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Abstract

Face detection is one of the most studied topics in the
computer vision community. Much of the progresses have
been made by the availability of face detection benchmark
datasets. We show that there is a gap between current face
detection performance and the real world requirements. To
facilitate future face detection research, we introduce the
WIDER FACE dataset, which is 10 times larger than exist-
ing datasets. The dataset contains rich annotations, includ-
ing occlusions, poses, event categories, and face bounding
boxes. Faces in the proposed dataset are extremely chal-
lenging due to large variations in scale, pose and occlusion,
as shown in Fig. 1. Furthermore, we show that WIDER
FACE dataset is an effective training source for face de-
tection. We benchmark several representative detection sys-
tems, providing an overview of state-of-the-art performance
and propose a solution to deal with large scale variation.
Finally, we discuss common failure cases that worth to be
further investigated.

1. Introduction
Face detection is a critical step to all facial analysis al-

gorithms, including face alignment, face recognition, face
verification, and face parsing. Given an arbitrary image,
the goal of face detection is to determine whether or not
there are any faces in the image and, if present, return the
image location and extent of each face [27]. While this ap-
pears as an effortless task for human, it is a very difficult
task for computers. The challenges associated with face de-
tection can be attributed to variations in pose, scale, facial
expression, occlusion, and lighting condition, as shown in
Fig. 1. Face detection has made significant progress after
the seminal work by Viola and Jones [22]. Modern face de-
tectors can easily detect near frontal faces and are widely
used in real world applications, such as digital camera and
electronic photo album. Recent research [3, 15, 18, 25, 28]
in this area focuses on the unconstrained scenario, where a
number of intricate factors such as extreme pose, exagger-
ated expressions, and large portion of occlusion can lead to

Figure 1. We propose a WIDER FACE dataset for face detec-
tion, which has a high degree of variability in scale, pose, occlu-
sion, expression, appearance and illumination. We show example
images (cropped) and annotations. The annotated face bounding
box is denoted in green color. The WIDER FACE dataset consists
of 393, 703 labeled face bounding boxes in 32, 203 images (Best
view in color).

large visual variations in face appearance.
Publicly available benchmarks such as FDDB [12],

AFW [30], PASCAL FACE [24], have contributed to
spurring interest and progress in face detection research.
However, as algorithm performance improves, more chal-
lenging datasets are needed to trigger progress and to inspire
novel ideas. Current face detection datasets typically con-
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tain a few thousand faces, with limited variations in pose,
scale, facial expression, occlusion, and background clutters,
making it difficult to assess for real world performance. As
we will demonstrate, the limitations of datasets have par-
tially contributed to the failure of some algorithms in coping
with heavy occlusion, small scale, and atypical pose.

In this work, we make three contributions. (1) We in-
troduce a large-scale face detection dataset called WIDER
FACE. It consists of 32, 203 images with 393, 703 labeled
faces, which is 10 times larger than the current largest face
detection dataset [13]. The faces vary largely in appearance,
pose, and scale, as shown in Fig. 1. In order to quantify dif-
ferent types of errors, we annotate multiple attributes: oc-
clusion, pose, and event categories, which allows in depth
analysis of existing algorithms. (2) We show an example
of using WIDER FACE through proposing a multi-scale
two-stage cascade framework, which uses divide and con-
quer strategy to deal with large scale variations. Within this
framework, a set of convolutional networks with various
size of input are trained to deal with faces with a specific
range of scale. (3) We benchmark four representative al-
gorithms [18, 22, 25, 28], either obtained directly from the
original authors or reimplemented using open-source codes.
We evaluate these algorithms on different settings and ana-
lyze conditions in which existing methods fail.

2. Related Work
Brief review of recent face detection methods: Face
detection has been studied for decades in the computer
vision literature. Modern face detection algorithms can
be categorized into four categories: cascade based meth-
ods [3, 11, 16, 17, 22], part based methods [20, 24, 30],
channel feature based methods [2, 25], and neural network
based methods [7, 15, 28]. Here we highlight a few no-
table studies. A detailed survey can be found in [27, 29].
The seminal work by Viola and Jones [22] introduces inte-
gral image to compute Haar-like features in constant time.
These features are then used to learn AdaBoost classifier
with cascade structure for face detection. Various later stud-
ies follow a similar pipeline. Among those variants, SURF
cascade [16] achieves competitive performance. Chen et
al. [3] learns face detection and alignment jointly in the
same cascade framework and obtains promising detection
performance.

One of the well-known part based methods is deformable
part models (DPM) [8]. Deformable part models define
face as a collection of parts and model the connections
of parts through Latent Support Vector Machine. The
part based methods are more robust to occlusion compared
with cascade-based methods. A recent study [18] demon-
strates state-of-the art performance with just a vanilla DPM,
achieving better results than more sophisticated DPM vari-
ants [24, 30]. Aggregated channel feature (ACF) is first

Table 1. Comparison of face detection datasets.
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PASCAL FACE [24] - - 0.85k 1.3k 41% 57% 2% - - -
IJB-A [13] 16k 33k 8.3k 17k 13% 69% 18% - - -
MALF [26] - - 5.25k 11.9k N/A N/A N/A ! - !

WIDER FACE 16k 199k 16k 194k 50% 43% 7% ! ! !

proposed by Dollar et al. [4] to solve pedestrian detection.
Later on, Yang et al. [25] applied this idea on face detec-
tion. In particular, features such as gradient histogram, in-
tegral histogram, and color channels are combined and used
to learn boosting classifier with cascade structure. Recent
studies [15, 28] show that face detection can be further im-
proved by using deep learning, leveraging the high capacity
of deep convolutional networks. We anticipate that the new
WIDER FACE data can benefit deep convolutional network
that typically requires large amount of data for training.

Existing datasets: We summarize some of the well-known
face detection datasets in Table 1. AFW [30], FDDB [12],
and PASCAL FACE [24] datasets are most widely used in
face detection. AFW dataset is built using Flickr images. It
has 205 images with 473 labeled faces. For each face, an-
notations include a rectangular bounding box, 6 landmarks
and the pose angles. FDDB dataset contains the annota-
tions for 5, 171 faces in a set of 2, 845 images. PASCAL
FACE consists of 851 images and 1, 341 annotated faces.
Recently, IJB-A [13] is proposed for face detection and face
recognition. IJB-A contains 24, 327 images and 49, 759
faces. MALF is the first face detection dataset that sup-
ports fine-gained evaluation. MALF [26] consists of 5, 250
images and 11, 931 faces. The FDDB dataset has helped
driving recent advances in face detection. However, it is col-
lected from the Yahoo! news website which biases toward
celebrity faces. The AFW and PASCAL FACE datasets
contain only a few hundred images and has limited varia-
tions in face appearance and background clutters. The IJB-
A dataset has large quantity of labeled data; however, occlu-
sion and pose are not annotated. The MAFL dataset labels
fine-grained face attributes such as occlusion, pose and ex-
pression. The number of images and faces are relatively
small. Due to the limited variations in existing datasets,
the performance of recent face detection algorithms satu-
rates on current face detection benchmarks. For instance,
on AFW, the best performance is 97.2% AP; on FDDB, the
highest recall is 91.74%; on PASCAL FACE, the best result
is 92.11% AP. The best few algorithms have only marginal
difference.



3. WIDER FACE Dataset
3.1. Overview

To our knowledge, WIDER FACE dataset is currently
the largest face detection dataset, of which images are se-
lected from the publicly available WIDER dataset [23]. We
choose 32, 203 images and label 393, 703 faces with a high
degree of variability in scale, pose and occlusion as depicted
in Fig. 1. WIDER FACE dataset is organized based on 60
event classes. For each event class, we randomly select
40%/10%/50% data as training, validation and testing sets.
Here, we specify two training/testing scenarios:

• Scenario-Ext: A face detector is trained using any ex-
ternal data, and tested on the WIDER FACE test parti-
tion.

• Scenario-Int: A face detector is trained using WIDER
FACE training/validation partitions, and tested on
WIDER FACE test partition.

We adopt the same evaluation metric employed in the PAS-
CAL VOC dataset [6]. Similar to MALF [26] and Cal-
tech [5] datasets, we do not release bounding box ground
truth for the test images. Users are required to submit final
prediction files, which we shall proceed to evaluate.

3.2. Data Collection

Collection methodology. WIDER FACE dataset is a subset
of the WIDER dataset [23]. The images in WIDER were
collected in the following three steps: 1) Event categories
were defined and chosen following the Large Scale Ontol-
ogy for Multimedia (LSCOM) [19], which provides around
1, 000 concepts relevant to video event analysis. 2) Images
are retrieved using search engines like Google and Bing. For
each category, 1, 000-3, 000 images were collected. 3) The
data were cleaned by manually examining all the images
and filtering out images without human face. Then, similar
images in each event category were removed to ensure large
diversity in face appearance. A total of 32, 203 images are
eventually included in the WIDER FACE dataset.
Annotation policy. We label the bounding boxes for all
the recognizable faces in the WIDER FACE dataset. The
bounding box is required to tightly contain the forehead,
chin, and cheek, as shown in Fig. 2. If a face is occluded,
we still label it with a bounding box but with an estima-
tion on the scale of occlusion. Similar to the PASCAL
VOC dataset [6], we assign an ’Ignore’ flag to the face
which is very difficult to be recognized due to low reso-
lution and small scale (10 pixels or less). After annotating
the face bounding boxes, we further annotate the following
attributes: pose (typical, atypical) and occlusion level (par-
tial, heavy). Each annotation is labeled by one annotator
and cross-checked by two different people.

Typical 
annotation

Heavy 
occlusion

Partial 
occlusion

Atypical 
pose

Figure 2. Examples of annotation in WIDER FACE dataset (Best
view in color).
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Figure 3. The detection rate with different number of proposals.
The proposals are generated by using Edgebox [31]. Y-axis de-
notes for detection rate. X-axis denotes for average number of
proposals per image. Lower detection rate implies higher diffi-
culty. We show histograms of detection rate over the number of
proposal for different settings (a) Different face detection datasets.
(b) Face scale level. (c) Occlusion level. (d) Pose level.

3.3. Properties of WIDER FACE

WIDER FACE dataset is challenging due to large vari-
ations in scale, occlusion, pose, and background clutters.
These factors are essential to establishing the requirements
for a real world system. To quantify these properties, we
use generic object proposal approaches [1, 21, 31], which
are specially designed to discover potential objects in an
image (face can be treated as an object). Through mea-
suring the number of proposals vs. their detection rate of
faces, we can have a preliminary assessment on the diffi-
culty of a dataset and potential detection performance. In
the following assessments, we adopt EdgeBox [31] as ob-
ject proposal, which has good performance in both accuracy
and efficiency as evaluated in [10].
Overall. Fig. 3(a) shows that WIDER FACE has much
lower detection rate compared with other face detection
datasets. The results suggest that WIDER FACE is a more
challenging face detection benchmark compared to exist-
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Figure 4. Histogram of detection rate for different event categories. Event categories are ranked in an ascending order based on the detection
rate when the number of proposal is fixed at 10, 000. Top 1 − 20, 21 − 40, 41 − 60 event categories are denoted in blue, red, and green,
respectively. Example images for specific event classes are shown. Y-axis denotes for detection rate. X-axis denotes for event class name.

ing datasets. Following the principles in KITTI [9] and
MALF [26] datasets, we define three levels of difficulty:
’Easy’, ’Medium’, ’Hard’ based on the detection rate of
EdgeBox [31], as shown in the Fig. 3(a). The average recall
rates for these three levels are 92%, 76%, and 34%, respec-
tively, with 8, 000 proposal per image.
Scale. We group the faces by their image size (height in pix-
els) into three scales: small (between 10-50 pixels), medium
(between 50-300 pixels), large (over 300 pixels). We make
this division by considering the detection rate of generic ob-
ject proposal and human performance. As can be observed
from Fig 3(b), the large and medium scales achieve high
detection rate (more than 90%) with 8, 000 proposals per
image. For the small scale, the detection rates consistently
stay below 30% even we increase the proposal number to
10, 000.
Occlusion. Occlusion is an important factor for evaluat-
ing the face detection performance. Similar to a recent
study [26], we treat occlusion as an attribute and assign
faces into three categories: no occlusion, partial occlusion,
and heavy occlusion. Specifically, we ask annotator to mea-
sure the fraction of occlusion region for each face. A face is
defined as ‘partially occluded’ if 1%-30% of the total face
area is occluded. A face with occluded area over 30% is la-
beled as ‘heavily occluded’. Fig. 2 shows some examples of
partial/heavy occlusions. Fig. 3(c) shows that the detection
rate decreases as occlusion level increases. The detection
rates of faces with partial or heavy occlusions are below
50% with 8, 000 proposals.
Pose. Similar to occlusion, we define two pose deforma-
tion levels, namely typical and atypical. Fig. 2 shows some
faces of typical and atypical pose. Face is annotated as atyp-
ical under two conditions: either the roll or pitch degree is

larger than 30-degree; or the yaw is larger than 90-degree.
Fig. 3(d) suggests that faces with atypical poses are much
harder to be detected.

Event. Different events are typically associated with differ-
ent scenes. WIDER FACE contains 60 event categories cov-
ering a large number of scenes in the real world, as shown
in Fig. 1 and Fig. 2. To evaluate the influence of event to
face detection, we characterize each event with three fac-
tors: scale, occlusion, and pose. For each factor we com-
pute the detection rate for the specific event class and then
rank the detection rate in an ascending order. Based on the
rank, events are divided into three partitions: easy (41-60
classes), medium (21-40 classes) and hard (1-20 classes).
We show the partitions based on scale in Fig. 4. Partitions
based on occlusion and pose are included in the supple-
mentary material.
Effective training source. As shown in the Table 1, exist-
ing datasets such as FDDB, AFW, and PASCAL FACE do
not provide training data. Face detection algorithms tested
on these datasets are frequently trained with ALFW [14],
which is designed for face landmark localization. However,
there are two problems. First, ALFW omits annotations of
many faces with a small scale, low resolution, and heavy
occlusion. Second, the background in ALFW dataset is rel-
atively clean. As a result, many face detection approaches
resort to generate negative samples from other datasets such
as PASCAL VOC dataset. In contrast, all recognizable faces
are labeled in the WIDER FACE dataset. Because of its
event-driven nature, WIDER FACE dataset has a large num-
ber of scenes with diverse background, making it possible as
a good training source with both positive and negative sam-
ples. We demonstrate the effectiveness of WIDER FACE as
a training source in Sec. 5.2.
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Figure 5. The pipeline of the proposed multi-scale cascade CNN.

4. Multi-scale Detection Cascade

We wish to establish a solid baseline for WIDER FACE
dataset. As we have shown in Table 1, WIDER FACE con-
tains faces with a large range of scales. Fig. 3(b) further
shows that faces with a height between 10-50 pixels only
achieve a proposal detection rate of below 30%. In order to
deal with the high degree of variability in scale, we propose
a multi-scale two-stage cascade framework and employ a
divide and conquer strategy. Specifically, we train a set of
face detectors, each of which only deals with faces in a rel-
atively small range of scales. Each face detector consists
of two stages. The first stage generates multi-scale propos-
als from a fully-convolutional network. The second stage
is a multi-task convolutional network that generates face
and non-face prediction of the candidate windows obtained
from the first stage, and simultaneously predicts for face lo-
cation. The pipeline is shown in Fig. 5. The two main steps
are explained as follow.

Multi-scale proposal. In this step, we joint train a set
of fully convolutional networks for face classification and
scale classification. We first group faces into four categories
by their image size, as shown in the Table 2 (each row in the
table represents a category). For each group, we further di-
vide it into three subclasses. Each network is trained with
image patches with the size of their upper bound scale. For
example, Network 1 and Network 2 are trained with 30×30
and 120×120 image patches, respectively. We align a face
at the center of an image patch as positive sample and assign
a scale class label based on the predefined scale subclasses
in each group. For negative samples, we randomly cropped
patches from the training images. The patches should have

Table 2. Summary of face scale for multi-scale proposal networks.

Scale Class 1 Class 2 Class 3

Network 1 10-15 15-20 20-30
Network 2 30-50 50-80 80-120
Network 3 120-160 160-200 200-240
Network 4 240-320 320-400 400-480

an intersection-over-union (IoU) of smaller than 0.5 with
any of the positive samples. We assign a value −1 as the
scale class for negative samples, which will have no contri-
bution to the gradient during training.

We take Network 2 as an example. Let {xi}Ni=1 be a
set of image patches where ∀xi ∈ R120×120. Similarly,
let {yf

i }Ni=1 be the set of face class labels and {ys
i }Ni=1

be the set of scale class label, where ∀yf
i ∈ R1×1 and

∀ys
i ∈ R1×3. Learning is formulated as a multi-variate clas-

sification problem by minimizing the cross-entropy loss.
L =

∑N
i=1 yi log p(yi = 1|xi) + (1− yi) log

(
1− p(yi =

1|xi)
)
, where p(yi|xi) is modeled as a sigmoid function,

indicating the probability of the presence of a face. This
loss function can be optimized by the stochastic gradient
descent with back-propagation.
Face detection. The prediction of proposed windows from
the previous stage is refined in this stage. For each scale
category, we refine these proposals by joint training face
classification and bounding box regression using the same
CNN structure in the previous stage with the same input
size. For face classification, a proposed window is assigned
with a positive label if the IoU between it and the ground
truth bounding box is larger than 0.5; otherwise it is neg-
ative. For bounding box regression, each proposal is pre-
dicted a position of its nearest ground truth bounding box.



If the proposed window is a false positive, the CNN out-
puts a vector of [−1,−1,−1,−1]. We adopt the Euclidean
loss and cross-entropy loss for bounding box regression and
face classification, respectively. More details of face detec-
tion can be found in the supplementary material.

5. Experimental Results

5.1. Benchmarks

As we discussed in Sec. 2, face detection algorithms can
be broadly grouped into four representative categories. For
each class, we pick one algorithm as a baseline method. We
select VJ [22], ACF [25], DPM [18], and Faceness [28] as
baselines. The VJ [22], DPM [18], and Faceness [28] de-
tectors are either obtained from the authors or from open
source library (OpenCV). The ACF [25] detector is reimple-
mented using the open source code. We adopt the Scenario-
Ext here (see Sec. 3.1), that is, these detectors were trained
by using external datasets and are used ‘as is’ without
re-training them on WIDER FACE. We employ PASCAL
VOC [6] evaluation metric for the evaluation. Following
previous work [18], we conduct linear transformation for
each method to fit the annotation of WIDER FACE.
Overall. In this experiment, we employ the evaluation set-
ting mentioned in Sec. 3.3. The results are shown in Fig. 6
(a.1)-(a.3). Faceness [28] outperforms other methods on
three subsets, with DPM [18] and ACF [25] as marginal
second and third. For the easy set, the average precision
(AP) of most methods are over 60%, but none of them sur-
passes 75%. The performance drops 10% for all methods
on the medium set. The hard set is even more challenging.
The performance quickly decreases, with a AP below 30%
for all methods. To trace the reasons of failure, we examine
performance on varying subsets of the data.
Scale. As described in Sec. 3.3, we group faces according
to the image height: small (10-50 pixels), medium (50-300
pixels), and large (300 or more pixels) scales. Fig. 6 (b.1)-
(b.3) show the results for each scale on un-occluded faces
only. For the large scale, DPM and Faceness obtain over
80% AP. At the medium scale, Faceness achieves the best
relative result but the absolute performance is only 70% AP.
The results of small scale are abysmal: none of the algo-
rithms is able to achieve more than 12% AP. This shows
that current face detectors are incapable to deal with faces
of small scale.
Occlusion. Occlusion handling is a key performance met-
ric for any face detectors. In Fig. 6 (c.1)-(c.3), we show the
impact of occlusion on detecting faces with a height of at
least 30 pixels. As mentioned in Sec. 3.3, we classify faces
into three categories: un-occluded, partially occluded (1%-
30% area occluded) and heavily occluded (over 30% area
occluded). With partial occlusion, the performance drops
significantly. The maximum AP is only 26.5% achieved by

Faceness. The performance further decreases in the heavy
occlusion setting. The best performance of baseline meth-
ods drops to 14.4%. It is worth noting that Faceness and
DPM, which are part based models, already perform rela-
tively better than other methods on occlusion handling.
Pose. As discussed in Sec. 3.3, we assign a face pose as
atypical if either the roll or pitch degree is larger than 30-
degree; or the yaw is larger than 90-degree. Otherwise a
face pose is classified as typical. We show results in Fig. 6
(d.1)-(d.2). Faces which are un-occluded and with a scale
larger than 30 pixels are used in this experiment. The per-
formance clearly degrades for atypical pose. The best per-
formance is achieved by Faceness, with a recall below 20%.
The results suggest that current face detectors are only ca-
pable of dealing with faces with out-of-plane rotation and a
small range of in-plane rotation.
Summary. Among the four baseline methods, Faceness
tends to outperform the other methods. VJ performs
poorly on all settings. DPM gains good performance on
medium/large scale and occlusion. ACF outperforms DPM
on small scale, no occlusion and typical pose settings. How-
ever, the overall performance is poor on WIDER FACE,
suggesting a large room of improvement.

5.2. WIDER FACE as an Effective Training Source

In this experiment, we demonstrate the effectiveness of
WIDER FACE dataset as a training source. We adopt
Scenario-Int here (see Sec. 3.1). We train ACF and Face-
ness on WIDER FACE to conduct this experiment. These
two algorithms have shown relatively good performance on
WIDER FACE previous benchmarks see (Sec. 5.1). Faces
with a scale larger than 30 pixels in the training set are used
to retrain both methods. We train the ACF detector using
the same training parameters as the baseline ACF. The neg-
ative samples are generated from the training images. For
the Faceness detector, we first employ models shared by the
authors to generate face proposals from the WIDER FACE
training set. After that, we train the classifier with the same
procedure described in [28]. We test these models (denoted
as ACF-WIDER and Faceness-WIDER) on WIDER FACE
testing set and FDDB dataset.
WIDER FACE. As shown in Fig. 7, the retrained models
perform consistently better than the baseline models. The
average AP improvement of retrained ACF detector is 5.4%
in comparison to baseline ACF detector. For the Faceness,
the retrained Faceness model obtain 4.2% improvement on
WIDER hard test set.
FDDB. We further evaluate the retrained models on FDDB
dataset. Similar to WIDER FACE dataset, the retrained
models achieve improvement in comparison to the baseline
methods. The retrained ACF detector achieves a recall rate
of 87.48%, outperforms the baseline ACF by a considerable
margin of 1.4%. The retrained Faceness detector obtains a
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(a.2) Medium set

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

 

 

ACF-0.526
DPM-0.448
Faceness-0.573
VJ-0.333

(a.3) Hard set
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(b.1) Small scale
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(b.2) Medium scale
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(b.3) Large scale
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(c.1) No occlusion

(c.2) Partial occlusion
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(c.3) Heavy occlusion
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(d.1) Typical pose
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(d.2) Extreme pose
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Figure 6. Precision and recall curves of different subsets of WIDER FACES: (a.1)-(a.3) Overall Easy/Medium/Hard subsets. (b.1)-(b.3)
Small/Medium/Large scale subsets. (c.1)-(c.3) None/Partial/Heavy occlusion subsets. (d.1)-(d.2) Typical/Atypical pose subsets.

Table 3. Comparison of per class AP. To save space, we only show abbreviations of category names here. The event category is organized
based on the rank sequence in Fig. 4 (from hard to easy events based on scale measure). We compare the accuracy of Faceness and ACF
models retrained on WIDER FACE training set with the baseline Faceness and ACF. With the help of WIDER FACE dataset, accuracies
on 56 out of 60 categories have been improved. The re-trained Faceness model wins 30 out of 60 classes, followed by the ACF model with
26 classes. Faceness wins 1 medium class and 3 easy classes.

Traf. Fest. Para. Demo. Cere. March. Bask. Shop. Mata. Acci. Elec. Conc. Awar. Picn. Riot. Fune. Chee. Firi. Raci. Vote.

ACF .421 .368 .431 .330 .521 .381 .452 .503 .308 .254 .409 .512 .720 .475 .388 .502 .474 .320 .552 .457
ACF-WIDER .385 .435 .528 .464 .595 .490 .562 .603 .334 .352 .538 .486 .797 .550 .395 .568 .589 .432 .669 .532
Faceness .497 .376 .459 .410 .547 .434 .481 .575 .388 .323 .461 .569 .730 .526 .455 .563 .496 .439 .577 .535
Faceness-WIDER .535 .451 .560 .454 .626 .495 .525 .593 .432 .358 .489 .576 .737 .621 .486 .579 .555 .454 .635 .558

Stoc. Hock. Stud. Skat. Gree. Foot. Runn. Driv. Dril. Phot. Spor. Grou. Cele. Socc. Inte. Raid. Base. Patr. Angl. Resc.

ACF .549 .430 .557 .502 .467 .394 .626 .562 .447 .576 .343 .685 .577 .719 .628 .407 .442 .497 .564 .465
ACF-WIDER .519 .591 .666 .630 .546 .508 .707 .609 .521 .627 .430 .756 .611 .727 .616 .506 .583 .529 .645 .546
Faceness .617 .481 .639 .561 .576 .475 .667 .643 .469 .628 .406 .725 .563 .744 .680 .457 .499 .538 .621 .520
Faceness-WIDER .611 .579 .660 .599 .588 .505 .672 .648 .519 .650 .409 .776 .621 .768 .686 .489 .607 .607 .629 .564

Gymn. Hand. Wait. Pres. Work. Parach. Coac. Meet. Aero. Boat. Danc. Swim. Fami. Ball. Dres. Coup. Jock. Tenn. Spa. Surg.

ACF .749 .472 .722 .720 .589 .435 .598 .548 .629 .530 .507 .626 .755 .589 .734 .621 .667 .701 .386 .599
ACF-WIDER .750 .589 .836 .794 .649 .492 .705 .700 .734 .602 .524 .534 .856 .642 .802 .589 .827 .667 .418 .586
Faceness .756 .540 .782 .732 .645 .517 .618 .592 .678 .569 .558 .666 .809 .647 .774 .742 .662 .744 .470 .635
Faceness-WIDER .768 .577 .740 .746 .640 .540 .637 .670 .718 .628 .595 .659 .842 .682 .754 .699 .688 .759 .493 .632
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(a) WIDER Easy
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(b) WIDER Medium
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(c) WIDER Hard
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(d) FDDB

Figure 7. WIDER FACE as an effective training source. ACF-
WIDER and Faceness-WIDER are retrained with WIDER FACE,
while ACF and Faceness are the original models. (a)-(c) Preci-
sion and recall curves on WIDER Easy/Medium/Hard subsets. (d)
ROC curve on FDDB dataset.

high recall rate of 91.78%. The recall rate improvement
of the retrained Faceness detector is 0.8% in comparison
to the baseline Faceness detector. It worth noting that the
retrained Faceness detector performs much better than the
baseline Faceness detector when the number of false posi-
tive is less than 300.
Event. We evaluate the baseline methods on each event
class individually and report the results in Table 3. Faces
with a height larger than 30 pixels are used in this experi-
ment. We compare the accuracy of Faceness and ACF mod-
els retrained on WIDER FACE training set with the baseline
Faceness and ACF. With the help of WIDER FACE dataset,
accuracies on 56 out of 60 event categories have been im-
proved. It is interesting to observe that the accuracy ob-
tained highly correlates with the difficulty levels specified
in Sec. 3.3 (also refer to Fig. 4). For example, the best per-
formance on ”Festival” which is assigned as a hard class is
no more than 46% AP.

5.3. Evaluation of Multi-scale Detection Cascade

In this experiment we evaluate the effectiveness of the
proposed multi-scale cascade algorithm. Apart from the
ACF-WIDER and Faceness-WIDER models (Sec. 5.2), we
establish a baseline based on a ”Two-stage CNN”. This
model differs to our multi-scale cascade model in the way
it handles multiple face scales. Instead of having multiple
networks targeted for different scales, the two-stage CNN
adopts a more typical approach. Specifically, its first stage
consists only a single network to perform face classification.
During testing, an image pyramid that encompasses differ-
ent scales of a test image is fed to the first stage to generate
multi-scale face proposals. The second stage is similar to
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(a) WIDER Easy
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(b) WIDER Medium
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Figure 8. Evaluation of multi-scale detection cascade: (a)-(c) Pre-
cision and recall curves on WIDER Easy/Medium/Hard subsets.

our multi-scale cascade model – it performs further refine-
ment on proposals by simultaneous face classification and
bounding box regression.

We evaluate the multi-scale cascade CNN and baseline
methods on WIDER Easy/Medium/Hard subsets. As shown
in Fig. 8, the multi-scale cascade CNN obtains 8.5% AP im-
provement on the WIDER Hard subset compared to the re-
trained Faceness, suggesting its superior capability in han-
dling faces with different scales. In particular, having mul-
tiple networks specialized on different scale range is shown
effective in comparison to using a single network to han-
dle multiple scales. In other words, it is difficult for a sin-
gle network to handle large appearance variations caused
by scale. For the WIDER Medium subset, the multi-scale
cascade CNN outperforms other baseline methods with a
considerable margin. All models perform comparably on
the WIDER Easy subset.

6. Conclusion

We have proposed a large, richly annotated WIDER
FACE dataset for training and evaluating face detection al-
gorithms. We benchmark four representative face detection
methods. Even considering an easy subset (typically with
faces of over 50 pixels height), existing state-of-the-art al-
gorithms reach only around 70% AP, as shown in Fig. 8.
With this new dataset, we wish to encourage the commu-
nity to focusing on some inherent challenges of face de-
tection – small scale, occlusion, and extreme poses. These
factors are ubiquitous in many real world applications. For
instance, faces captured by surveillance cameras in public
spaces or events are typically small, occluded, and atypi-
cal poses. These faces are arguably the most interesting yet
crucial to detect for further investigation.
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