semantic regions and
learn their models. These semantic regions correspond to
different paths commonly taken by objects, and activities
observed in the same semantic region have similar semantic
interpretation. Some examples are shown in Figure 1 (A).
Semantic regions can be used for activity analysis in a single
camera view [28, 13, 14, 30, 27] or in multiple camera views
[17, 15] at later stages. For example, in [28, 13, 14, 30]
local motions were classified into atomic activities if they
were observed in certain semantic regions and the global
behaviors of video clips were modeled as distributions of
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Figure 1. (A) The New York Grand Central station. Two semantic
regions learned by our algorithm are plotted on the background
image. They correspond to paths of pedestrians. Colors indicate
different moving directions of pedestrians. Activities observed on
the same semantic region have similar semantic interpretation such
as “pedestrians enter the hall from entrance a and leave from exit
b”.(B) Examples of tracklets collected in the scene. The goal of
this work is to learn semantic regions from tracklets.

over atomic activities. In [27], trajectories of objects were
classified into different activity categories according to the
semantic regions they passed through. In [17, 15], activities
in multiple camera views were jointly modeled by explor-
ing the correlations of semantic regions in different camera
views. Semantic regions were also used to improve object
detection, classification and tracking [11, 5, 7]. Semantic
regions are usually learned from motions of object in or-
der to better correlate with the activities of objects. Some
semantic regions as shown in Figure 1 (A) cannot be recog-
nized from the background image.

Generally speaking, the approaches of learning semantic
regions are in two categories: local motion based (such as
optical flows) [28, 15, 13, 14, 6] and complete trajectories
of objects [18, 9, 29, 27] based. Both have some limitation-
s. Without tracking objects, the information represented by
local motions is limited, which weakens the models’ dis-
criminative power. The semantic regions learned from lo-
cal motions are less accurate, tend to be in short range and
may fail in certain scenarios. See discussions in Section
1.2. The other type of approaches assumed that complete



trajectories of objects were available and semantic regions
were estimated from the spatial extents of trajectory cluster-
s. However this assumption is hard to be guaranteed due to
scene clutter and tracking errors, thus the learned semantic
regions are either oversegmented or improperly merged.

1.1. Our approach

We propose a new approach of learning semantic region-
s from tracklets, which are a mid-level representation be-
tween the two extremes discussed above 1. A tracklet is a
fragment of a trajectory and is obtained by a tracker within a
short period. Tracklets terminate when ambiguities caused
by occlusions and scene clutters arise. They are more con-
servative and less likely to drift than long trajectories. In our
approach, a KLT keypoint tracker [25] is used and tracklets
can be extracted even from very crowded scenes.

A Random Field Topic (RFT) model is proposed to learn
semantic regions from tracklets and to cluster tracklets. It
advances the Latent Dirichlet Allocation topic model (L-
DA) [3], by integrating MRF as prior to enforce the spatial
and temporal coherence between tracklets during the learn-
ing process. Different from existing trajectory clustering
approaches which assumed that trajectories were indepen-
dent given their cluster labels, our model defines two kinds
of MRF, pairwise MRF and the forest of randomly spanning
trees, over tracklets to model their spatial and temporal con-
nections.

Our model also includes sources and sinks as high-level
semantic prior. Although sources and sinks were explored
in existing works [18, 24, 29] as important scene structures,
to the best of our knowledge they were not well explored to
improve the segmentation of semantic regions or the clus-
tering of trajectories. Our work shows that incorporating
them in our Bayesian model effectively improves both the
learning of semantic regions and the clustering of tracklets.

Experiments on a large scale data set include more than
40, 000 tracklets collected from the New York Grand Cen-
tral station, which is a well known crowded and busy scene,
show that our model outperforms state-of-the-art methods
both on qualitative results of learning semantic regions and
on quantitative results of clustering tracklets.

1.2. Related works

Wang et al. [28] used hierarchical Bayesian models to
learn semantic regions from the co-occurrence of optical
flow features. It worked well for traffic scenes where at
different time different subsets of activities were observed.
However, our experiments show that it fails in a scene like
Figure 1 (A), where all types of activities happen togeth-
er most of the time with significant temporal overlaps. In
this type of scenes, the co-occurrence information is not

1Optical flows only track points between two frames. The other ex-
treme is to track objects throughout their existence in the scene.

discriminative enough. Some approaches [15, 13, 14, 6]
segmented semantic regions by grouping neighboring cell-
s with similar location or motion patterns. Their segmen-
tation results were not accurate and tended to be in short
ranges.

Many trajectory clustering approaches first defined the
pairwise distances [10, 12, 2] between trajectories, and then
the computed distance matrices were input to standard clus-
tering algorithms [9, 10]. Some other approaches [1, 31, 22]
of extracting features from trajectories for clustering were
proposed in recent years. Semantic regions were estimat-
ed from the spatial extents of trajectory clusters. Reviews
and comparisons of different trajectory clustering methods
can be found in [8, 20, 21]. It was difficult for those non-
Bayesian approaches to include high-level semantic priors
such as sources and sinks to improve clustering. Wang et
al. [27] proposed a Bayesian approach of simultaneously
learning semantic regions and clustering trajectories using
a topic model. This work was relevant to ours. Howev-
er, in their generative model, trajectories were assumed to
be independent given their cluster assignments and the s-
patial and temporal connections between trajectories were
not modeled. It worked well in sparse scenes where a large
portion of trajectories were complete, but not for crowded
scenes where only tracklets can be extracted reliably. It did
not include sources and sinks as prior either.

Tracklets were explored in previous works [4, 23, 16]
mainly for the purpose of connecting them into complete
trajectories for better tracking or human action recognition
but not for learning semantic regions or clustering trajecto-
ries. Our approach does not require first obtaining complete
trajectories from tracklets.

In recent years, topic models borrowed from language
processing were extended to capture spatial and temporal
dependency to solve computer vision problems. Hospedales
et al. [6] combined topic models with HMM to analyze the
temporal behaviors of video clips in surveillance. A tem-
poral order sensitive topic model was proposed by Li et al.
[15] to model activities in multiple camera views from local
motion features. Verbeek et al. [26] combined topic models
with MRF for object segmentation. Their model was rele-
vant to ours. In [26], MRF was used to model spatial de-
pendency among words within the same documents, while
our model captures the spatial and temporal dependency of
words across different documents. Moreover, our model has
extra structures to incorporate sources and sinks.

2. Random Field Topic Model
Figure 2 (A) is the graphical representation of the RFT

model and Figure 2 (B) shows an illustrative example.
Without loss of generality, we use the notations of topic
modeling in language processing. A tracklet is treated as a
document, and observations (points) on tracklets are quan-



tized into words according to a codebook based on their lo-
cations and velocity directions. It is assumed that the spatial
extents of sources and sinks of the scene are known a priori.
An observation on a tracklet has four variables (x, z, h,m).
x is the observed visual word. h and m are the labels of the
source and the sink associated with the observation. If the
tracklet of the observation starts from a source region or ter-
minates at a sink region, its h or m is observed. Otherwise,
they need to be inferred. z is a hidden variable indicating
the topic assigned to x. Λ denotes the MRF connection of
neighboring tracklets. The distribution of document i over
topics is specified by θi. (ϕk, ψk, ωk) are the model param-
eters of topic k. A topic corresponds to a semantic region,
whose spatial distribution is speficied by ϕk and whose dis-
tributions over sources and sinks are specified by ψk and
ωk. α, β, η and κ are hyper-parameters for Dirichlet distri-
butions. The joint distribution is

p({(xin, zin, hin,min)}, {θi}, {(ϕk, ψk, ωk)}|α, β, η, κ)
=

∏
k p(ϕk|β)p(ψk|η)p(ωk|κ)

∏
i p(θi|α)

p({zin}|{θi})
∏

i,n p(xin|ϕzin)p(hin|ψzin)p(min|ωzin).

(1)

i, n and k are indices of documents, words and topic-
s. θi, ϕk, ψk and ωk are multinomial variables sampled
from Dirichlet distributions, p(ϕk|β), p(ψk|η), p(ωk|κ) and
p(θi|α). xin, hin and min are discrete variables sampled
from discrete distributions p(xin|ϕzin), p(hin|ψzin) and
p(min|ωzin). p({zin}|{θi}) is specified by MRF,

p(Z|θ) ∝ exp

∑
i

logθi +
∑

j∈ε(i)

∑
n1,n2

Λ(zin1 , zjn2)

 .

(2)

Z = {zij} and θ = {θi}. ε(i) is the set of tracklets which
have dependency with tracklet i and it is defined by the
structure of MRF. Λ weights the dependency between track-
lets. Two types of MRF are defined in the following section-
s. The intuition behind our model is interpreted as follows.
According to the property of topic models, words often co-
occurring in the same documents will be grouped into one
topic. Therefore, if two locations are connected by many
tracklets, they tend to be grouped into the same semantic
region. The MRF term Λ encourages tracklets which are
spatially and temporally close to have similar distributions
over semantic regions. Each semantic region has its pre-
ferred source and sink. Our model encourages the tracklets
to have the same sources and sinks as their semantic region-
s. Therefore the learned spatial distribution of a semantic
region will connect its source and sink regions.

2.1. Pairwise MRF

For pairwise MRF, ε() is defined as pairwise neighbor-
hood. A tracklet i starts at time tsi and ends at time tei . It-
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Figure 2. (A) Graphical representation of the RFT model. x is
shadowed since it is observed. h and m are half-shadowed be-
cause only some of the observations have observed h and m. (B)
Illustrative example of our RFT model. Two kinds of MRF con-
nect different tracklets with observed and unobserved source/sink
label to enforce their spatial and temporal coherence. The seman-
tic region for the spanning tree is also plotted.

s starting and ending points are at locations (xsi , y
s
i ) and

(xei , y
e
i ) with velocities vsi = (vsix, v

s
iy) and vei = (veix, v

e
iy).

Tracklet j is the neighbor of i (j ∈ ε(i)), if it satisfies

I. tei < tsj < tei + T,

II. |xei − xsj |+ |yei − ysj | < S,

III.
vei · vs

j

∥vei∥∥vsj∥
> C. (3)

I−III requires that tracklets i and j are temporally and spa-
tially close and have consistent moving directions. If these
conditions are satisfied and zin1 = zjn2 ,

Λ(zin1 , zjn2) = exp(
vei ·v

s
j

∥vei∥∥vsj∥
− 1). (4)

Otherwise, Λ(zin1 , zjn2) = 0.

2.2. Forest of randomly spanning trees

The pairwise MRF only captures the connection between
two neighboring tracklets. To capture the higher-level de-
pendencies among tracklets, the forest of randomly span-
ning trees is constructed on top of the neighborhood defined
by the pairwise MRF. Sources and sinks are also integrated



Algorithm Forest of Spanning Trees Construction
INPUT: tracklet set I
OUTPUT: Randomly spanning forest set T .
01: for each tracklet i∈ I do
02: initialize γ = ∅ /* γ is one spanning tree*/
03: Seek-tree(i) /*Recursively search appropriate tree*/
04: end
function Seek-tree(tracklet m)
/* Recursive search on neighboring tracklets defined

by Eq (3) */.
01: γ ← m
02: if tracklets in γ have at least one observed

source h and m do
03: T ← γ /*add the tree to forest set*/
04: break Seek-tree /*stop current search*/
05: end
06: for each j ∈ ε(m) do
07: Seek-tree(tracklet j)
08: end
09: pop out γ
end

Figure 3. Algorithm of constructing the forest of randomly span-
ning trees.

in the construction process. Sources and sinks refer to the
regions where objects appear and disappear in a scene. If
an object is correctly tracked all the time, its trajectory has
a starting point observed in a source region and an ending
point observed in a sink region. However, the sources and
sinks of many tracklets extracted from crowded scenes are
unknown due to tracking error. Our model assumes that
the boundaries of source and sink regions of the scene are
roughly known either by manual input or automatic estima-
tion [24, 18] 2. Experiments show that accurate boundaries
are not necessary. If the starting (or ending) point of a track-
let falls in a source (or sink) region, its h (or m) is observed
and is the label of that region. Otherwise h (or m) is unob-
served and needs to be inferred.

The algorithm of constructing the forest of randomly s-
panning tree γ is listed in Figure 3. A randomly spanning
tree is composed of several tracklets with pairwise connec-
tions, which are defined as the same in Eq (3). The ran-
domly spanning tree is constructed with the constraint that

2In our approach, source and sink regions are estimated using the Gaus-
sian mixture model [18]. Starting and ending points of tracklets caused by
tracking failures are filtered considering the distributions of accumulated
motion densities within their neighborhoods [29]. It is likely for a starting
(ending) point to be in a source (sink) region, if the accumulated motion
density quickly drops along the opposite (same) moving direction of it-
s tracklet. After filtering, high-density Gaussian clusters correspond to
sources and sinks. Low-density Gaussian clusters correspond to tracking
failures. We skip the details since this is not the focus of this paper.

it starts with a tracklet whose starting point has an observed
source h and ends with a tracklet whose ending point has an
observed sink m. Then ε() in Eq (2) is defined by the forest
of randomly spanning tree γ, i.e. if tracklet i and j are on
the same randomly spanning tree, j ∈ γ(i).

2.3. Inference

We derive a collapsed Gibbs sampler to do inference. It
integrates out {θ, ϕ, ψ, ω} and samples {z, h,m} iterative-
ly. The details of derivation are given in the supplementary
material. Here we just present the final result.

The posterior of zin given other variables is

p(zin = k|X,Z\in,H,M)

∝
n
(w)
k,\in + β∑W

w=1(n
(w)
k,\in + β)

n
(p)
k,\in + η∑P

p=1(n
(p)
k,\in + η)

n
(q)
k,\in + κ∑Q

q=1(n
(q)
k,\in + κ)

n
(k)
i,\n + α∑K

k=1(n
(k)
i,\n + α)

exp

 ∑
j∈γ(i)

∑
n′

Λ(zin, zjn′)

 . (5)

X = {xin},Z = {zin},H = {hin},M = {min}. Sub-
script \in denotes counts over the whole data set excluding
observation n on tracklet i. Assume that xin = w, hin =

p,min = q. n(w)
k,\in denotes the count of observations with

value w and assigned to topic k. n(p)k,\in (n(q)k,\in) denotes the
count of observations being associated with source p (sink
q) and assigned to topic k. nki,\n denotes the count of obser-
vations assigned to topic k on tracklet i. W is the codebook
size. P and Q are the numbers of sources and sinks.

The posteriors of hin and min given other variables are,

p(hin = p|X,Z,H\i,M) ∝
n
(p)
k,\in + η∑P

p=1(n
(p)
k,\in + η)

, (6)

p(min = q|X,Z,H,M\in) ∝
n
(q)
k,\in + κ∑Q

q=1(n
(q)
k,\in + κ)

. (7)

If hin and min are unobserved, they are sampled based
on Eq (6) and (7). Otherwise, they are fixed and not up-
dated during Gibbs sampling. After sampling converges,



Algorithm Optimal Spanning Tree Ranking
INPUT: the online tracklet g, the learnt tracklet set I
OUTPUT: Optimal spanning tree γ̃(g) and zγ̃ for g.
01: Exhaustively Seek neighbor grids ε of trajectory g

based on Constraint II and III in set I
02: for each εi do
03: γi ← Seek-tree(g) on εi
04: Gibbs Sampling for zγi

03: P ← γi / * P is the potential tree set * /
04: end
05: γ̃(g)=argmin

γ∈P
H(Zγ)

/* H(Z) = −
∑
z
p(z)logp(z) is the information entropy,

computed over distribution of z for the spanning tree γi,
to select the optimal spanning tree */.

Figure 4. Algorithm of obtaining the optimal spanning tree for on-
line tracklet.

{θ, ψ, ω} could be estimated from any sample by

θ̂
(w)
k =

n
(w)
k + β∑W

w=1(n
(w)
k + β)

, (8)

ψ̂
(p)
k =

n
(p)
k + η∑P

p=1(n
(p)
k + η)

, (9)

ω̂
(q)
k =

n
(q)
k + κ∑Q

q=1(n
(q)
k + κ)

. (10)

Once the RFT model is learnt, tracklets can be clustered
based on semantic regions they belong to. The topic label
of a tracklet is obtained by majority voting from its inferred
z.

2.4. Online tracklet prediction

After semantic regions are learned, our model can online
analyze the tracklets, i.e. classifying them into semantic re-
gions and predicting their sources and sinks. It is unreliable
to analyze an online tracklet alone using the models of se-
mantic regions. Instead, we first obtain its optimal spanning
tree from the training set using the algorithm in Figure 4. It
is assumed that a pedestrian’s behavior at one location is s-
tatistically correlated to the behaviors of pedestrians in the
training set at the same location. The algorithm first cor-
relates the online tracklet with the tracklets from the train-
ing set by generating several spanning trees. The spanning
tree with the minimum entropy on z is chosen for the online
tracklet to infer its topic label, source, and sink.

3. Experiments
Experiments are conducted on a 30 minutes long video

sequence collected from the New York’s Grand Central sta-
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Figure 5. (A) The histogram of tracklet lengths. (B) Detected
source and sink regions. (C) Statistics of sources and sinks of all
the tracklets. (D) The summary of observed sources and sinks of
the complete tracklets.

tion. Figure 2 (B) shows a single frame of this scene. The
video is at the resolution of 480 × 720. 47, 866 tracklets
are extracted. The codebook of observations is designed as
follows: the 480 × 720 scene is divided into cells of size
10 × 10 and the velocities of keypoints are quantized into
four directions. Thus the size of the codebook is 48×72×4.

Figure 5 shows the summary of collected tracklets. (A)
is the histogram of tracklet lengths. Most of tracklet lengths
are shorter than 100 pixels. (B) shows the detected sources
and sinks regions indexed by 1 v 7. (C) shows the percent-
ages of four kinds of tracklets. Only a very small portion of
tracklets (3%) (labeled as “complete”) have both observed
sources and sinks. 24% tracklets (labeled as “only source”)
only have observed sources. 17% tracklets (labeled as “on-
ly sink”) only have observed sinks. For more than half of
tracklets (56%), neither sources nor sinks are observed. (D)
summarizes the observed sources and sinks of the complete
tracklets. The vertical axis is the source index, and hori-
zontal axis is the sink index. It shows that most complete
tracklets are between the source/sink regions 5 and 6 since
they are close in space. Therefore, if only complete track-
lets are used, most semantic regions cannot be well learned.

Hyper-parameters α, β, η, κ are uniform Dirichlet distri-
butions and are empirically chosen as 1. It takes around 2
hours for the Gibbs sampler to converge on this data set,
running on a computer with 3GHz core duo CPU in Visual
C++ implementation. The convergence is empirically de-
termined by the convergence of data likelihood. The online
tracklet prediction takes 0.5 seconds per tracklet.



3.1. Learning semantic regions

Our RFT model using the forest of randomly spanning
trees learns 30 semantic regions in this scene. Figure 6
(A) visualizes some representative semantic regions3. Ac-
cording to the learned ψ̂ and ω̂, the most probable source
and sink for each semantic region are also shown. The
learned semantic regions represent the primary visual flows
and paths in the scene. They spatially expand in long ranges
and well capture the global structures of the scene. Mean-
while, most paths are well separated and many structures
are revealed at fine scales with reasonably good accuracy.
Most learned semantic regions only have one source and
one sink, except semantic region 19 which has two sources.
Semantic region 14 also diverges. The results of these t-
wo regions need to be improved. It is observed that sources
and sinks, whose boundaries are defined beforehand, only
partially overlap with their semantic regions. One source
or sink may correspond to multiple semantic regions. This
means that although the prior provided by sources and sinks
effectively guides the learning of semantic regions, it does
not add strong regularization on the exact shapes of seman-
tic regions. Therefore our model only needs the boundaries
of sources and sinks to be roughly defined.

For comparison, the results of optical flow based HD-
P (OptHDP) model [28] and trajectory based Dual HDP
(TrajHDP) [27] are shown in Figure 6 (B) and (C). Both
methods are based on topic models. OptHDP learns the
semantic regions from the temporal co-occurrence of op-
tical flow features and it was reported to work well in traf-
fic scenes [28]. It assumed that at different time different
subsets of activities happened. If two types of activities al-
ways happen at the same time, they cannot be distinguished.
In our scene, pedestrians move slowly in a large hall. For
most of the time activities on different paths are simulta-
neously observed with large temporal overlaps. Temporal
co-occurrence information is not discriminative enough in
this scenario. As a result, different paths are incorrectly
merged into one semantic region by OptHDP. TrajHDP is
related to our method. It assumed that a significant portion
of trajectories were complete and that if two locations were
on the same semantic region they were connected by many
trajectories. However, a large number of complete trajecto-
ries are unavailable from this crowded scene. Without MRF
and source-sink priors, TrajHDP can only learn semantic re-
gions expanded in short ranges. Some paths close in space
are incorrectly merged. For example, the two paths (21 and
15 in Figure 6 (A)) learned by our approach are close in
the bottom-right region of the scene. They are separated by
our approach because they diverge toward different sinks in
the top region. However, since TrajHDP cannot well cap-

3The complete results of semantic regions and tracklet clustering can
be found in our supplementary material.

ture long-range distributions, they merge into one semantic
region shown in the fifth row of Figure 6 (C). Overall, the
semantic regions learned by our approach are more accurate
and informative than OptHDP and TrajHDP.

3.2. Tracklet clustering based on semantic regions

Figure 7 (A) shows some representative clusters of track-
lets obtained by our model using the forest of randomly s-
panning trees as MRF prior. Even though most tracklets are
broken, some tracklets far away in space are also grouped
into one cluster because they have the same semantic inter-
pretation. For example, the first cluster shown in Figure 7
(A) contains tracklets related to the activities of “pedestrian-
s from source 2 walk toward sink 7”. It is not easy to obtain
such a cluster, because most tracklets in this cluster are not
observed either in source 2 or in sink 7. Figure 7 (B) and
(C) show the representative clusters obtained by Hausdorff
distance-based Spectral Clustering (referred as SC) [2] and
TrajHDP [27]. They are all in short range spatially and it is
hard to interpret their semantic meanings.

To further quantitatively evaluate the clustering perfor-
mance, we use correctness and completeness introduced in
[19] as measurements of the clustering accuracy. Correct-
ness is the accuracy that two tracklets, which belong to d-
ifferent activity categories based on the ground truth, are
also grouped into different clusters by the algorithm. Com-
pleteness is the accuracy that two tracklets, which belong to
the same activity category, are also grouped into the same
cluster by the algorithm. In extreme cases, if all the track-
lets are grouped into one cluster, the completeness is 100%
while the correctness is 0%; if every tracklet is put into
a different cluster, the completeness is 0% while the cor-
rectness is 100%. A good cluster algorithm should have
both high correctness and high completeness. To measure
correctness (completeness), we manually label 2000 (1507)
pairs of tracklets and each pair of tracklets belong to dif-
ferent (the same) activity categories (category) as ground
truth. The accuracies of correctness and completeness for
our pairwise RFT model, tree RFT model, TrajHDP [27]
and SC [2] are reported in Table 1. Our tree RFT model
achieves the best performance in terms of both correctness
and completeness. The pairwise RFT model also outper-
forms TrajHDP and SC.

4. Discussion and Conclusion
In this paper we proposed a new approach of learning se-

mantic regions of crowded scenes from tracklets, which are
a mid-level representation between local motions and com-
plete trajectories of objects. It effectively uses the MRF pri-
or to capture the spatial and temporal dependency between
tracklets and uses the source-sink prior to guide the learn-
ing of semantic regions. The learned semantic regions well
capture the global structures of the scenes in long range with
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(B) OptHDP [28] and (C) TrajHDP [27]. The velocities are quantized into four directions represented by four colors. The two circles
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Figure 7. Representative clusters of trajectories by (A)our model, (B)SC [2] and (C)TrajHDP [27]. Colors of every trajectories are randomly
assigned.

clear semantic interpretation. They are also able to separate
different paths at fine scales with good accuracy. Both qual-
itative and quantitative experimental evaluations show that
it outperforms state-of-the-art methods.

Our model also has other potential applications to be ex-
plored. For example, after inferring the sources and sinks
of tracklets, the transition probabilities between sources and
sinks can be estimated. It is of interest for crowd control and
flow prediction. Figure 8(A)(B) show the transition proba-
bilities from sources 2 and 6 to other sinks learned by our
RFT model. Our model can also predict the past and future
behaviors of individuals whose existence is only partially
observed in a crowded scene. As shown in Figure 8(C)(D),
two individuals are being tracked, two online tracklets are

generated. With the algorithm in Figure 4 to obtain the op-
timal spanning tree, our model could predict the most pos-
sible compact paths of the individuals and estimate where
they came from and where they would go. To estimate in-
dividual behavior in public crowded scenes is a critical feat
for intelligent surveillance systems. These applications will
be explored in details in the future work.
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