Chao Dong, Chen Change Loy, Xiaoou Tang
Department of Information Engineering, The Chinese University of Hong Kong
dongchao@sensetime.com, {ccloy, xtang}@ie.cuhk.edu.hk
The results of PSNR (dB) and test time (sec on CPU) on three test datasets. We present the best results reported in the corresponding paper. The proposed FSCNN and FSRCNN-s are trained on both 91-image and General-100 dataset. More comparisons with other methods on PSNR, SSIM and IFC can be found in the supplementary file.
test dataset |
scaling factor |
Bicubic PSNR / Time |
SRCNN [1] PSNR / Time |
SRCNN-Ex [2] PSNR / Time |
SCN [3] PSNR / Time |
FSRCNN-S PSNR / Time |
FSRCNN PSNR / Time |
Set5 Set14 B200 |
2 2 3 |
33.66 / - 30.23 / - 29.70 / - |
36.34 / 0.18 32.18 / 0.39 31.38 / 0.23 |
36.66 / 1.3 32.45 / 2.8 31.63 / 1.7 |
36.93 / 0.94 33.10 / 1.7 31.63 / 1.1 |
36.58 / 0.024 32.28 / 0.061 31.48 / 0.033 |
37.00 / 0.068 32.63 / 0.160 31.80 / 0.098 |
Set5 Set14 B200 |
3 3 3 |
30.39 / - 27.54 / - 27.26 / - |
32.39 / 0.18 29.00 / 0.39 28.28 / 0.23 |
32.75 / 1.3 29.30 / 2.8 28.48 / 1.7 |
33.10 / 1.8 29.41 / 3.6 28.54 / 2.4 |
32.61 / 0.010 29.13 / 0.023 28.32 / 0.013 |
33.16 / 0.027 29.43 / 0.061 28.60 / 0.035 |
Set5 Set14 B200 |
4 4 4 |
28.42 / - 26.00 / - 25.97 / - |
30.09 / 0.18 27.20 / 0.39 26.73 / 0.23 |
30.49 / 1.3 27.50 / 2.8 26.92 / 1.7 |
30.86 / 1.2 27.64 / 2.3 27.02 / 1.4 |
30.11 / 0.0052 27.19 / 0.0099 26.75 / 0.0072 |
30.71 / 0.015 27.59 / 0.029 26.98 / 0.019 |
[1] Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: ECCV. (2014) 184–199.
[2] Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. TPAMI 38(2) (2015) 295–307.
[3] Wang, Z., Liu, D., Yang, J., Han, W., Huang, T.: Deeply improved sparse coding for image super-resolution. ICCV (2015) 370–378.