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Abstract

In this supplementary material, we first present the network architecture details of the SR network and the discriminator
in Sec. 1. We then introduce the datasets used in our training and testing in Sec. 2. Training details of segmentation and the
results are illustrated in Sec. 3. Additional analysis including the quantitative results, impact of different categorical priors
and repetitive conditioning are presented in Sec. 4. Finally, we provide more visualization examples in outdoor scenes and
out-of-category scenes, together with failure case analysis.

1. Network Architectures
In this section, we provide the details of the network architectures - SR network with SFT module and the discriminator.

1.1. SR network with SFT module

The detailed SR network structure with SFT module is shown in Fig. 1. Convolution layer is denoted as Conv(in, out, k, s),
where in is the number of input channels, out is the number of output channels, k is the kernel size and s is the stride. To
avoid interference of different categorical regions in one image, we restrict the receptive field of the condition network by
using 1× 1 kernels for all the convolution layers except the first one. Since we perform segmentation on bicubic-ed images,
the condition network first uses a convolutional layer to downsample the input with a 4× 4 kernel and stride = 4.

Figure 1. The details of SR network architecture with SFT module.

1.2. Discriminator

Fig. 2 shows the architecture of our discriminator. We apply a VGG-style [14] network of strided convolutions to grad-
ually decrease the spatial dimensions. Convolution layer is denoted as Conv(in, out, k, s). The network uses leaky ReLU
activations with parameter 0.01.
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Inspired by [12], our discriminator not only distinguishes whether the input is real or fake, but also predicts which category
the input belongs to. All convolutional layers are shared and a fully connected layer is used to output the extra result for the
auxiliary classifier. This is possible since our training images are cropped to contain only one category. For ‘background’
category, we do not give the penalty of auxiliary classification to the discriminator. We find this strategy facilitates the
generation of images with more realistic textures. The discriminator is removed in test phase.
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Figure 2. The network structure of the discriminator.

2. Dataset
We use two datasets for our SR task: a subset of ImageNet dataset and an OutdoorScene dataset. ImageNet dataset is used

to pre-train our network with perceptual loss and GAN loss to avoid undesired local optima. We use the validation set of
ImageNet after removing low resolution images of size below 30kB, resulting in roughly 450k training images.

After initialization, we fine-tune our full network on OutdoorScene conditionally on the input segmentation probabil-
ity maps. The OutdoorScene dataset is collected by querying images from search engines using the defined categories as
keywords. The dataset is divided into training and test partitions (OutdoorSceneTrain and OutdoorSceneTest). For Out-
doorSceneTrain, we crop each image so that only one category exists. The image number of each category is listed in
Table 1. Background images are randomly sampled from ImageNet. The OutdoorSceneTest partition consists of 300 images
and we use OST300 for abbreviation (some OST300 images are from the ADE validation set and they are exclusive from the
training dataset).

Table 1. The image number of each category in OutdoorSceneTrain.
Category sky water building grass plant animal mountain Total

Image Number 1,727 857 2,285 1,140 1,036 2,187 1,092 10,324

3. Segmentation
The segmentation model aims at parsing the input scenes into 7 categories, i.e., sky, water, building, animal, plant, grass,

mountain and an extra ‘background’ category. Segmentation probability maps are then generated for the condition network.
We provide the training details in this section.
Training and testing dataset. We use a newly merged training dataset (called OutdoorSeg) for outdoor scene segmentation,
which is composed of 8,447 images from ADE dataset [19], 899 mountain images from Flickr website and 554 animal images
from COCO dataset [8], as listed in Table 2. We collect animal and mountain images from COCO and Fickr for balancing
the training samples of each category. We test the performance of the segmentation network on OST300.

Table 2. Training dataset for segmentation - OutdoorSeg.
Sources Image Number

images from ADE [19] 8,447
animal images from COCO [8] 554
mountain images from Flickr 899

Total 9,900

Network architecture and training details. The segmentation network is modified from ResNet101. To suit for segmen-
tation task, we set the dilation parameter of some convolutional layers to 2 and 4, and remove the final fully connected
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layers. An extra upsampling layer is added to output a dense prediction. The modification is standard and could be found in
segmentation literature [10, 9, 2].

The network is pre-trained on the COCO dataset [8] and then fine-tuned on OutdoorSeg dataset. To better adapt to the
bicubic-ed LR input in testing, we fed the network with bicubic-ed training samples during fine-tuning.

We train the network separately from the main SR network using Caffe [4] with stochastic gradient descent optimizer. The
learning rate is set to 0.001 and is decreased under the ‘poly’ strategy. Both of the pre-training and fine-tuning have 30000
training iteration with batch size 8.
Quantitative results. From Table 3, we can see that satisfactory segmentation results can still be obtained even on LR images
given a modern CNN-based segmentation model.

Table 3. Quantitative results of segmentation on OST300.

Input Pixel Accuracy IoU
sky water grass mountain building plant animal background mean

Bicubic 90.82 95.80 85.53 78.28 57.18 90.94 73.47 87.25 70.13 79.82
GT 91.72 96.17 89.16 79.26 57.84 92.49 76.30 91.20 70.54 81.62

4. Additional Analysis
4.1. Quantitative results

We provide quantitative results on standard benchmarks such as Set5 [1], Set14 [18] and BSD100 [11], and also on
OutdoorSceneTest300 (OST300) dataset. We compare our method with Bicubic, SRCNN [3], VDSR [5], LapSRN [6],
DRRN [15], MemNet [16], SRGAN [7] and EnhanceNet [13]. For Set5, Set14 and BSD100, our model treats all the regions
as ‘background’, degrading itself to SRGAN. Table 4 and Table 5 summarize the PSNR and SSIM values performed on
Y-channel and RGB channels respectively. For evaluation on RGB channels, we use the similar process to [17], where PSNR
is evaluated over all RGB channels while SSIM is first computed for each R, G, B color channel and then averaged.

GAN-based methods, such as SRGAN, EnhanceNet, and our SFT-GAN yield lower PSNR and SSIM values, which is
also observed in [7, 13]. MemNet [16] yields the highest PSNR values since its objective is to minimize the per-pixel
distance to the ground truth. However, as can be seen in qualitative comparison, GAN-based methods clearly outperform
PSNR-oriented approaches in terms of perceptual quality. From current results, there is no obvious relationship between the
perceptual quality and PSNR/SSIM values on SRGAN, EnhanceNet, and SFT-GAN.

Table 4. Quantitative evaluation of state-of-the-art SR algorithms: average PSNR/SSIM on Y channel.
Set5 Set14 BSD100 OST300

algorithm PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM
Bicubic 28.41 / 0.810 26.08 / 0.704 25.96 / 0.667 25.74 / 0.663

SRCNN [3] 30.47 / 0.862 27.60 / 0.753 26.90 / 0.710 26.49 / 0.703
VDSR [5] 31.34 / 0.884 28.11 / 0.770 27.29 / 0.725 26.74 / 0.716

LapSRN [6] 31.51 / 0.885 28.17 / 0.770 27.31 / 0.726 26.75 / 0.716
DRRN [15] 31.67 / 0.889 28.31 / 0.774 27.38 / 0.728 26.79 / 0.719

MemNet [16] 31.81 / 0.891 28.40 / 0.776 27.44 / 0.730 26.84 / 0.721
EnhanceNet [13] 28.56 / 0.810 25.76 / 0.678 24.93 / 0.626 24.36 / 0.616

SRGAN [7] 29.91 / 0.847 26.36 / 0.707 24.49 / 0.661 24.77 / 0.637
SFT-GAN (ours) 29.82 / 0.840 26.13 / 0.694 25.33 / 0.651 24.71 / 0.634

4.2. Impact of different categorical priors

To analyze the impact of different categorical priors, we manually change the probability maps to each category for a
certain input. As shown in Fig. 3, the given input LR image can be restored to various textures under different categorical
priors. Each restored texture presents the characteristics of its corresponding prior. For example, no matter which category
the input belongs to, the restored textures under building categorical prior always have regular geometric shapes. This
phenomenon also shows the importance of categorical priors in restoring realistic and natural textures in SR. Without the
categorical priors, the model struggles in distinguishing these LR patches and restoring proper textures thereon.
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4.3. Repetitive conditioning

We investigate the contribution of repetitive conditioning of SFT. In our full SFT-GAN model, all the 16 residual blocks
(RB) are equipped with SFT layers. In this experiment, we train SFT-GAN with successively fewer SFT layers and compare
models with 8 RB, 4 RB and 1 RB equipped with SFT layers, respectively. As shown in Fig. 4, models with fewer SFT layers

Table 5. Quantitative evaluation of state-of-the-art SR algorithms: average PSNR/SSIM on RGB color channels.
Set5 Set14 BSD100 OST300

algorithm PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM
Bicubic 26.68 / 0.773 24.46 / 0.664 24.63 / 0.640 24.38 / 0.639

SRCNN [3] 28.51 / 0.826 25.77 / 0.711 25.55 / 0.685 25.11 / 0.681
VDSR [5] 29.23 / 0.847 26.18 / 0.725 25.91 / 0.700 25.34 / 0.693

LapSRN [6] 29.40 / 0.850 26.26 / 0.728 25.95 / 0.701 25.36 / 0.695
DRRN [15] 29.52 / 0.853 26.37 / 0.731 26.01 / 0.704 25.40 / 0.698

MemNet [16] 29.62 / 0.854 26.44 / 0.732 26.06 / 0.704 25.44 / 0.699
EnhanceNet [13] 26.71 / 0.768 23.98 / 0.631 23.51 / 0.595 22.93 / 0.588

SRGAN [7] 27.75 / 0.791 24.35 / 0.652 24.01 / 0.625 23.35 / 0.610
SFT-GAN (ours) 27.86 / 0.797 24.27 / 0.645 23.90 / 0.619 23.26 / 0.605
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Figure 3. Super-resolved patches under different categorical priors. Restored textures under right priors are shown in red boxes. (Zoom in
for best view).
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are still able to generate results conditioned on the input segmentation probability maps. With more repetitive conditioning
of SFT, we observe a slight improvement on the generated results. The observation indicates the capacity of SFT layer by
modulating the feature maps. In future work, we will investigate more on the contribution of repetitive conditions.

w/o SFT SFT in 1RB SFT in 4RB SFT in 8RB SFT in 16RB GT

Figure 4. Models with fewer SFT layers are still able to generate results conditioned on the input segmentation probability maps. With
more repetitive conditioning of SFT, we observe a slight improvement on the generated results. (Zoom in for best view).

5. Qualitative Comparisons
In this section, we provide more visual comparisons with state-of-the-art methods on OST300 and on out-of-category

examples. Some failure cases are analyzed at the end of the supplemental material.

5.1. Visual comparisons on OST300
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Bicubic SRCNN VDSR LapSRN DRRN

MemNet EnhanceNet SRGAN ours GT

Figure 5. Qualitative comparison on OST 003 image.

Bicubic SRCNN VDSR LapSRN DRRN

MemNet EnhanceNet SRGAN ours GT

Figure 6. Qualitative comparison on OST 039 image.
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Bicubic SRCNN VDSR LapSRN DRRN

MemNet EnhanceNet SRGAN ours GT

Figure 7. Qualitative comparison on OST 032 image.

Bicubic SRCNN VDSR LapSRN DRRN

MemNet EnhanceNet SRGAN ours GT

Figure 8. Qualitative comparison on OST 273 image.
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Bicubic SRCNN VDSR LapSRN DRRN

MemNet EnhanceNet SRGAN ours GT

Figure 9. Qualitative comparison on OST 158 image.

Bicubic SRCNN VDSR LapSRN DRRN

MemNet EnhanceNet SRGAN ours GT

Figure 10. Qualitative comparison on OST 005 image.
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Bicubic SRCNN VDSR LapSRN DRRN

MemNet EnhanceNet SRGAN ours GT

Figure 11. Qualitative comparison on OST 040 image.

Bicubic SRCNN VDSR LapSRN DRRN

MemNet EnhanceNet SRGAN ours GT

Figure 12. Qualitative comparison on OST 070 image.
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Bicubic SRCNN VDSR LapSRN DRRN

MemNet EnhanceNet SRGAN ours GT

Figure 13. Qualitative comparison on OST 035 image.
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Bicubic SRCNN VDSR LapSRN DRRN

MemNet EnhanceNet SRGAN ours GT

Figure 14. Qualitative comparison on OST 141 image.

Bicubic SRCNN VDSR LapSRN DRRN

MemNet EnhanceNet SRGAN ours GT

Figure 15. Qualitative comparison on OST 144 image.
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Bicubic SRCNN VDSR LapSRN DRRN

MemNet EnhanceNet SRGAN ours GT

Figure 16. Qualitative comparison on OST 050 image.

Bicubic SRCNN VDSR LapSRN DRRN

MemNet EnhanceNet SRGAN ours GT

Figure 17. Qualitative comparison on OST 225 image.
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Bicubic SRCNN VDSR LapSRN DRRN

MemNet EnhanceNet SRGAN ours GT

Figure 18. Qualitative comparison on OST 049 image.

Bicubic SRCNN VDSR LapSRN DRRN

MemNet EnhanceNet SRGAN ours GT

Figure 19. Qualitative comparison on OST 053 image.
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Bicubic SRCNN VDSR LapSRN DRRN

MemNet EnhanceNet SRGAN ours GT

Figure 20. Qualitative comparison on OST 083 image.

Bicubic SRCNN VDSR LapSRN DRRN

MemNet EnhanceNet SRGAN ours GT

Figure 21. Qualitative comparison on OST 176 image.
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Bicubic SRCNN VDSR LapSRN DRRN

MemNet EnhanceNet SRGAN ours GT

Figure 22. Qualitative comparison on OST 118 image.
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5.2. Visual comparisons on out-of-category examples

When facing with other scenes or the absence of segmentation probability maps, our model degenerates itself as SRGAN
and produces comparative results with SRGAN when all the regions are deemed as ‘background’. Here, we shown some
examples from Set14 and BSD100.

Bicubic SRCNN VDSR LapSRN DRRN

MemNet EnhanceNet SRGAN ours GT

Figure 23. Qualitative comparison on Set14 - image barbara.
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Bicubic SRCNN VDSR LapSRN DRRN

MemNet EnhanceNet SRGAN ours GT

Figure 24. Qualitative comparison on Set14 - image lenna.
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Bicubic SRCNN VDSR LapSRN DRRN

MemNet EnhanceNet SRGAN ours GT

Figure 25. Qualitative comparison on Set14 - image man.

Bicubic SRCNN VDSR LapSRN DRRN

MemNet EnhanceNet SRGAN ours GT

Figure 26. Qualitative comparison on BSD100 - image 58060.
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Bicubic SRCNN VDSR LapSRN DRRN

MemNet EnhanceNet SRGAN ours GT

Figure 27. Qualitative comparison on BSD100 - image 189080.
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Bicubic SRCNN VDSR LapSRN DRRN

MemNet EnhanceNet SRGAN ours GT

Figure 28. Qualitative comparison on BSD100 - image 302008.
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Bicubic SRCNN VDSR LapSRN DRRN

MemNet EnhanceNet SRGAN ours GT

Figure 29. Qualitative comparison on BSD100 - image 306005.
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5.3. Failure case analysis

We show two kinds of failure cases here. As shown in Fig. 30, wrong segmentation will result in improper texture
restoration. In the example, the plant is on the surface of the building, increasing the difficulties for segmentation network.
Unfortunately, part of plant region is misclassified as building region, leading to restoring plant texture under the building
categorical prior. Therefore, the result is unsatisfactory.

Ours GTSegmentation

Ours

GT

sky

building

plant

grass

background

Figure 30. Failure case arises in wrong segmentation.

Another failure case is caused by aliasing, as depicted in Fig. 31. The restored bricks have an unmatched direction as
ground-truth since aliasing problem. Future work aims at addressing these shortcomings.

Ours OursGT GT

Figure 31. Failure case caused by aliasing.
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