Learning Deep Representation for Imbalanced Classification
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1. Motivation 3. Large Margin Local Embedding (LMLE)

® Data imbalance is common in visual classification ® Triple-header hinge loss

Face attribute example min Z(Ez + T; +<7z') +)\HW||§
i

—+ Class L:cluster 1 | [+t
—+ Class 1:cluster 2 | - 4

Wearing F Y A | B _ﬁ 7 , ' ; \“ _ ® Class 2: cluster 1 |

— . : : / "8 S.t.: @ Class 2: cluster 2 | . .
hat 2 | - A N Z y D s ® Class 2:cluster 3 | .- "

max (0, g1 + D(f(x:), f(&! ), f(a - * Goszctwrs |

- T
Our LMLE ##4#

c=1,....Cc | m;j€e(q)

“Minority class _— . ), f(@ | y, = argmax [ min D(f(q), f(m;)) — max D(f(q), f(m))

Vi, g; >0, 7,>0, 0; >0

5. Results

« Equal class re-sampling & class costs assignment in batches ® [arge-scale CelebA face attribute dataset

2. Main Idea « 200K celebrity images, each with 40 attributes

® Deep embedding: Class-level = cluster- & class-level constraint Shared parameterje( ;)  Highly imbalanced: average positive class rate 23%
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Triplet-kNN 83 72

Anet 87 80
LMLE-KNN 90 84

® Edge detection on BSDS500 dataset
« Retrieve from 2M edge label patches with long-tail distribution
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x; —an anchor AN\ Feature learning/updating
P* _ the anchor’s most distant within-cluster neighbor

Xk
xP~ — the nearest within-class neighbor of the anchor, but from a different cluster Feature-based clustering/
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® Training step

‘ e Re-sample batches equally from each class 6. Conclusion
e

x;  —the most distant within-class neighbor of the anchor e Clustering by k-means / e Forward their quintuplets to CNN to ® Cluster- & class-level quintuplets preserve both locality

x; —the nearest between-class neighbor of the anchor .- compute loss across clusters and discrimination between classes,
Irrespective of class imbalance

® [arge margin classification by fast cluster-wise kNN search
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e Generate quintuplets from

® Study traditional re-sampling and cost-sensitive learning scheme cluster & class membership e Back-propagation




