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To develop a noise-insensitive texture classification algorithm for both optical
and underwater sidescan sonar images, we study the multichannel texture classifi-
cation algorithm that uses the wavelet packet transform and Fourier transform. The
approach uses a multilevel dominant eigenvector estimation algorithm and statisti-
cal distance measures to combine and select frequency channel features of greater
discriminatory power. Consistently better performance of the higher level wavelet
packet decompositions over those of lower levels suggests that the Fourier transform
features, which may be considered as one of the highest possible levels of multichan-
nel decomposition, may contain more texture information for classification than the
wavelet transform features. Classification performance comparisons using a set of
sixteen Vistex texture images with several level of white noise added and two sets of
sidescan sonar images support this conclusion. The new dominant Fourier transform
features are also shown to perform much better than the traditional power spectrum
method. @ 2000 Academic Press

1. INTRODUCTION

Sidescan sonar has been an important tool for seafloor survey over the past few dec
Due to the highly textured appearance of sonar images, texture analysis techniques be
natural choices for sidescan sonar image analysis.

Texture analysis of sidescan sonar imagery can be applied to various geological
ture recognitions. Pace and Dyer applied the co-occurrence features to distinguish
physical properties of sedimentary bottoms using sidescan sonar [23].eRaltcon-
ducted an analysis of one-dimensional image spectra for the classification of six classe
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homogeneous sediment type, including mud, clay, sand, gravel, cobbles, and boulders
Pace and Gao continued this work and developed an alternative approach by extracting
spectral features from sidescan data [24]. Reed and Hussong reported an application c
co-occurrence features to the classification of submarine lava flows, as well as the segm
tion of lithified and nonlithified sedimentary formations [25]. Stevedidl. applied a neural
network classifier to several traditional statistical texture features for the classification
terrain types of seafloor [27].

In this paper, we use two sidescan sonar data sets for texture classification experim
They are the Arctic under-ice canopy data and the seafloor data. The first datasetis a side
sonar survey of an Arctic under-ice canopy. As the geophysical and economic importa
of the polar seas becomes more widely recognized, the need for intensive study of tf
regions becomes more apparent. The underwater sidescan sonar imagery offers a ul
perspective on the morphology of the under side of the ice, which is important to the st
of frictional coupling between the ice cover and water and to research on the scatterin
low-frequency acoustic energy by an ice canopy in an underwater communication chan

Since thermal processes tend to level out rough elements much more slowly on the ur
ice surface than on the top, the under-ice canopy tends to preserve many more feature
the analysis of ice floe, ridge, and crack formation than the upper surface. Figure 1 sh
a sidescan sonar image where ice cracks and ridges are clearly shown. This image is

FIG. 1. Sidescan sonar image of an Arctic under-ice canopy.
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of a novel set of sidescan sonar imagery of the Arctic under-ice canopy, obtained by
upward-looking sidescan sonar aboard a navy submarine. Using navigation data, se
tracks of sonar data are mosaiced together to form the image. In this work, we study
classification of three types of ice textures in the image: first-year young ice (thin ic
multiyear undeformed ice (thick ice); and multiyear deformed ice (ice ridge and crack).

The second dataset is a sidescan sonar survey of the seafloor of amidocean ridge are
region is characterized by hydrothermal venting and black smokers, geologic structures
vent extremely hot water and dissolved particulates from the seabed into the water colu
In particular, our classification experiment focuses on three distinct geoacoustic provin
within the general area: a flat sediment pond, a lightly sedimented, constant-slope ri
flank, and an axial-valley segment.

Most research on texture analysis of sonar images use traditional statistical texture
tures directly. Recent development of the more efficient multichannel texture features
not been considered. Since sonar images tend to be noisier than optical images, we foc
the multichannel texture analysis approach, which is less sensitive to noise. Especially
study methods using wavelet packet transformations and eventually arrive at a more stra
forward method of feature extraction from the texture Fourier power spectrum, which
shown to be more efficient for both optical and sonar texture images.

Advances in wavelet theory [4, 7, 18-20] provide a good framework for multichann
texture analysis. The texture research community has devoted considerable effort to wa
applications in texture analysis. An early study of a wavelet transform for texture analy
was described by Mallat [18]. Later, Henke-Reed and Cheng [12] applied a wavelet tre
form to texture images, using the energy ratios between frequency channels as feat
Gabor filters have been used to extract texture features by Rigain{2], du Bufet al.[8],
and Jairet al.[13]. Chang and Kuo [3] developed a tree-structured wavelet transform alg
rithm for texture classification, which is similar to the wavelet-packet best-basis-select
algorithm of Coifman and Wickerhauser [4]. Laine and Fan [15] used both the stand
wavelet and the wavelet-packet energy measures directly as texture features in their te;
classification work.

These researchers have demonstrated that the wavelet transform is a valuable toc
texture analysis. However, a common problem with these approaches is that they are d
applications of existing wavelet processing algorithms, which were originally develop
for signal representation or compression instead of signal classification. To fully utili
the power of a wavelet-packet transform, techniques tailored for extracting features
greater discriminatory ability must be considered. In this paper we demonstrate the
of the multilevel dominant eigenvector estimation algorithm and statistical distance m
sures to combine and select frequency-channel features that give improved classific:
performance.

Since the Fourier transform can be considered as one of the highest possible leve
multichannel decomposition, it is reasonable to apply the same feature selection algori
to the Fourier transform spectrum. Just as the ideal tool for nonstationary signal anal
is a wavelet transform, the ideal tool for stationary signal analysis is a Fourier transfol
Because texture signals are mostly stationary, we suspect that the Fourier transform fea
may generate better results.

In this study, we also compare the new Fourier features with the traditional power sp
trum method (PSM), first studied by Bajcsy [1], WeszKtaal. [31], and Jernigaret al.
[14]. Historically, the texture classification performance of the PSM has been ranked fa
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low among most texture analysis techniques [5, 31], resulting in limited application of tt
approach. Criticism of the PSM have been of the Fourier transform rather than of the v
that texture features are computed from the power spectrum [31]. In this paper, we show
by using appropriate feature extraction algorithms, the discriminatory power of the Four
transform features can be significantly improved.

Section 2 of this paper describes the texture feature extraction techniques, including
computation of wavelet features, the Fourier transform features, and the traditional P
features. The texture classification experimental results on optical and sonar texture im:
are presented in Section 3. We summarize the conclusions in Section 4.

2. TEXTURE FEATURE EXTRACTION

2.1. Wavelet and Wavelet-Packet Transforms

For simplicity, a one-dimensional discrete sigrfdk) of lengthn=2", whereng is
an integer, is used for discussion in this section. The standard wavelet transform cat
thought of as a smooth partition of the signal frequency axis. First, a lowpasfitgr
and a highpass filteg(m), both of lengthM, are used to decompose the signal into two
subbands, which are then downsampled by a factor of 2HLahdG be the convolution-
downsampling operators defined as

M-1

Hf(k) =) h(m)f(2k+m), 1)
m=0
M-1

Gf(k) = g(m)f(2k+m). 2)

m=0

H andG are called perfect reconstruction quadrature mirror filters (QMFs) if they satis
the orthogonality conditions

HG* = GH* = 0, ©)
H*H 4+ G*G = I, (4)

whereH* andG* are the adjoint (i.e., upsampling-anticonvolution) operatond @ndG,
respectively, and is the identity operator.

This filtering and downsampling process is applied iteratively to the low-frequency su
bands. At each level of the process, the high-frequency subband is preserved. Wher
process reaches the highest decomposition level, both the low- and high-frequency banc
kept. If the maximum processing levellis the discrete wavelet coefficients of sigrfgk)
are then{Gf, GHf, GH?f, ..., GH. f, H-*1 f} with the same lengtim as the original
signal. Because of the orthogonality conditiond-bfandG, each level of transformation
can be considered as a decomposition of the vector space into two mutually orthogc
subspaces. Le¥p o denote the original vector spaé®, andV; o andVy; be the mutu-
ally orthogonal subspaces generated by applyingnd G to Vg . Then, thdth level of
decomposition can be written as

Vio=Ms10®M411, %)
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FIG. 2. Standard wavelet transform binary tree.

for =0,1,..., L. Figure 2 shows such a decomposition process. Each sub%pgce
with b=0 or 1 is spanned by"! wavelet basis vectorsy pc}2 - which can be
derived fromH, G, and their adjoint operators. From the above iterative filtering ope
ations, we can see that the wavelet transform partitions the frequency axis finely tow
the lower frequency region. This is appropriate for a smooth signal containing primat
low-frequency energy but not necessarily so for other more general types of signals, suc
textures.

A more generalized form of the standard wavelet transform is the wavelet packet trz
form, which decomposes both the high- and low-frequency bands at each iteration. As \
the wavelet transform, two subbanésf andG f, are generated at the first level of decom-
position. However, the second-level process generates four sublb#htisGHf, HGT,
andG? f, instead of two band$1? f andG H f, as in the wavelet transform. If the process
is repeated. times,Ln wavelet packet coefficients are obtained. In orthogonal subspa
representation, thigh level of decomposition is

Vib = Vi41,20 D Vit1,2041, (6)

wherel =0, 1, ..., L is the level index andh=0, ..., 2" — 1 is the channel block index
in each level. Figure 3 illustrates the wavelet packet decomposition of the original vec
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FIG. 3. Wavelet packet transform binary tree.
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spaceVp o. Again, each subspaég, is spanned by2~! basis vector$VV|,b,c}§"=°5"1. For
b=0 and 1,W can be identified with/.

For two-dimensional images, the wavelet or wavelet packet basis function can be
pressed as the tensor product of two one-dimensional basis functions in the horizontal
vertical directions. The corresponding 2-D filters are thus

A (m, n) = h(m)h(n), (7
hua(m, n) = h(m)g(n), (8
hgn(m, n) = g(mh(n), ©)
hge(m, n) = g(m)g(n). (10)

In Fig. 4, we show three sample textures and their Daubechies minimum-support le
asymmetric wavelet packet coefficients for levels 1-4.

FIG. 4. Three sample textures (row 1) and their Daubechies minimum-support least asymmetric wavi
packet coefficients at decomposition levels 1, 2, 3, and 4 (rows 2-5).
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2.2. Wavelet Texture Feature Extraction

After the wavelet packet coefficients are computed, we develop the algorithm by addre
ing the three main issues of multichannel texture classification: feature extraction wit
each channel, channel selection, and feature combination among channels.

Since the wavelet coefficients are shift variant, they are not suitable for direct use
texture features, which must be shift-invariant. We compute the shift-invariant measure

1 M N

o= 0 e(i. ), (11)
MN ;;
1 M N

MNT = = _Z D (i ) — pa) (12)

Il
1N
Il
iN

! J

M N 2 LND

— = ||e||2 lel3
wheree(i, j) denotes an element of the wavelet packet coefficient mainixeach channel,
e is the mean of the matrix elements in the channel,MrahdN represent the vertical and
horizontal size of the matrig whose norm ig|e||2. To make our algorithm less vulnerable
to the nonuniform illumination of images, the texture sample mean is removed befor
feature vector is computed. Thus, the mean feature in Eqg. (11) becomes zero. The
features we use in the experiment are (1) variance feature VARk#R in (12), (2) the
entropy feature ENT in Eq. (13), (3) the third moment Mi\@&nd (4) the fourth moment
MNT 4.

Because of the orthogonality condition on the wavelet transform, for the variance feat

the following relation holds for any decomposition node and its four child nodes:

3

1
VAR|p =7 ;J(VAR.HAM,-). (14)

The effect of this linear relationship on the classification accuracy of overcomplete wave
packet features can be seen in later experiments.

After the features are computed within each channel, the second issue is how to st
good features among channels. One possible approach is to apply a statistical dist
measure to each feature and to select those features with large distance measures. Ho
there are two drawbacks with this approach. The first is that neighborhood channel feat
tend to correlate with each other; thus, they contain similar information. If one has a la
distance measure, the other will also, and both will be selected. Therefore, similar feat
will usually be selected. The second problem is that for some very small energy chanr
a small amount of unexpected noise may cause the distance measure to be large ar
channel to be selected. To avoid these problems, we combine the channel selection
with the channel combination step in one feature selection step, using principal compol
analysis and statistical distance measures.

The widely used Karhunen—Loeve transform (KLT) is an appropriate feature reduct
and selection procedure for our algorithm [10, 29]. The KLT decorrelates neighborhc
channel features, and its energy-packing property removes noisy channels and com
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useful information into a few dominant features. However, for a large feature vector, st
as a vector comprising features of a higher level wavelet packet decomposition or a Fol
transform, the computation of the eigenvectors of the covariance matrix can be prohibitiv
expensive. We use the multilevel dominant eigenvector estimation (MDEE) method [28]
overcome this problem. The following is a brief description of the MDEE method.

To compute the Karhunen—Loeve transform xebe a feature vector sample and form
ann by m matrix,

x1(1) x(1) ... xm(1)
A= X)) x(2) ... xm(2) 7 (15)
x1(n) xe(n) ... Xm(n)

wheren is the feature vector length amdis the number of training samples. The sample
covariance matrix is computed by

1¢ 1
W= ;(Xi —m =)' = AAT, (16)

whereu is the mean vector. For the standard KLT, the eigenvalues and eigenvectors
computed directly fromW. However, with the feature vector formed by the higher leve
wavelet-packet decomposition features or the scan-line vectorized Fourier transform ma
n is a large number. For a neighborhood of>684, n can reach a maximum of 4096,
resulting in a covariance matrix of size 4096l096. Direct computation of the eigenvalues
and eigenvectors becomes impractical.

To alleviate this problem, we use the multilevel dominant eigenvector estimation meth
After breaking the long feature vector intp=n/k groups of small feature vectors of
lengthk,

x1(1) Xo2(1) R Xm(1) ]
x1(K) X2(K) cee el Xm(K)
x1(k + 1) Xo(k + 1) cee Xm(K + 1)
A= i X1(2K) X2(2K) e el Xm(2K)
Xi(@ - DK+1) (@—Dk+1) ... .. Xn((@— Dk+1)
I x1(n) Xz(n) e Xm(n) ]

17)

we apply the KLT to each of theggroup short feature vector 98t Then a new feature vector
is constructed by the first few dominant eigenfeatures of each group. The final eigenvec
are computed by applying the KLT to this new feature vector.

The difference between the KLT and MDEE is the information that is thrown away in t
second step, where only the dominant eigenfeatures in each group are kept. The disce
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information is contained in three groups of covariance matrices. They are the covaria
matrices of the removed small eigenfeatures within each group, the cross-covarianace
trices between the removed small eigenfeatures of each group, and the cross-covar
matrices between the small eigenfeatures in one group and the dominant eigenfeatur
another group. Because of the energy packing property of KLT, the information in the fi
two types of matrices should be negligibly small.

We can also argue that the information in the third type of matrices cannot be large eit
If two feature groups are fairly uncorrelated with each other, then any cross-covaria
matrices between the two groups will be very small. On the other hand, if the two grot
are strongly correlated with each other, the dominant eigenfeatures of the two group
be very similar. Therefore the matrix of cross-covariance between the dominant feature
one group and the minor features in another group will be similar to the matrix of cro:
covariance between the dominant features and the minor features within the same gt
which is zero due to the decorrelation property of the first step KLT transform. Since
three types of matrix are small, we conclude that the information that is discarded in
second step of MDEE is insignificant. The experiments also confirm that the MDEE mett
is indeed a close approximation of the standard KLT.

Significant reduction of computational time over the standard KLT can be achieved by
MDEE. For example, if a feature vector of lengtk= 1000 is broken into 10 vector groups
of length 100, and 10% of the eigenfeatures in each group are saved for the second-
eigenvalue computation, the computational complexity for the MDEE is /10, which
is nearly two orders of magnitude faster than the KLT's complexitpfFurthermore,
the algorithm offers a structure for parallel computation. If all individual group KLTs ar
computed in parallel, a near three-order-of-magnitude speed increase can be achieve
this example.

However, as optimal representation features, the KLT selected features may not be
best for classification. Additional feature class separability measures are needed to ran
discriminatory ability of KLT decorrelated features. We use the Bhattacharyya distance
this study, because it has a direct relation with the error bound of the Gaussian classifier
has a simple form for features with normal distributions. As shown in [10], for a two-cla
problem we have

Eener) < [P(C1)P(C2)]Y2 expl—Pa(cs,cn] (18)

whereP(q) is the prior probability of class;, ¢ is the probability of error for a Gaussian
classifier, angBy is the Bhattacharyya distance. Because its inverse gives the upper bo
on the probability of erroiBy can be an effective measure of class separability. For a norn
distribution, 84 has the analytical form

1
(n1 — p2) + I [3(Wa + Wo)|

Wa+ Wo ) W Wa)l g
2 Wy /2 Wy |12

1
Bd(ci.c) = é(m —p2)" ( >

whereu1, u andW;, W, are the mean vectors and covariance matrices of the two cla
distributions. The many possible combinations of multiple features and the possibility
covariance matrix singularity make it impractical to compute the Bhattacharyya distance
multiple features atthe sametime. The one-at-a-time method is adopted instead. The for
is the same as Eq. (19), only with the covariance maifiseplaced by the variance and the
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mean vectop replaced by the class mean. Apparently, a large difference in mean values

tween two clusters results in a large value for the first term of Eq. (19). When the two clust

differentiate in variances, the large value of the second term of Eq. (19) gives a large ou

of B4. In the situation that both means and variances are different for the two clgg$es,

at its largest. In all three cases, a Gaussian classifier is expected to give good performe
For multiclass problems, the overall probability of error can be bounded by

K K
e < Z €(ci,cj)» (20)
i>j j=1
wheree ande( ¢;) (i, j =1, 2, ..., K) are the probability of overall error and the pairwise

error between classand j, respectively. From Egs. (18) and (20) we select features al
cording to the minimum total upper error bound. Because the test data size is the sam
all classes in the experiment, the prior probabilitiyg;) are equal for all classes. Thus,
we select features with small values of

K K
S=) ) expl-Bue.c)l- (21)

i>j j=1

Throughout the experiment, we select the first 30 features with largest eigenvalues,
these MDEE-decorrelated features by tHgivalues, and use the firstfeatures with the
smallestS, for classification. We run the feature lengttfrom 1 to 30 to select the one
that gives the best performance as the final feature vector length. This is apparently nc
optimal searching approach, since a combination of therfipgtst individual features may
not be the best lengtihfeature vector. However, the experimental results suggest it to be
close approximation. Since all features are first decorrelated by the MDEE transform, as
increase the feature length each additional feature brings in new uncorrelated informa
and noise. When thelg, values increase to a certain point, the new features start to brir
in more noise than information, suggesting that a suboptimal feature length is reached.
experiments show that most best feature lengths are from 10 to 20.

In the experiment, we test our algorithms on the following group of wavelet pack
features: (1) Level 1: VAR, ENT, MNJ, MNT,, ALL, (2) Level 2: VAR, ENT, MNT3,
MNT,4, ALL, (3) Level 3: VAR, ENT, MNT;, MNT4, ALL, (4) Level 4: VAR, ALL,

(5) Level 1&2: VAR, ALL, (6) Level 1&2&3: VAR, ALL, (7) Level 1&2&3&4: VAR,

(8) Standard Wavelet: VAR, ALL, where “ALL" represents the combination of all the fou
types of features. Our goals are to test the discriminatory power of each feature type in e
individual level, the effects of overcomplete representation, and the classification powe
the standard wavelet transform.

Another important experiment compares the texture classification performance of ¢
ferent wavelet filter designs and filter lengths. Most previous texture analysis studies h
only tested one particular type of wavelet filter design without any specific justificatic
[3, 15]. In this paper, we demonstrate experimentally that the wavelet filter types a
lengths do not significantly affect texture classification performance.

2.3. Fourier Transform Features

If we consider the Fourier transform as the highest possible level of multichannel
composition, we can treat each Fourier frequency component as a frequency char
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Accordingly, we can treat the Fourier transform magnitude as an energy feature. Instea
painstakingly designing various multichannel filters, we can take the maximum numbe
filter channels that can be obtained and then let the MDEE transform and the Bhattacha
distance measure determine which channels to keep and how much of the energy in t
channels to keep. The resulting coefficients, which represent the magnitude of each
quency channel’s contribution, form a designed filter. We call this approach the domin
spectrum method (DSM). Only half the spectrum matrix is used because of the symme
property of the Fourier transform of real functions. Since most texture images are genet
stationary processes, which decompose canonically into a linear combination of sine an
sine waves in the same way that nonstationary signals decompose into linear combina
of wavelets, we expect DSM features to perform at least as well as the wavelet feature
Our Fourier transform DSM features should not be confused with the traditional pow
spectrum method (PSM). Early studies of PSM by Bajcsy [1] and Westla. [31]
concentrate on features computed by the summed spectral energy within circular or we
shaped frequency regions. In smooth images, for example, features of the form

PSM= ) P(uv) (22)

rZ<u?4v2<r2

have high values for smallbecause the smooth images have more energy at lower frequ
cies, whereP(u, v) is the power spectrum. For a rough texture, the high-frequency ener
dominates, resulting in high PSNbor larger . For the same reason, features of the form

PSM,= > P(uv) (23)

01 <atanf/u)<6,

give a good measure of directional information. In general, the PSM has been shown t
much less efficient than most other texture analysis methods [5, 31]. Although Jestidian
[14, 17] propose to use entropy, peak, and shape measures to extract more texture fee
from the power spectrum, the performance improvement is limited, and the method is
widely accepted as an efficient texture analysis algorithm. Liu and Jernigan [17] gave
extensive summary of features that can be extracted by the PSM. In this paper, we com
20 features defined in [17].

Criticisms of the PSM have focused on the use of the Fourier transform rather than
the way that texture features are computed from the power spectrum [31]. We believe
the fundamental problem with the PSM features is that the feature extraction functi
are, for the most pargd hoc The features are based on intuitive reasoning through hum:
observation of the power spectrum shape. Instead of trying to developathbizfeatures,
we use the MDEE transform and Bhattacharyya distance as feature extraction algorit
to compute texture features from the Fourier transform spectrum matrix. All information
the spectrum is preserved and extracted in an optimal way.

Another problem addressed in this paper is the so-called phase dilemma. In most prev
research pertaining to PSM, researchers have tried to use the rich information conta
in the Fourier transform phase [8, 9, 15, 30]. This is mainly attributed to successes
the study of image reconstruction from partial Fourier transform information, where t
Fourier phase has been shown to contain more information than the Fourier magnitude [6
21, 22]. So far, however, all results in texture analysis research seem to show that the tex
content of the phase information is low.



36 TANG AND STEWART

In fact, the answer to this contradiction is embedded in the basic property of the Fou
transform. The Fourier transform phase carries vital information representing the rela
position of the harmonic basis functions essential for the image reconstruction. In m
image reconstruction work, the images studied are all natural images with such la
smooth areas as sky or black background. The general shapes of their Fourier trans
magnitudes are quite similar, with most energy concentrated in the low-frequency ai
When only the phase information is used for reconstruction, usually an average of
Fourier magnitudes of many other irrelevant images is used as the initial magnitude. Tt
except for the small differences in the magnitude of some frequency components, n
overall structural information, i.e., the positions of all basis functions, are still there wi
small changes in magnitude. So the images can be mostly reconstructed with only ¢
scale changes in certain places.

For texture classification, the situation is completely different. Phase information is
special property of each individual texture sample, as important as that of the natural ime
used in reconstruction studies. However, since individual texture samples are delineate
an arbitrary grid definition within any class of image, statistically, the phase signals f
all texture samples are essentially random regardless of texture classes and thus off
discrimination power for texture classification. In fact, the phase signal is exactly the ki
of noise signal we try to remove.

Although the absolute phase values are noise signals, the phase differences bet
different frequencies reflect the relative positions of the harmonic functions and thus n
offer useful texture information. However, another important but overlooked property of t
phase signal prevents the extraction of this information. No matter how small the energ
a frequency component is, its phase value can be anything in a periad &v2n though
this phase value may be controlled largely by random noise, it still has a value compar:
with the phase value of the frequency component having the largest energy. This equal v
property essentially renders the phase information useless for natural texture classifica
because it makes the extraction of relative phase information impossible. Only for ve
structured synthetic textures may phase information from Gabor filters be extracted [8]

To confirm this analysis experimentally, we extract texture features by applying t
MDEE transform directly on the original texture images. This is equivalent to using bo
the Fourier magnitude and phase information while, at the same time, avoiding the prob
of the equal phase value property.

3. CLASSIFICATION EXPERIMENTS

3.1. Classification Algorithm

The classification algorithm used in this study is the Gaussian classifier. There
two reasons for this choice. First, it agrees with the above error bound defined by
Bhattacharyya distance. Second, with our focus on feature extraction we choose the
plest classification algorithm available. Let the class mean and covariance matrix of
feature vectok for each class beu; andW, respectively. The distance measure is define
as [29]

Di = (X — i) "W H(x — i) + In|Wi ], (24)
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where the first term on the right of the equation is actually the Mahalanobis distance. -
decision rule is

xeC_. whenD_ = min{D;}. (25)

3.2. Data Description

In addition to the sonar images, we use another set of standard optical texture data, w
includes 16 types of natural optical images obtained from the MIT Media Lab Vistex textt
data base. They are shown in Fig. 5. The original 5B12 color images are converted
to the same size gray-scale images. Adaptive histogram equalization is applied so the
images have similar flattened histograms. We conduct most of the testing on the Vi
textures because of their large number of classes. Since our main concern for sonar ime
the noise, we test the sensitivity of the algorithms to noise by adding several levels of wi
Gaussian noise to the optical data. To save computational time, the first round of exten
tests is conducted on the first eight image classes, with three levels of noise added t«
images. The signal-to-noise ratios (SNR) are 15 dB, 5 dB, and 1 dB, respectively.

Then relatively more efficient methods selected from the initial comparison are appl
and further compared on all 16 classes of Vistex images and on the sidescan sonar im

FIG. 5. Sixteen Vistex textures. The eight images in the top two rows are used in the main experiment.
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(a) (b) ()

FIG. 6. Three types of sidescan sonar image samples of an Arctic under-ice canopy: (a) first-year
(b) multiyear underformed ice, and (c) multiyear deformed ice.

The three classes of sidescan sonar images of an Arctic under-ice canopy are shownin F
These are first-year young ice, multiyear undeformed ice, and multiyear deformed ice.
three classes of seafloor sonarimages are shown in Fig. 7. For all data sets except the se
sonar data, each image class is divided into 225 half-overlapping samples of dimen:
64 x 64, of which 60 samples are used for training. Therefore, the total data sample nun
is 1800 for the first eight Vistex images, 3600 for all the sixteen Vistex images, and 6
for the sidescan sonar data set, with 480, 960, and 180 samples for training, respecti
For the seafloor data, since the textures are fairly distinctive, to increase the difficulty,
divide each image class into 256 nonoverlapping samples of dimensier83320f which

64 samples are used for training.

3.3. Comparison of Wavelet Features with Fourier Transform Features

Table 1 shows the complete test results from the eight class of Vistex images. It is diffic
to draw conclusions directly from the large table, so we use a couple of figures to illustre
Figure 8 shows a comparison of the four types of features and their combinations on
first three decomposition levels. The M Teature is the worst for all levels and for all
data sets and is apparently not a useful measure. Entropy also gives less satisfactory re

(a) (b) (©)

FIG. 7. Three types of seafloor sonar image samples: (a) flat sediment pond; (b) constant-slope ridge fl
and (c) axial-valley segment.
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FIG. 8. Comparison of the four types of features in the first three individual decomposition levels. The ind
of the horizontal axis represents signal-to-noise ratio (SNR) level: (1) original image, (2) SNR 15 dB, (3) SI
5dB, (4) SNR 1 dB.

than the variance feature, and the classification accuracy drops sharply for noisy data.
MNT, feature seems to give better results than the above two features but is still |
successful than the variance feature. The performance differences between thaMNT

the variance are consistent over all data sets and all decomposition levels, because
are very closely correlated features. The observation that variance features perform b
than other features is consistent with Laws’ [16] experiment with features extracted fra
empirical frequency channels. By combining all features together, we get improved res
for the lower decomposition level. Since the feature length is much smaller on these lev
an added dimension helps more than in the higher level decomposition case.

Now consider in detail the variance measure results shown in Fig. 9. For the individ
levels of Fig. 9a, the general trend is that the higher the decomposition level the better the
sult. Thisis predictable from Eq. (14), which shows that the lower level variance features
simply the average of their higher level children nodes. A KLT transform will do better the
such a simple average operation in terms of extracting maximum information. To confi
this point, compare Figs. 9a and 9b, which show that the following pairs of results are alm
identical: level 1&2 vs level 2, level 1&2&3 vs level 3, level 1&2&3&4 vs level 4. This
means that lower level features are only a subset of higher level decomposition features
that better discriminatory ability is not added by redundancy. Instead, more discriminat
information is extracted by applying KLT to higher levels of finer channel decompositio
so the channel nodes are combined in an optimal way instead of by simple averaging.

Continuing this thread of analysis, we should expect that the Fourier transform provit
even more information with more channels. Figure 9c compares the performances of tl
levels of wavelet packet decomposition, the standard wavelet transform, and the Fot
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FIG. 9. Comparison of variance features for individual decomposition levels, overcomplete levels, stand
wavelet, and Fourier transform. The index of the horizontal axis represents the same SNR as in Fig. 8.

transform. The Fourier transform indeed gives consistently better performance than
other feature groups on all levels of noisy data sets. This result should not be surpris
since the wavelet transform is optimal for nonstationary transient signal analysis, whel
the Fourier transform is optimal for stationary signal analysis. Most texture images
stationary periodic signals. Using the MDEE on the Fourier spectrum is in effect a fil
design method according to signal statistical distribution, which should be better than
filter channels prefixed by the wavelet transform.

Next, notice in Fig. 9c that the Fourier transform and other higher levels of wavelet pac
decomposition are very insensitive to noise. Noise insensitivity is a particular strengtt
multichannel image analysis. Noise usually has a flat spectrum and, when it is divided |
more channels, the noise energy usually stay the same. Yet the energy of signals ten
concentrate in a few channels. Therefore, even when the total energy of the signal and r
are almost the same, as in the case of the testing data of SNR 1 dB, the signal-to-noise
is much higher in channels containing the most signal energy. The MDEE tends to conde
the coherent signal channels with high SNR into a compact representation of the data,
the incoherent noisy channels neglected. This noise insensitivity property is the reason
we study the multichannel algorithm for sonar image classification, because sonar sig
tend to be noisier than optical images.

3.4. Comparison of Different Wavelet Filter Types and Lengths

The waveletfilter type used in the above experiments is the Daubechies minimum-sup
least asymmetric wavelet of filter length 4 [7]. In this section we compare this particular ty
and length of wavelet filter with others. The Daubechies minimum-support least asymme
wavelet and the Coiflets [7] of various lengths are used for the comparison. Table 2 lists
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TABLE 2
Comparison of Different Wavelet Filter Types and Lengths for Eight Vistex
Images with SNR 5 dB

Daubechies minimum-support

least asymmetric Coiflets
4 8 16 6 12 18
1 Level 2 VAR 94.0 94.7 95.4 95.7 94.7 95.8
2 Level 3 VAR 95.7 96.7 96.3 96.3 95.7 95.4
3 Level 4 VAR 96.1 95.4 95.3 94.9 94.7 95.9
4 All levels VAR 96.5 95.4 95.6 95.6 95.4 96.3

classification results on the eight Vistex images with noise level of SNR 5 dB. We see' t
almost all differences in classification accuracy among the different filter types and leng
are within 1%. No particular trend can be observed as the filter length increases, and
overall performance of the two types of filters are almost the same. These results see
indicate that the conclusions drawn in the previous section are very likely to be similar
other types of wavelets.

3.5. Comparison of the KLT and MDEE

Except for some small feature vectors in the above experiments, we use the MD
transform in place of the KLT. We did not list the specific grouping parameters in the tal
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FIG. 10. Comparison of the KLT and MDEE transforms: (a) plot of the top 30 largest eigenvalues, (b) pl
of the correct classification rate against number of features used. In both plots, the square symbol is for the
and the other three are for MDEE:for n=20; + forn=10; O for n=5.
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TABLE 3
Comparison of the DSM, PSM, and Texture Features Extracted Directly from Spatial Domain
Images, for Eight Vistex Images with SNR 5 dB

Training data Testing data All data Feature number
1 Original image 97.1 73.0 79.4 23
2 PSM 91.0 85.7 87.1 7
3 DSM 99.0 96.4 97.1 10

of results, because the numerical differences between the standard KLT and the MIL
transform are negligibly small, as shown in the following experiment.

For this experiment, the data set comprises the original eight images from the previ
experiment. The feature vector is formed by 420 frequency components in the center h
frequency region of the Fourier transform magnitude matrix. We use a small feature ve
for this experiment so the brute force KLT can be computed within a reasonable time w
reasonable memory requirement. For the MDEE transform, the feature vector is broken
seven feature vectors of length 60 each. Then, therfiesP0, 10, and 5 dominant features
in each group are selected to form the new feature vector of lengtHidom which the final
dominant eigenvalues and eigenvectors are computed. Figure 10a shows the results «
top 30 eigenvalues of the standard KLT and the MDEE transforms with the three value:
n. We see that when 20 features are kept after the first step eigenvalue computation, the
MDEE eigenvalues are almost the same as the standard KLT. When only 10 or 5 feat
are kept, the first 15 eigenvalues are still similar to KLT; the remaining eigenvalues s
to lose a very small amount of energy. However this does not affect the final classificat
results at all. Figure 10b shows the classification accuracies using the KLT and the MC
plotted against the number of features used. All four groups of results overlap with e:
other almost completely, with the maximum classification accuracy difference being |
than 0.5%.

3.6. Comparison of the DSM Features with the PSM Features

A comparison of the DSM features with the PSM [17] features is conducted on the ei
Vistex images with noise level of SNR 5 dB. Results are given in Table 3, where the DS
features show nearly 10% better performance than the PSM features. The perform:

TABLE 4
Classification Results of the 16 Vistex Images

Original 16 Vistex images 16 Vistex images of SNR 5 dB
Feature Feature
Training  Testing All data num. Training  Testing All data num.
1 Level 3VAR 97.6 97.3 97.4 8 97.2 94.0 94.8 11
2 Level 4VAR 97.8 97.2 97.3 10 99.1 92.8 94.5 19
3 Alllevels VAR 98.3 97.3 97.6 10 98.9 93.1 94.6 19
4 PSM 83.5 81.4 81.9 5 72.9 71.6 71.9 4
5 DSM 99.1 96.8 97.4 13 99.2 95.8 96.7 16
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TABLE 5
Classification Results of the Sidescan Sonar Images

Seafloor sidescan sonar images Arctic sidescan sonar images

Feature Feature
Training Testing All data num. Training Testing All data num.

1 Level 3VAR 99.4 99.4 99.4 6 93.3 83.2 85.9 12
2 Level4 VAR 100 98.8 990.1 13 96.1 81.4 85.3 20
3 Alllevels VAR 100 98.9 99.2 14 98.3 85.3 88.7 23
4 PSM 98.4 93.4 94.6 16 93.9 89.1 90.4 8
5 DSM 100 99.8 99.9 22 98.9 92.5 94.2 9

discrepancy is further widened when tested on a larger data set, as described in the
section. This demonstrates that the optimal feature selection approach using MDEE
Bhattacharyya distance is better thamdmodeature extraction method. The firstrow in the
table gives the results of using the original image directly as the feature vector. The poor|
formance confirms that the phase information is only a noise signal for texture classificati

3.7. Experiments on the Sonar Imagery

Finally, we apply the algorithms on the classification of a larger data set of 16 Vist
images and the sidescan sonarimages. Only the feature groups that perform bestin the ¢
experiment are used. Table 4 shows the classification results on the Vistex images, w
are consistent with the above results. An interesting observation is that the DSM metho
very insensitive to noise. With SNR 5 dB noise added to the 16 images, the classifical
accuracy drops less than 1%. This is exactly the kind of property that is important for
noisy sonar image classification.

For the sidescan sonar images, although the image class number is smaller, each
of images is noisy and nonuniform. From results in Table 5, it is interesting to see tl
the wavelet features perform better than the PSM features on the seafloor data, while
give worse results on the Arctic ice canopy data. This shows that both methods rely on
combination of frequency channel features through ad hoc linear or nonlinear operati
and thus produce unstable results for different data. We can see from both datasets
the DSM texture features are very effective in classification of sidescan sonar images.
again demonstrates that given proper feature extraction approach, more effective te»
features can be extracted from the Fourier transformation than from the more comy
wavelet transformation.

4. CONCLUSIONS

Based on the above experiments, the following conclusions are drawn:

(1) Variance (energy) measures are much better than entropy and higher order mom
For variance features, overcomplete representation does not add more information
individual level features. Higher levels of decomposition perform better than lower leve
This leads to the conclusion that the Fourier transform magnitude features are better
the more complicated wavelet packet features.
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(2) The MDEE is a close approximation of the KLT. The MDEE plus the Bhattacharyy
distance measure is shown to be very effective in extracting texture features from k
wavelet packet transforms and the Fourier transform.

(3) The Fourier phase information is a noise signal for texture classification. Howev
the superior performance of DSM over the conventional PSM shows that the Fourier tre
form magnitudes contain enough texture information for classification, if the right featt
extraction algorithm is used.

(4) Multichannel features are insensitive to noise. Features from higher levels are
sensitive than the lower level features. Dominant Fourier transform features are the
in terms of noise insensitivity and are clearly very effective features for both optical a
sidescan sonar image classification.
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