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Abstract. Plankton form the base of the food chain in the ocean and are fundamental to marine
ecosystem dynamics. The rapid mapping of plankton abundance together with taxonomic
and size composition is very important for ocean environmental research, but difficult or
impossible to accomplish using traditional techniques. In this paper, we present a new pattern
recognition system to classify large numbers of plankton images detected in real time by the
Video Plankton Recorder (VPR), a towed underwater video microscope system. The difficulty
of such classification is compounded because: 1) underwater images are typically very noisy, 2)
many plankton objects are in partial occlusion, 3) the objects are deformable and 4) images are
projection variant, i.e., the images are video records of three-dimensional objects in arbitrary
positions and orientations. Our approach combines traditional invariant moment features and
Fourier boundary descriptors with gray-scale morphological granulometries to form a feature
vector capturing both shape and texture information of plankton images. With an improved
learning vector quantization network classifier, we achieve 95% classification accuracy on six
plankton taxa taken from nearly 2,000 images. This result is comparable with what a trained
biologist can achieve by using conventional manual techniques, making possible for the first
time a fully automated, at sea-approach to real-time mapping of plankton populations.

1. Introduction

Plankton form the base of the food chain in the ocean and are a fundamental
component of marine ecosystem dynamics. Understanding the ecological
and physical processes controlling population dynamics of plankton over a
wide range of scales, from centimeters to hundreds of kilometers, is essential
for understanding how climate change and human activities affect marine
ecosystems. Such studies require large-scale, high-resolution mapping of
plankton abundance and taxonomic and size composition. High-resolution
temporal sampling is needed to measure tidal, diel, and seasonal variability
of population abundance and composition. Until recently, however, it has been
difficult or impossible to conduct such extensive sampling because plankton
abundance is highly variable in time and space and cannot be quantified with
sufficient resolution using conventional sampling methods.
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Traditionally, plankton surveys are conducted with such equipment as
towed nets, pumps, and Niskin bottles. Because of the laborious deploy-
ment process and limited sample storage space on ship, the spatial sampling
rate is extremely low. The painstaking and error-prone post-processing –
manual counting of samples through a microscope and data entry – may
take months or years, which effectively prohibits large-scale, high-resolution,
three-dimensional surveys over periods of time. However, accurate estimates
of production and growth can be made only if the interactions of organisms
with one another and with the local environment are estimated from samples
drawn at appropriate intervals of space and time (Owen 1989).

To help overcome the limitations of traditional plankton sampling instru-
ments, a new Video Plankton Recorder (VPR) has been developed (Davis et
al. 1992; Davis et al. 1992). As the VPR is towed through the water, it contin-
uously captures magnified plankton images, providing a spatial resolution of
plankton distribution on scales from microns to over 100 km. The amount of
image data collected over even short periods of time can be overwhelming,
necessitating an automated approach to plankton recognition. This approach
would not only save a great deal of man power, but also make the real-time
sorting of plankton possible. Real-time abundance and distribution data on
zooplankton and accompanying environmental variables are needed to guide
researchers during field studies on population and community processes, just
as physical oceanographers have for decades used real-time measurements
of temperature and conductivity to adjust their survey strategy according to
observed phenomena (Paffenhofer 1991).

Now that high-quality images of individual plankton can be obtained with
the VPR, our approach to the full automation of at-sea analysis of plankton
size and taxonomic composition focuses on the development of an image
analysis and pattern recognition system for real-time processing of the large
volume of image data being acquired. Our development approach includes
three parts (Davis et al. 1992; Davis et al. 1996): 1) a hardware/software
system for preprocessing of the images (including real-time image capture,
object detection, and in-focus analysis) and digital storage of detected object
images; 2) pattern recognition algorithms for automated identification and
classification of planktonic taxa; 3) incorporation of the pattern recognition
algorithms into a high-performance image analysis system to achieve a real-
time processing capability. Development of a preprocessing and acquisition
system as described in Step 1 has been completed and used to detect and save
subimages of planktonic taxa in real-time while at sea (Davis et al. 1996).

In this paper, we mainly address Step 2 and demonstrate an automated
approach to plankton image classification. Our experimental data sets differ
from those used for most previous pattern recognition researches in four
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aspects: 1) the underwater images are much noisier, 2) many objects are in
partial occlusion, 3) the objects are deformable, and 4) images are projection
variant, i.e., the images are video records of three-dimensional objects in
arbitrary positions and orientations. Figure 1, which shows example sub-
images extracted from the larger video fields, illustrates the diversity of
images within individual taxa.

By combining granulometric features with such traditional two-dimen-
sional shape features as moment invariants and Fourier boundary descriptors,
we extract a more complete description of the plankton patterns. Then, using
an improved Learning Vector Quantization (LVQ) neural network classifier,
we classify the plankton images into several taxonomic categories. The algo-
rithms are tested on six classes taken from nearly 2,000 plankton images. The
resulting classification accuracy is comparable with what a trained biologist
can achieve using traditional manual techniques.

The paper is organized as follows. In Section 2, the three feature extraction
methods – moment invariants, Fourier boundary descriptors, and granulo-
metric features – are described, along with a feature selection algorithm. We
then introduce an improved LVQ classifier. Section 3 describes real-time data
acquisition and image processing. In Section 4, experimental results from
the classification of the six plankton taxa are reported. We summarize our
conclusions and point to future work in Section 5.

2. Methodology

2.1. Feature extraction

Developing algorithms for classification of two-dimensional shapes insen-
sitive to position, size, and orientation is an important problem in pattern
recognition. Application of these algorithms range from industrial inspec-
tion and scene analysis to optical character recognition. The most widely
used shape features are moment invariants and Fourier boundary descriptors.
Classification of three-dimensional projection-variant objects is even more
difficult.

In this paper, we introduce gray-scale granulometric features as a powerful
pattern descriptor, which captures both shape and texture signatures, as a step
toward addressing the three-dimensional problem We also combine the three
types of feature vectors to form a more complete description of the plankton
patterns. We briefly review the three feature types then describe an effective
feature selection method.
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Figure 1(a–f). Sample images for each of the six types of plankton.
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Figure 1(a–f). Continued.
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Figure 1(a–f). Continued.
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2.1.1. Moment invariants
The concept of moments as invariant image features was first introduced
by Hu (1962), and later revised by Reiss (1991). Moments and functions
of moments have been used as pattern features in many applications. Some
examples and comparisons of different features are found in Gonzalez and
Wintz (1987), Reeves et al. (1988) and Teh and Chin (1991). In our exper-
iments, we use the seven invariant moments described by Hu (1962), and
Gonzalez (1987).

A (p + q)th order moment of a continuous image functionf (x, y) is defined
as
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Based on methods of algebraic invariants, Hu (1962) derived seven invariant
moments�i, i = 1 : : : 7, using nonlinear combinations of the second and third
normalized central moments. These invariant moments possess the desirable
properties of being translation, rotation, and scale invariant.

2.1.2. Fourier descriptor
The first in depth study of the Fourier descriptor was given by Zahn and
Roskies (1972) and later refined by Persoon and Fu (1977). Recently, more
research effort has been devoted to shape classification based on Fourier
descriptors (Reeves et al. 1988; Kauppinen et al. 1995; Reti and Czinege
1989). The most often used boundary models include the curvature function,
centroidal radius, and complex contour coordinates. Kauppinen et al. (1995)
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give a detailed experimental comparison of different models. We use the
radius Fourier Descriptor (FD) and complex contour Fourier descriptor, which
were shown to be the best among FDs tested in Kauppinen et al. (1995).

Consider a closed boundary defined by a closed sequence of successive
boundary pixel coordinates (xi, yi). The centroidal radius function expresses
the distance of boundary points from the centroid (xc, yc) of the object,

ri =

q
(xi � xc)2 + (yi � yc)2: (5)

A complex contour coordinate function is simply the coordinates of the bound-
ary pixels in an object centered coordinate system represented as complex
numbers,

zi = (xi � xc) + j(yi � yc): (6)

Since both functions are computed around the centroid of the object, they
are automatically translation invariant. To achieve rotation and scale invari-
ance, a Fourier transformation of the boundary signature is generally used. For
digital images we use the discrete Fourier transform (DFT). The shift invari-
ant DFT magnitude gives a rotation invariant feature vector. Scale invariance
is accomplished by normalizing all DFT magnitudes by the DFT magnitude
of the zero frequency or the fundamental frequency component.

The feature vector for a radius Fourier Descriptor is

FDr =

"
jF1j

jF0j
: : :

jFN=2j

jF0j

#
; (7)

whereN is the boundary function length andFi denotes theithe component
of the Fourier spectrum. Notice that only half of the spectrum need to be used
because of the symmetric property of the Fourier transform of real functions.

The contour Fourier method transforms the complex coordinate function
in Equation (6) directly. The feature vector is

FDc =

"
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: : :
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#
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In this case, both positive and negative halves of the complex spectrum are
retained. Because the complex function is centered around the coordinate
origin, F0 has zero value andF1 is used for the normalization.

2.1.3. Granulometric features
The above traditional features are mostly developed in a well controlled
pattern environment. Test images are usually shifted, scaled, and rotated
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versions of a small set of perfect images of such simple objects as hammers,
scissors, airplane silhouettes, and letters. However, most boundary features do
not perform well when a small amount of noise is added to the original images
(Kauppinen et al. 1995). As mentioned earlier, our experimental data sets are
not only much noisier, but the plankton are non-rigid, projection-variant, and
often in partial occlusion.

To overcome or at least partially alleviate these difficulties, we turned to
features based on mathematical morphology (Matheron 1975; Serra 1982)
known as granulometries. Granulometries were introduced in the sixties by
Matheron as tools to extract size distributions from binary images (Matheron
1975). The approach is to perform a series of morphological openings of
increasing kernel size and to map each kernel size to the number of image
pixels being removed during the opening operation at this kernel size. The
resulting curve, often called the pattern spectrum (Maragos 1989), maps each
size to a measure of the image parts with this size. Typically, the peak of this
curve provides the dominant object size in the image. For examples of the
application of granulometries, refer to (Vincent 1994a, 1994b).

Beyond pure size information, granulometries actually provide a “pat-
tern signature” of the image to which they are applied and can be used
successfully as elements of a feature vector for shape classification problems
(Schmitt and Mattioli 1991). Furthermore, the concept of granulometries can
easily be extended to gray-scale images. In this context, granulometric curves
capture information on object texture as well as shape. Additionally, various
types of gray-scale granulometric curves can be computed, depending on the
underlying family on openings or closing used. For example, curves based
on openings with line segments capture information on bright linear image
features, whereas curves based on closings with disk-shaped elements capture
information on dark, “blobby” image parts.

To capture information both on linearly elongated and “blobby” image
parts, whether dark or bright, we use four types of gray-scale granulometries.
These curves are normalized by the total image volume removable by opening
or closing, so that they are invariant with respect to illumination and scale
changes. For example, an image of the copepodOithona gives rise to a
corresponding pattern spectrum characterizing bright, blobby image parts in
Figure 2. The peak of this curve characterizes the size and contrast of the
body of the organism. A similar curve results for an organism known as a
pteropod (a planktonic snail) in Figure 3. The corresponding granulometric
curve however, is distinctly different from the previous one, reflecting the
more complex body configuration of the pteropod. Several novel gray-scale
granulometry algorithms are used to compute the granulometric curves. These
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Figure 2. CopepodOithonaimage (a) and corresponding granulometric curve (b), where dV
is the decrease of image “volume”, i.e. the sum of pixel values, from one opening to the next,
andVt is the total volume removable by opening.

Figure 3. Pteropod image (a) and corresponding granulometric curve (b).

algorithms are orders of magnitude faster than traditional techniques (Vincent
1994b), making possible for real-time application.

2.1.4. Feature selection
Very large feature vectors usually contain much redundant information.
Processing requires significant time or computational power, and classifi-
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cation results often are poor. For these reasons, decorrelation and feature
selectionsteps are needed. The widely used Karhunen-Loeve transform (KLT)
is an ideal feature reduction and selection procedure for our system. Its decor-
relation ability serves to decorrelate neighborhood features, and its energy
packing property serves to compact useful information into a few domi-
nant features. For a large feature vector, however, the computation of the
eigenvectors of the covariance matrix can be very expensive. The dominant
eigenvector estimation method, described in Tang (1996) is used to overcome
this problem.

As optimal representation features, KLT selected features may not be the
best for classification. Additional feature class separability measures are
neededto select KLT decorrelated features. We use the Bhattacharyya distance
measure in this study. An analytical form of this measure is (Fukunaga 1972)
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where�i and�i are the class variance and mean. From (9), we see that� is
proportional to both the distance of class means and the difference of class
variances. The feature selection criterion is to retain only those decorrelated
features with large� value.

2.2. Classification algorithm

We use the learning vector quantization classifier (Kohonen 1987, 1990) for
feature classification because it makes weaker assumptions about the shapes
of underlying feature vector distributions than traditional statistical classifiers.
For this reason, the LVQ classifier can be more robust when distributions are
generated by nonlinear processes and are strongly non-Gaussian, similar to
the case for our data.

A vector quantization process should optimally allocateM codebook refer-
ence vectors,!i 2 Rn, to the space ofn-dimensional feature vectors,x2 Rn,
so the local point density of the!i can be used to approximate the probability
density functionp(x) (Kohonen 1987). Consequently, the feature vector space
is quantized into many subspaces around!i, the density of which is high in
those areas where feature vectors are more likely to appear and coarse in
those areas where feature vectors are scarce.

To use such a vector quantization process in a supervised pattern classifica-
tion application, Kohonen (1987, 1990) developed the Learning Vector Quan-
tization classifier. First, the codebook reference vectors!isare initialized by
either M random feature vector samples or the mean value of the feature
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vectors. They are then assigned to a fixed number of known application-
specific classes. The relative number of codebook vectors assigned to each
class must comply with the a priori probabilities of the classes. A training
algorithm is then used to optimize the codebook vectors. Let the input training
vectorx belong to classCt, and its closest codebook vector!r be labeled as
classCs. The codebook vector!i is updated by the learning rules (Kohonen
1987),

�!r = �(x� !r) if Cs = Ct

�!r = ��(x� !r) if Cs 6= Ct;

�!i = 0 for i 6= r

(10)

where� is the learning rate. Only the closest of the vectors!i is updated, with
the direction of the correction depending on the correctness of the classifica-
tion. Effectively, these codebook vectors are pulled away from zones where
miscalculations occur, i.e., away from the classification boundary region.
After training, the nearest neighbor rule is used to classify the input test
vector according to the class label of its nearest codebook vector.

A neural network architecture to implement the LVQ is shown in Figure 4.
The network consists of two layers, a competitive layer and a linear output
layer. The weights connecting all input neurons with the competitive layer
neuroni form the codebook vector!i. The net input for each competitive
layer neuron is the Euclidean distance between the input vectorx and the
weight vector!i. The output of each neuron is 0 except for the “winner”
neuron, whose weight vector has the smallest distance to the input vector and
whose output is 1.

The second layer transforms the competitive layer’s neuron class into the
final output class. As discussed above, the competitive layer neurons, i.e.,
the codebook vectors, are assigned to the output classes according to a priori
probabilities of the classes. For the example shown in Figure 4, the first three
neurons are assigned to Class 1, the next two to Class 2, and the final two to
Class 3. Only the non-zero weight connections between the competitive layer
and the linear layer are shown in the figure. If any neuron in a particular class
wins, the corresponding neuron class in the linear output layer will have an
output of 1.

A drawback of the LVQ algorithm is the time consuming training process.
To improve it, we use a statistical initial condition and a parallel training
strategy introduced by Tang (1996). First, we initialize the neuron weight
vectors in the competitive layer using the means and variances of the training
vectors in each class. With the initial weight vectors in each class computed
by adding random vectors of the class variance to the mean vector of the same
class, the training process starts from a good statistical mapping position.
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Figure 4. Learning vector quantization neural network.

We make a second improvement by invoking the parallel training strategy
(Tang 1996). Traditionally, training samples are randomly selected to be fed
into the network one at a time. Therefore only one neuron is updated at
each training epoch. The process is quite slow, when there are many neurons
to update. The fact that the order in which samples are presented to the
network is not important suggests the idea of presenting several training
samples in parallel. The only difference this may create is that there may
be more than one training sample very near the same neuron. In such a
case we select only one of these few samples to update the neuron. This
guarantees that parallel processing generates only one update operation on
each winning neuron, with results similar to a serial training strategy. The
parallel processing can be implemented by either hardware matrix operations
or multiprocessor technology.

3. Data Acquisition and Processing

Data acquisition and processing for the current implementation are carried out
in two phases. First, a real-time hardware/software system detects in-focus
objects, defines a subimage around each detected object, then saves the subim-
ages to disk. Digital storage requirements are reduced by more than two orders
of magnitude and the time required to manually identify training images is
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accelerated by a similar factor, when compared with manually jogging a
videotape editing machine to search for organisms (Davis et al. 1996). In a
second phase, more computationally expensive algorithms are applied to the
condensed data set for segmentation, feature extraction, and classification.

3.1. Real-time data acquisition and focused object detection

The VPR uses a video camera with telephoto lens and a red strobe to obtain
magnified images of plankton. The strobe is synchronized with the camera at
60 fields per second. Together, the camera’s high resolution (570�485 pixels)
and the strobe’s short pulse duration allow detailed imaging of the plankton
(10-�m resolution for the 0.5-cm field of view) (Davis et al. 1992). The goal
of the VPR’s real-time video processing system is to archive to tape digital
images of sufficiently large, bright, and in-focus objects as they appear in the
video stream.

Live or recorded video and time-code data are sent to the video processing
system, which consists of a Sun SPARCstation 20/72 connected to an Imaging
Technologies 151 pipelined image processor and a Horita time-code reader
(Davis et al. 1996). The image processor can perform real-time (60 field per
second) digitization, 3�3 convolutions, rank value filtering, and frame buffer
data exchanges with the host workstation. A multi-threaded algorithm on the
host is used to supervise the image processor, collect time-code data, compute
edge strength, and transfer in-focus subimages to disk.

A simple but effective algorithm has been devised to detect and record
objects in real-time (Davis et al. 1996). First, bright large blobs are located
in a median filtered image by finding the connected components from run-
length lists computed in hardware. For each large blob, the first derivative
of the Sobel edge intensity (basically a second derivative of intensity) along
the blobs’ perimeter is used to reject objects that are out of focus. A gray-
scale subimage surrounding any in-focus targets is immediately passed to the
workstation for archival and taxonomic classification.

The three main parameters of these algorithms are image intensity thresh-
old, edge strength threshold, and minimum object area in pixels. These are
adjusted empirically before data collection based on various factors including
lens magnification, transmissivity of the water, and lighting characteristics.
Our objective is to achieve a very high probability of detection with a reason-
able probability of false alarm, since more intensive processing can be applied
to the much smaller data set produced by these algorithms.

On average, about 1 out of 20–60 video fields contains an in-focus object,
and only a subimage surrounding the object is saved to disk as an individual
file. These object files are time-stamped using the corresponding video time
code for precise correlation with ancillary hydrographic and position data
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(Davis et al. 1992). This culling process typically reduces the amount of
image data to be stored and classified by a factor of 100 or more, thus making
the remaining processing computationally feasible (Davis et al. 1996).

3.2. Data description and processing

In the following experiment, six classes obtained from nearly 2,000 plankton
subimages captured by the VPR are used to test our pattern classification
algorithms. They include 133 Calanus, 269 Diat-centr, 658 Diat-chaet, 126
Diatom, 641 Diatomcolo, and 42 Pteropod images. Some sample images for
each of the six plankton taxa are illustrated in Figure 1. Half of the images
are used as training data and half for testing.

Each gray-scale image is first segmented into a binary image using a simple
mean shift method. We use the mean value of the image to threshold the image,
then the mean values of the object and the background are computed. The
average of the two mean values is used as a new threshold to segment the
image again. The process iterates until a stable threshold is reached. Since our
images are mostly bimodal, only two iterations give a very good segmentation
result, as shown in Figure 5(b). We are currently developing a more robust
connectivity-based thresholding technique and will compare the two methods
in a future work.

Next, the largest binary object is used to compute the boundary descriptors.
This binary image is also used to mask the original grey-scale image to
compute moment features. Results for each of these processing steps are
illustrated in Figure 5. Granulometric features are computed directly from the
original gray-scale images.

4. Classification Experiments

A set of experiments was conducted to study the performance of the three
types of feature vectors, their combinations, and the improved LVQ classifier.
Since there seems to be no simple solution for determining the best network
configuration, no exhaustive search was conducted to determine the best net-
work parameters. However, we investigated several network configurations
and selected one that appears to be most appropriate for our application.
Throughout the experiment, we use the following parameters: 200 competi-
tive layer neurons, learning rate 0.1, parallel training sample number 120 per
epoch.
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Figure 5. Illustration of the intermediate results of the image processing steps.

4.1. Classification results using individual feature vectors

We first investigate the classification ability of the three individual feature
vectors: moment invariants, Fourier descriptors, and granulometries. Compar-
ison of the classification results are given in Table 1. Only 65% classification
accuracy is achieved using moment features. This may be attributed in part
to the relatively short feature vector length of 7. The images of the same class
are also very different in shape because of variations in projection direction,
organism body motion, and image occlusions. This shape inhomogeneity also
affects the performance of the FD features. For the testing data, only 69%
classification accuracy is achieved by the contour FDs. The radius FD features
outperform the contour FD features by approximately 10%. This contrasts
with Kauppinen et al. (1995), where contour FDs give better results than the
radius FDs. Such a discrepancy in results may be caused by the differences
between the two data sets. More conclusive comparison studies need to be
done before we draw a firm conclusion. The sampling number we used for
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Table 1. Classification rates (%) on six classes of plankton images using individual
feature vectors: Moment invariants, Fourier descriptors (FD), and Granulometries

Original Number of
feature selected Correct classification rate (%)

Feature types length features Training Testing All data

Moment invariants 7 7 67.74 63.13 65.44
Contour FD 360 28 83.7 69.2 76.5
Radius FD 180 21 94.6 78.0 86.3
Granulometries 160 29 97.8 86.4 92.1

the boundary function is 360 points. This number is much higher than for
many previous studies, because plankton have noisier, more irregular bound-
aries requiring a higher sampling rate to capture high-frequency information.
The granulometry features give the best performance with a better than 90%
accuracy. This demonstrates the features’ insensitivity to occlusion, image
projection direction, and body motion because of rich three-dimensional
texture and shape information captured.

4.2. Classification results using combined feature vectors

The confusion matrices of the classification results using the three individual
features are given in Tables 2–4, where the columns are true class labels,
the rows are the resulting labels. Notice that the shapes of these matrices
are quite different. The moments are good at distinguishing Diat-centr and
Diatom; the radius FD generates good results on Diat-centr and Diat-chaet; the
granulometry features perform well on all classes, except on the Diat-centr.
All these suggest that the discrimination abilities of the thee feature types
may be distinct when recognizing different object characteristics. To form
a more complete description of the plankton patterns, we combine all three
feature vectors into a single feature vector. Results are shown in Table 5. The
combined vector yields 95% classification accuracy, which is comparable
with what a trained biologist can achieve by using conventional manual
techniques (Davis 1982). Notice also that the feature length is condensed to
around 20 from several hundreds, demonstrating the efficiency of our feature
selection approach.

Not all combinations of feature vectors in Table 5 show an improvement in
results. For example the combined contour and radius FDs perform worse than
the radius FD features alone. Adding moment features to the granulometry
feature vector only improves results slightly. The short moment feature vector
seems to contain only a subset of information contained in the granulometry
features.
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Table 2. Confusion matrix of the moment invariant features

Names Calanus Diat-centr Diat-chaet Diatom Diatomcolo Pteropod

Calanus 41 0 71 0 20 4
Diat-centr 3 241 3 0 65 8
Diat-chaet 67 3 446 8 180 11
Diatom 0 0 10 116 0 0
Diatomcolo 21 23 127 2 373 13
Pteropod 1 2 1 0 3 6

Table 3. Confusion matrix of the radius Fourier descriptors

Names Calanus Diat-centr Diat-chaet Diatom Diatomcolo Pteropod

Calanus 71 0 9 3 26 4
Diat-centr 0 262 2 0 4 1
Diat-chaet 22 6 602 5 66 3
Diatom 2 0 3 117 1 3
Diatomcolo 34 1 42 1 539 9
Pteropod 4 0 0 0 5 22

Table 4. Confusion matrix of the granulometry features

Names Calanus Diat-centr Diat-chaet Diatom Diatomcolo Pteropod

Calanus 117 2 15 2 7 0
Diat-centr 0 239 7 0 0 0
Diat-chaet 15 27 600 5 25 0
Diatom 1 0 16 116 2 0
Diatomcolo 0 1 20 3 607 0
Pteropod 0 0 0 0 0 42

Table 5. Classification rates (%) on the six classes of plankton images using combined
feature vectors

Original Number of
feature selected Correct classification rate (%)

Feature types length features Training Testing All data

Contour FD & Radius FD 540 29 90.4 76.8 83.6
Moments & granulometry 167 29 97.5 87.5 92.5
Granulometry & radius FD 340 24 98.7 91.5 95.1
Moments & granulometry 347 19 98.0 92.2 95.1

& radius FD
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Table 6. Confusion matrix of the combined moments, radius FDs, and granulometry features

Names Calanus Diat-centr Diat-chaet Diatom Diatomcolo Pteropod

Calanus 120 0 9 1 8 1
Diat-centr 0 262 7 0 1 2
Diat-chaet 13 6 627 2 23 0
Diatom 0 0 5 120 0 0
Diatomcolo 0 1 10 3 609 0
Pteropod 0 0 0 0 0 39

The combined feature vector confusion matrix is shown in Table 6.
Although the DIAT-CHAET images have a classification accuracy of 95.3%,
about the average of all classes, many other class images are misclassified
as DIAT-CHAET, such as all misclassified CALANUS, most misclassified
DIAT-CENTR and DIATOMCOLO images. This is probably because the
versatile DIAT-CHAET images have texture and shape structures similar to
those of other class images. For example, the body texture of some DIAT-
CHAET look quite similar to that of CALANUS, and some small samples of
DIAT-CHAET may be confused with DIAT-CENTR. All images are sorted
by a trained biologist and sometimes only very subtle characteristics are used
to judge the occluded plankton images. Some human errors in the identifica-
tion were discovered using the automated method. Given the data quality, the
overall classification rate is very encouraging.

4.3. Comparison of LVQ training methods

A traditional serial training method is compared to the new parallel algorithm
in Figure 6. The three lines show the progression of training data classification
accuracy with increasing number of training epochs using three methods: the
traditional training method with all neurons initialized with the mean value of
the training samples, the traditional training method with the statistical initial
condition, and the new parallel training method. The new method reaches 98%
training accuracy within 100 epochs, while the traditional methods achieve
95% accuracy using nearly 10000 epochs.

To further compare the traditional method with the new parallel training
method, we use scatter plots of the first two dimensions of the training sample
feature vectors and their corresponding neuron weight vectors at several
training stages in Figure 7. As the training progresses, the neuron weight
vectors gradually start to match the topology of the feature vector space.
Comparing Figures 7(a) and (b), we see that the new method apparently maps
the density of the feature vector space better and more quickly.
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Figure 6. Comparison of the three training methods. The dashed line represents the classi-
fication accuracy progression with training epochs using the traditional training method and
the mean value initial condition. The dotted line is for the traditional training method with
statistical initial condition. The solid line is the result of the new parallel training method.
The epoch numbers on the horizontal axis for the two traditional training methods should be
multiplied by 120.

5. Conclusions and Future Work

Our experimental results clearly demonstrate that the combined feature vector
is better than any single feature type. Of the individual feature types, the
granulometry vector contains more information than conventional shape
descriptors. The KLT and Bhattacharyya feature selection method success-
fully decorrelates and compacts a large feature vector into a small description
vector. Together with the improved LVQ classifier, 95% classification accu-
racy is achieved.

With the VPR system, including the data acquisition unit and the pattern
classification system, real-time automatic sorting of plankton into taxonomic
categories becomes possible for the first time. This ability will allow rapid
acquisition of size-dependent taxonomic data over a wide range of scales
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Figure 7. Comparison of the traditional and the new parallel training methods using scatter
plots of the first two feature dimensions and their corresponding neuron weight vectors at
several training stages. The ‘+’ markers represent the six classes of training samples and the
‘�’ markers represent the hidden layer neurons.
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in a dynamic oceanographic environment, providing new insights into the
biological and physical processes controlling plankton populations in the sea
(Davis et al. 1992).

To achieve this goal, though, much work remains. First, biologists are
interested in classifying many more plankton species than tested here, many
of which are quite similar. To maintain a high degree of classification accuracy,
we must develop more distinct pattern features. A hierarchical classification
system may also be necessary to classify major species and subspecies in
several steps. We also intend to integrate our classification algorithms with the
current VPR processing system to carry out real-time taxonomic identification
at sea.
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