
 Unsupervised pre-training for Fast R-CNN detection (%) on PASCAL VOC 2007

 Unsupervised learning for image retrieval (CIFAR-10) and classification

 Unsupervised learning for contour detection on BSDS500

• Unsupervised attribute learning from binary contour patches

• Supervised learning from natural image patches
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 Visual attributes offer useful mid-level cues

 Most visual attribute and visual representation learning 
methods are supervised by costly labels

 Goal: unsupervised learning of both directly from data

1. Motivation

 Related work

• “Unsupervised” attribute learning on the class basis

• Unsupervised feature learning by predicting within-image contexts, 
ranking patches from video tracks, etc.

 Main idea

• Learn to extract shared and discriminative binary hash codes as 
attributes from image clusters

• Note the learned attributes are not strictly “attributes” (more related to 
attribute hypothesis). But they still highly correlate with semantics.

2. Related Work & Main Idea

Unsupervisedly learned 2D feature space and attributes on CIFAR-10

 Two-stage pipeline

 Stage 1

• Modify clustering algorithm [Singh, ECCV12]: cluster merging & augmentation

• Alternating with CNN feature learning (softmax classification)

 Stage 2

• Weakly-supervised hashing (K-bits): triplet ranking loss

3. Approach 4. Results

 Unsupervised  deep learning of visual attributes and representations by 
unsupervised discriminative clustering and weakly-supervised hashing

 Capture strong semantic meanings, transferrable to other vision tasks

5. Conclusion
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Doersch et al.

+R-CNN
60.5 66.5 29.6 28.5 26.3 56.1 70.4 44.8 24.6 45.5 45.4 35.1 52.2 60.2 50 28.1 46.7 42.6 54.8 58.6 46.3

Doersch et al. 54.4 50.8 30.1 28.9 10.3 57.5 60.8 46.3 19.8 38.5 51.5 37.4 60.6 53 45.1 14.2 26 44.5 55.6 43.7 41.4

Wang and Gupta 53.9 53.9 30.5 29.6 10.8 56 59 46.1 19.6 45.7 43.9 41.6 65.6 58.6 48.2 17.4 34.8 41.2 64.5 46.5 43.3

Ours (K = 32 bits) 59.2 61.6 31.2 33.4 27 58.3 64.9 49.1 28.6 50.4 51.9 44.7 57.9 58.5 52.3 29.6 46.1 43.2 65.6 59.2 48.6

Ours (K = 64 bits) 62.6 63.7 37.6 34.9 28.8 57.6 66.2 51.6 30.7 51.5 48.5 47.1 55.6 59.8 49.2 27.5 47.8 41.4 63.6 59.7 49.3

CFN-9 (max) 61.5 64.3 36.4 36.1 20.8 65.8 69 59.2 30.3 50 58.1 50.7 70.6 67.2 56 22.7 44.7 52.8 66.9 52 51.8

ImageNet label 65.1 70.3 53.6 41.6 25.1 69.3 68.9 68.8 30.4 63 62.3 63.3 72.7 64.5 57.1 25.2 50.6 54 70.1 55.1 56.5
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Method STL-10 Caltech-101

Multi-way local pooling - 77.3±0.6

Slowness on videos 61.0 74.6

HMP 64.5±1 -

Multipath HMP - 82.5±0.5

View-Invariant k-means 63.7 -

Exemplar-CNN 75.4±0.3 87.2±0.6

Ours (K = 16 bits) 74.9±0.4 86.1±0.7

Ours (K = 32 bits) 76.3±0.4 87.8±0.5

Ours (K = 64 bits) 76.8±0.3 89.4±0.5

Supervised state of the art 70.1 91.44
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