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1. Details of the Optimization Function

In this section, we will give the details of the proposed
weakly-supervised hash learning algorithm. The triplet-
based network architecture with a ranking loss function is
illustrated in Figure 2 in the main paper.

The triplet ranking layer is on the top of the network,
which takes as input the binary hash codes {b;, bj, b} of

three samples in a triplet and computes the hinge loss:

I(b;, b ,b; ) = max (0, p+ H(b;, b)) — H(b;, b;))) ,
)]
where H (-, ) is the Hamming distance between hash codes,
p is a margin between the Hamming distances of within-
cluster code pair {b;,b;"} and between-cluster code pair
{b;,b; }. The hinge loss is a convex approximation to the
0-1 ranking error, which measures the network’s violation
of the ranking order specified in the triplet.
For continous optimization we relax our hashing func-
tion to:

b=h(x;W) =20(WTf(x)) -1, 2)

where W denotes the hashing weights, and o(x) = 1/(1 +
exp(—x)) is the logistic function. The Hamming distance
thus becomes:

H(bi,b;) = (K — b/ b;)/2, 3)

where K is the number of hash bits; and the hinge loss in
Eq. 1 can be simplified to

1
1(b;, b, b; ) = max (O,P‘i‘ §(bibi_ - bﬂ’f)) @
The final objective function for hash learning is:

min Zsi + atr[WT f(X) f(X)TW]

+BIWWT — 1|5 +~|W|f3,
s.t.:  max (O,p + (bib; — bibj')/Z) <&,
Vi, b =h(z;; W), ande; >0, (5)

where ¢; is a slack variable, p is set to K/2, and «, 3,7
are the regularization parameters. By replacing ¢; = [; =
max (0, p + (b;b; — b;b;")/2), our objective function can
be converted to unconstrained optimization:

min ZliJratr[WTf(X)f(X)TW]

+BIWWT — 1|3 + v | W3,
st Vi, l;=max(0,p+ (bib; —b;b])/2),
b; = h(zi; W). (6)

Stochastic gradient descent is used to solve Eq. 6. Dur-
ing CNN training, we evaluate the ranking loss and back-
propagate the gradients to the lower layers so that they can
adjust their parameters to minimize the loss. For any triplet

{b;, b;r, b; }, if the ranking loss I; > 0, its gradients with
respect to the hash codes are:
3;; = (b ), )

This back-propagation algorithm actually adjusts the
feature mapping function f(-) and hashing function h(:),
so that the Hamming distance between the generated hash
codes {b;, b} by Eq. 2 is small, and the distance between
{b;,b; } is large.

2. More Examples of the Discovered Attributes

Figures | and 2 show more example attributes discovered
from natural images on the CIFAR-10 dataset and binary
contour patches on the BSDS500 dataset, respectively.
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Figure 1. Unsupervised discovery of attribute codes from natural images on the CIFAR-10 dataset. Each code bit corresponds to a hy-

perplane (dashed line) of one attribute predictor where samples transition from one side to the other. We show on each side the 10 most

confident samples for 15 bits (columns). We find most attributes semantically meaningful and easily human-nameable.
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Figure 2. Unsupervised discovery of attribute codes from binary contour patches on the BSDS500 dataset. Each code bit corresponds to a
hyperplane (dashed line) of one attribute predictor where samples transition from one side to the other. We show on each side the 10 most
confident samples for 15 bits (columns). We find most attributes semantically meaningful and easily human-nameable.



Table 1. Retrieval results on the CIFAR-10 dataset: K -bit (16-64) Hamming ranking accuracy by mAP, precision @ N = 1000, precision
@ Hamming radius r = 2. Hamming look-up with » = 2 for K = 64 is not evaluated because it is prohibitively expensive for such long

codes.
mAP (%) precision (%) @ N precision (%) @ r = 2
Methed 16 32 64 16 32 64 16 32
SH[12] 12.55 12.42 12.56 18.83 19.72 20.16 18.52 20.60
PCAH[11] 12.91 12.60 12.10 18.89 19.35 18.73 21.29 2.68
LSH [5] 12.55 13.76 15.07 16.21 19.10 22.25 16.73 7.07
ITQ [7] 15.67 16.20 16.64 22.46 25.30 27.09 22.60 14.99
DH [2] 16.17 16.62 16.96 23.79 26.00 27.70 23.33 15.77
Ours 16.82 17.01 17.21 24.54 26.62 28.06 23.61 26.24
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Figure 3. Recall vs. precision curves at K =16, 32 and 64 code bits on the CIFAR-10 dataset.
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Figure 4. Top 8 images retrieved by different hashing methods in comparison to ours (K = 64) on the CIFAR-10 dataset.



3. More Results of Image Retrieval

Table 1 shows more quantitative retrieval results on the
CIFAR-10 dataset, including the precision when Hamming
radius r is set to 2. Figure 3 shows the Recall vs. preci-
sion curves for different methods with K =16, 32 and 64
code bits, where our approach consistently performs best.
Figure 4 presents more visual examples when K = 64.

4. More Results of Contour Detection

Figure 8 shows more of our contour detection results
compared with those of Sketch Token [9] and DeepCon-
tour [10] on the BSDS500 dataset.

5. Experiments on Object Proposal

Zitnick and Dollar [13] point out that the enclosed con-
tours by a bounding box are indicative of the presence of
objects. So using our contour detection results, we further
experiment with proposing candidate objects in an image,
which is key to many state-of-the-art object detection sys-
tems such as Fast R-CNN [6]. To this end, we directly apply
EdgeBox 70 [13] to our predicted contour attribute maps
in addition to the contour map. The underlying hypothesis
is that the contour attributes capture a richer class of edge
properties, beyond edge intensity. For example, if we rec-
ognize some “curved” edges from an image, it informs that
we are more likely to detect, say, an apple.

But proposing objects at every edge attribute map and
then ensembling such proposals is very inefficient. We
therefore choose instead to ensemble the K attribute maps
into one map, and run EdgeBox 70 only on this map and the
edge map. All the proposed boxes on the two maps are kept,
except for those having large Intersection over Union (IoU)
(>0.7) with others but lower-scores by EdgeBox 70. As for
the ensembling scheme, we simply apply the max-pooling
across K maps so as to retain the most salient contour at-
tribute per location. Figure 5 illustrates this process.

To evaluate object proposals, we use the PASCAL VOC
2007 [3] test set, which consists of 4952 images with 20
object categories. The metrics are Area Under the Curve
(AUC) and the number of proposals N vs. recall for IoU
threshold of 0.7.

Table 2 compares our object proposal method with the
state-of-the-arts. We observe significant improvements over
the EdgeBox 70 baseline due to the exploitation of edge at-
tributes. Our edge-based version already performs better,
which benefits from the shared learning of both edge and
edge attributes. This version also has a fast speed. Our
full method performs on par with state-of-the-arts [4, §]
and achieves a higher recall of 91% from 5000 proposals,
with less running time. The computational costs of [4, 8]
respectively stem from refining proposals in a coarse-to-
fine inverse cascading and re-ranking EdgeBox’s propos-

Input image

Ensembled attribute map

-
/

Attribute map of “Straight”  Attribute map of “Curved” Attribute map of “Junctional”

Figure 5. Object proposal from the edge map and ensembled at-
tribute map. Also shown are 3 example attribute maps out of 16
for ensembling. Notice the richness of contour attributes and their
supplementation to the edge map for object proposal.

Table 2. Object proposal results on PASCAL VOC 2007, where
both of our versions, using edge map only and using edge
map+ensembled attribute map, work on K = 16. Under the IoU
threshold 0.7, the evaluation metrics are AUC, the number of pro-
posals N needed to achieve 25%, 50% and 75% recall, the maxi-
mum recall using 5000 boxes, and the running time.

Method AUC | N@25% | N@50% | N@75% | Recall | Time

MCG [!] 42 9 81 1363 83% 30s
EdgeBox 70 [13] 46 12 108 800 87% 25s
DeepProposal70 [4] 49 5 50 540 - 15s
DeepBox [8] .60 3 20 183 87% 2.5s
Ours (edge) A8 9 82 574 90% 255
Ours (edge+attribute) 52 6 39 495 91% A4s

als. In contrast, we only need to feed the ensembled at-
tribute map and edge map to EdgeBox 70. This validates
the effectiveness of our learned contour attributes. Figure 6
shows the recall with changing number of object proposals
N or IoU threshold for different methods. Figure 7 shows
the visual difference between EdgeBox 70 [13] and our
method. We believe the combination with more advanced
post-processing schemes (e.g., using re-ranking in [8]) is
highly promising for further improvements.
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Figure 6. Recall vs. number of proposals /N for IoU threshold 0.7
(top) and Recall vs. IoU threshold for N = 1000 proposals (bot-
tom) on the PASCAL VOC 2007 test set. Our method ensembles
K = 16 edge attribute maps.

Figure 7. Qualitative comparison of EdgeBox 70 [13] (top row)
and our approach (bottom row: edge-+attribute, X = 16), with
IoU threshold 0.7 at 1000 object proposals. Blue bounding boxes
are the closest object proposals to the ground truth shown in green.
Red boxes are ground truth boxes that are missed.
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Figure 8. Edge detection results on the BSDS500 dataset. Our patch-wise method works on K = 16.



