
Understanding Collective Crowd Behaviors: Learning a Mixture Model of Dynamic Pedestrian-Agents

Bolei Zhou, Xiaogang Wang, and Xiaoou Tang Department of Information Engineering Department of Electronic Engineering The Chinese University of Hong Kong

Collective Crowd Behaviors

• Examples of Collective Crowd Behaviors:

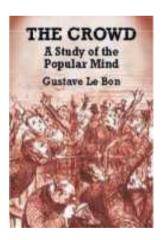
2. Fish school

3. Human crowd

4. Human crowd

5. Human crowd

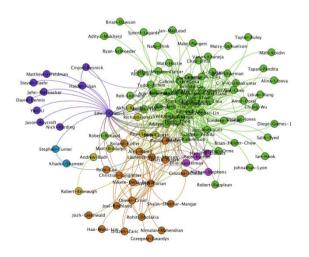
6. Traffic flow



Understand Collective Crowd Behaviors

- Features of Collective Crowd Behavior
 - Vanishing of individual personalities
 - > New characteristics beyond individual behaviors
 - Shared beliefs and common goals

Crowd in Grand Central Station


by Le Bon (1841~1931) in "The Crowd: A Study of the Popular Mind"

- Biology and Statistical Physics
 - Exploring the mechanisms that lead to the collective movements
 - Studying the statistical principles and dynamics of the crowd behaviors

- Social Networks and Complex Networks
 - Studying how individuals are connected into collective communities
 - Investigating how information propagates among complex networks

• Computer graphics

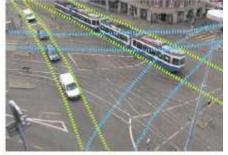
Simulating virtual crowds in games and movies

Computer Vision

\succ Learning and segmenting the motion patterns:

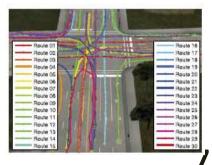
Flow fields Ali CVPR'07

Hospedales ICCV'09



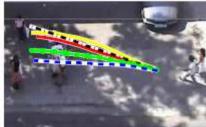
Lin CVPR'09, 10

Kuettel CVPR'10



Topic models Trajectory clustering

Makris SMC'05



Morris PAMI'11

- Computer Vision
- > Analyzing the social interaction between pedestrians:

Social-force model Helbing PRL'95, Nature'00 $m_i \frac{d\mathbf{v}_i}{dt} = m_i \frac{v_i^0(t)\mathbf{e}_i^0(t) - \mathbf{v}_i(t)}{\tau_i} + \sum_{j(\neq i)} \mathbf{f}_{ij} + \sum_{w} \mathbf{f}_{iw}$ Tracking Pellegrini ICCV'09

Abnormality detection

Mehran CVPR'09

Group detectionInteraction analysisGe PAMI'11Scovanner ICCV'09

Our Work

To quantitatively analyze crowd behaviors

Framework of Dynamic Pedestrian-Agents

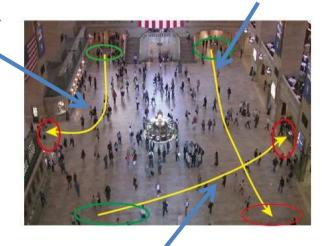
➤Applications:

- ✓ Learning collective behavior patterns
- ✓ Recognizing collective behaviors
- ✓ Detecting abnormal behaviors
- ✓ Predicting future behaviors
- ✓ Estimating scene statistics

• Challenges:

- Detection and tracking errors
- Different collective patterns mixed

Contributions of Our Work


- 1. Agent-based modeling of crowd behavior
- 2. Three factors to analyze crowd behavior
- 3. Learning from highly fragmented trajectories

1. Agent-based modeling of crowd behavior

- Simple behavioral rules for multiple agents to generate complex behaviors
- Simulating crowds and classifying collective behaviors
- Integrating with social-force model

Agent 2

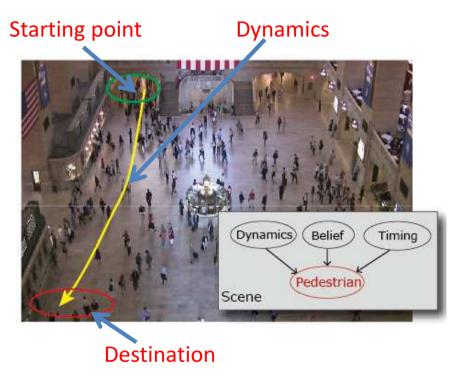
Agent 1

Agent 3

Interactive dynamics

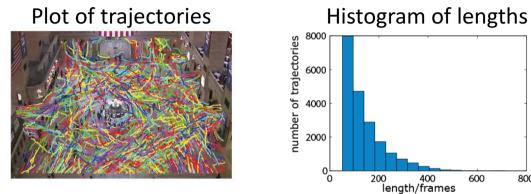
Social-force model

Collective dynamics

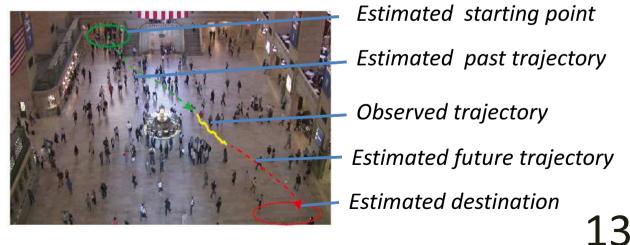

Our model

2. Three factors to analyze crowd behavior

Beliefs of Pedestrian
Starting point and destination


Collective Dynamics
Pedestrian movement patterns

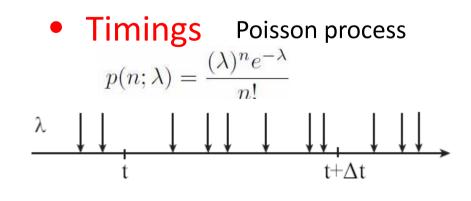
Timing of Emerging It determines population in the scene $\underbrace{\downarrow\downarrow}_{t}$

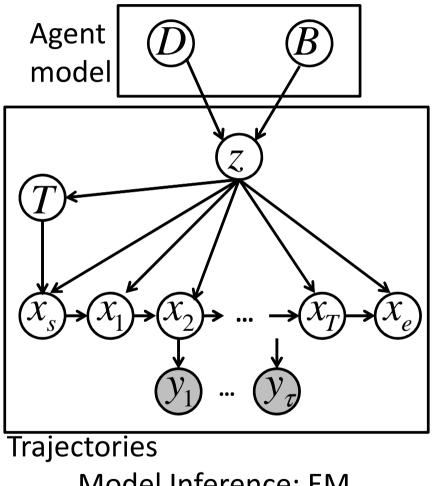


Every pedestrian is driven by one type of agents, and the whole crowd is modeled as a mixture of pedestrian-agents

3. Learning from fragmented trajectories

- Estimating missing observations through model inference
- Regularizing the trajectories through estimating its starting point and destination


800


Dynamic Pedestrian-Agents

• Beliefs:
$$B = (\mu^s, \Phi^s, \mu^e, \Phi^e)$$

 $p(\mathbf{x}_s) = \mathcal{N}(\mathbf{x}_s | \mu^s, \Phi^s),$ $p(\mathbf{x}_e) = \mathcal{N}(\mathbf{x}_e | \mu^e, \Phi^e).$

• Dynamics
$$D = (\mathbf{A}, \Gamma)$$

 $\mathbf{x}_t = \mathbf{A}\mathbf{x}_{t-1} + \omega_t, \ p(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t | \mathbf{A}\mathbf{x}_{t-1}, \Gamma),$
 $\mathbf{y}_t = \mathbf{C}\mathbf{x}_t + \varepsilon_t. \qquad p(\mathbf{y}_t | \mathbf{x}_t) = \mathcal{N}(\mathbf{y}_t | \mathbf{x}_t, \Sigma),$
linear dynamic system
with affine transform

Model Inference: EM $\Theta^* = \arg \max_{\Theta} \sum_{k=1} \log p(\mathbf{y}^k; \Theta).$

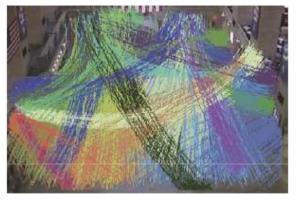
Experiments

- Simulating Crowd
- Segmenting Semantic Regions
- Classifying Collective Behaviors
- Predicting Behaviors of Pedestrians
- Detecting Abnormal Behaviors

Experiments: Simulating Crowd

• Examples of learned dynamic pedestrian-agents

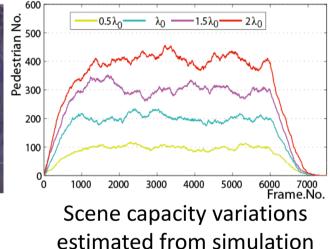
Experiments: Simulating Crowd

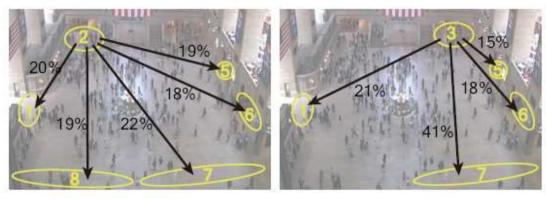

• A Demo Video

Real Crowd and Trajectories


Simulation

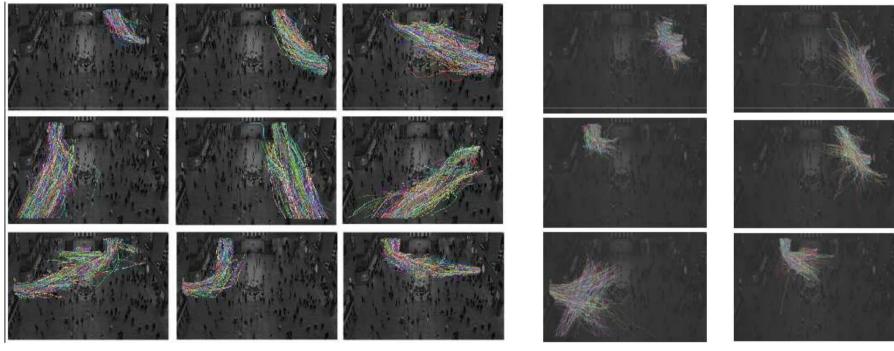
Experiments: Simulating Crowd


Statistics of the crowd from simulation



our model

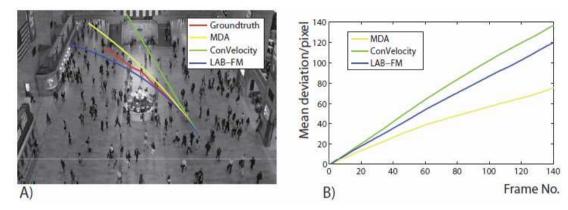

Simulated trajectories from Population density map estimated from simulation


Pedestrian flow transition ratios

Experiments: Segmenting Semantic Regions

Experiments: Classifying Behaviors

• Trajectory clustering



Ours

Spectral clustering (Wang ECCV'06) HDP (Wang CVPR'08)

Experiments: Predicting Behaviors

• Estimating the future path of pedestrians

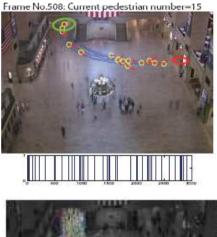
Detecting abnormal behaviors

Abnormal trajectories

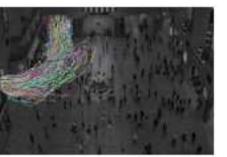
Abnormal: sudden turning

Abnormal: running

Conclusion


- Agent-based models are used to learn collective crowd behaviors and to simulate crowds.
- *Dynamics, Beliefs, and Timing* are proposed to model pedestrian-agents.
- Learning crowd behaviors from highly fragmented trajectories.
- Various applications to crowd simulation, scene segmentation, collective behavior classification, abnormality detection and behavior prediction.


Questions



- Enquiry: <u>zhoubolei@gmail.com</u>
- Data (video, trajectories) can be found at my homepage.

Abnormal: sudden turning