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Texture Information in Run-Length Matrices

Xiaoou Tang

Abstract—We use a multilevel dominant eigenvector estimation algo-
rithm to develop a new run-length texture feature extraction algorithm
that preserves much of the texture information in run-length matrices
and significantly improves image classification accuracy over traditional
run-length techniques. The advantage of this approach is demonstrated
experimentally by the classification of two texture data sets. Comparisons
with other methods demonstrate that the run-length matrices contain
great discriminatory information and that a good method of extracting
such information is of paramount importance to successful classification.

Index Terms—Pattern classification, run-length matrix, texture analy-
sis.

I. INTRODUCTION

Texture is the term used to characterize the surface of a given
object or region and it is one of the main features utilized in image
processing and pattern recognition. Many texture analysis methods
have been developed over the past few decades [2], [7]–[11], [14].
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One such method characterizes texture images based on run-lengths
of image gray levels. First introduced by Galloway [7], therun-length
methodhas not been widely accepted as an effective texture analysis
approach. Several comparison studies conducted by Weszkaet al. [15]
and Conners and Harlow [4] have shown that the run-length features
are the least efficient texture features among a group of traditional
texture features, such as the co-occurrence features, the gray level
difference features, and the power spectrum features. Applications
of the run-length method have been very limited compared to
other methods.

In this correspondence, we investigate the run-length method with a
new approach. By using a multilevel dominant eigenvector estimation
algorithm and the Bhattacharyya distance measure for feature extrac-
tion, we demonstrate that texture features extracted from the run-
length matrix can produce great classification results. Experimental
comparison with the widely used co-occurrence method and the
recently proposed wavelet method show that the run-length matrices
contain sufficient discriminatory information and that a good method
of extracting such information is crucial to a successful classification.

This work is organized into four sections. Section II introduces the
original definition of the run-length matrix and several of its varia-
tions, then reviews the traditional run-length features and describes
the new run-length feature extraction algorithm. Section III presents
the texture classification experimental results. The conclusions are
summarized in Section IV.

II. M ETHODOLOGY

A. Definition of the Run-Length Matrices

With the observation that, in a coarse texture, relatively long gray-
level runs would occur more often and that a fine texture should
contain primarily short runs, Galloway proposed the use of a run-
length matrix for texture feature extraction [7]. For a given image, a
run-length matrixp(i; j) is defined as the number of runs with pixels
of gray leveli and run lengthj. Various texture features can then be
derived from this run-length matrix.

Here, we design several new run-length matrices, which are slight
but unique variations of the traditional run-length matrix. For a run-
length matrixp(i; j), let M be the number of gray levels andN
be the maximum run length. The four new matrices are defined as
follows.

1) Gray Level Run-Length Pixel Number Matrix:

pp(i; j) = p(i; j) � j: (1)

Each element of the matrix represents the number of pixels of run-
lengthj and gray-leveli. Compared to the original matrix, the new
matrix gives equal emphasis to all length of runs in an image.

2) Gray-Level Run-Number Vector:

pg(i) =

N

j=1

p(i; j): (2)

This vector represents the sum distribution of the number of runs
with gray level i.

3) Run-Length Run-Number Vector:

pr(j) =

M

i=1

p(i; j): (3)

This vector represents the sum distribution of the number of runs
with run lengthj.
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Fig. 1. Four directional run-length matrices of several Brodatz texture samples. Each image sample is of size 32� 32 with 32 gray levels. The four
directional (0�, 45�, 90�, and 135� directions) run-length matrices are combined into a single matrix. The left-most column of each directional matrix is
the run-length-one vector, which has much larger values than the other columns.

4) Gray-Level Run-Length-One Vector:

po(i) = p(i; 1): (4)

Fig. 1 shows the four-directional run-length matrices of several
natural texture samples. Notice that the first column of each of the
four directional run-length matrices is overwhelmingly larger than
the other columns. This may mean that most texture information
is contained in the run-length-one vector. The advantages of using
this vector are that it offers significant feature length reduction and
that a fast parallel run-length matrix computation can replace the
conventional serial searching algorithm. For example, the positions of
pixels with run-length one in the horizontal direction can be found by
a logical “and” operation on the outputs of the forward and backward
derivative of the original image:

f(i; j) =x(i; j)� x(i; j � 1) (5)

b(i; j) =x(i; j � 1)� x(i; j) (6)

o(i; j) = f(i; j) \ b(i; j) (7)

wherex(i; j) is the texture image whose pixels outside the image
boundary are set to zero, and\ represents the logical “and” op-
eration. Thenpo(i) can be obtained by computing the histogram of
x(i; j)

o(i; j)=1. To find the starting pixel position for runs with length
two, a similar scheme can be employed as follows:

f2(i; j) = (f(i; j) 6= 0)� o(i; j) (8)

b2(i; j) = (b(i; j) 6= 0)� o(i; j) (9)

o2(i; j) = f2(i; j) \ b2(i; j + 1): (10)

In fact, the gray level run number vectorpg(i) can also be
obtained with the above approach by computing the histogram of
x(i; j)f(i; j) 6=0.

Fig. 2. Run-emphasis regions of several traditional run-length texture fea-
tures.

The matrix and vectors defined above are not designed for the
extraction of traditional features. Along with the original run-length
matrix, they are used in the new feature extraction approach in
Section II-C. The next section gives a review of the traditional feature
extraction.

B. Traditional Run-Length Features

From the original run-length matrixp(i; j), many numerical tex-
ture measures can be computed. The five original features of run-
length statistics derived by Galloway [7] are as follows.

1) Short Run Emphasis (SRE):

SRE=
1

nr

M

i=1

N

j=1

p(i; j)

j2
=

1

nr

N

j=1

pr(j)

j2
: (11)

2) Long Run Emphasis (LRE):

LRE =
1

nr

M

i=1

N

j=1

p(i; j) � j2 =
1

nr

N

j=1

pr(j) � j
2
: (12)
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Fig. 3. Eight Brodatz textures. Row 1: burlap, seafan, rice paper, pebbles23. Row 2: tree, mica, straw, raffia.

3) Gray-Level Nonuniformity (GLN):

GLN =
1

nr

M

i=1

N

j=1

p(i; j)

2

=
1

nr

M

i=1

pg(i)
2
: (13)

4) Run Length Nonuniformity (RLN):

RLN =
1

nr

N

j=1

M

i=1

p(i; j)

2

=
1

nr

N

j=1

pr(i)
2
: (14)

5) Run Percentage (RP):

RP=
nr

np
: (15)

In the above,nr is the total number of runs andnp is the
number of pixels in the image. Based on the observation that most
features are only functions ofpr(j), without considering the gray
level information contained inpg(i), Chuet al. [3] proposed two new
features, as follows, to extract gray level information in the matrix.

1) Low Gray-Level Run Emphasis (LGRE):

LGRE=
1

nr

M

i=1

N

j=1

p(i; j)

i2
=

1

nr

M

i=1

pg(i)

i2
: (16)

2) High Gray-Level Run Emphasis (HGRE):

HGRE=
1

nr

M

i=1

N

j=1

p(i; j) � i
2 =

1

nr

M

i=1

pg(i) � i
2
: (17)

In a more recent study, Dasarathy and Holder [5] described another
four feature extraction functions following the idea of joint statistical
measure of gray level and run length, as follows.

1) Short Run Low Gray-Level Emphasis (SRLGE):

SRLGE=
1

nr

M

i=1

N

j=1

p(i; j)

i2 � j2
: (18)

2) Short Run High Gray-Level Emphasis (SRHGE):

SRHGE=
1

nr

M

i=1

N

j=1

p(i; j) � i
2

j2
: (19)

3) Long Run Low Gray-Level Emphasis (LRLGE):

LRLGE =
1

nr

M

i=1

N

j=1

p(i; j) � j
2

i2
: (20)

4) Long Run High Gray-Level Emphasis (LRHGE):

LRLGE =
1

nr

M

i=1

N

j=1

p(i; j) � i
2

� j
2
: (21)

Dasarathy and Holder [5] tested all eleven features on the classifi-
cation of a set of cell images and showed that the last four features
gave better performance.

These features are all based on intuitive reasoning, in an attempt
to capture some apparent properties of run-length distribution. For
example, the eight features illustrated in Fig. 2 are weighted-sum
measures of the run-length concentration in the eight directions, i.e.,
the positive and negative 0�, 45�, 90�, and 135� directions. Two
drawbacks of this approach are: there is no theoretical proof that,
given a certain number of features, maximum texture information can
be extracted from the run-length matrix, and many of these features
are highly correlated with each other.

C. Dominant Run-Length Method (DRM)

Instead of developing new functions to extract texture information,
we use the run-length matrix as the texture feature vector directly to
preserve all information in the matrix. However, this again introduces
two problems: the large dimensionality of the feature vector and the
high-degree correlation of the neighborhood features.

To alleviate the first problem, observe the run-length matrix in
Fig. 1 more closely. We see that most nonzero values concentrate
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Fig. 4. Sixteen Vistex textures.

TABLE I
BRODATZ TEXTURE CLASSIFICATION RESULTS USING THE NEW FEATURE SELECTION METHOD ON THE TRADITIONAL RUN-LENGTH FEATURES

in the first few columns of the matrix. Moreover, because of the
correlation between the short-run section and the long-run section,
using only the first few columns as the feature vector will also
preserve most of the information in the long-run section. Another
advantage of using only the first few columns is that the fast parallel

run-length matrix computation algorithm described in Section II-A
can be used.

To further reduce the feature vector dimension and to decorrelate
neighboring element values in the matrices, we use the principal
component analysis method, also called Karhunen–Loeve transform
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Fig. 5. Scatter plots of several highly correlated traditional run-length texture features of the eight Brodatz textures. Due to overlap, not all eight class
symbols can be discerned.

Fig. 6. Scatter plots of the top eight features extracted by applying an MDEE transform on the original run-length matrices of the Brodatz textures.
Linearly separable clustering is observed for most of the eight texture classes.
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TABLE II
BRODATZ TEXTURE CLASSIFICATION RESULTS USING

THE NEW DOMINANT RUN-LENGTH MATRIX FEATURES

TABLE III
VISTEX TEXTURE CLASSIFICATION RESULTS USING THE

NEW DOMINANT RUN-LENGTH MATRIX FEATURES

(KLT), and then use the Bhattacharyya distance measure to rank the
eigenfeatures according to their discriminatory power.

1) Multilevel Dominant Eigenvector Estimation (MDEE) Method:
To compute the KLT, letxi be a feature vector sample. We form an
n by m matrix

A =

x1(1)x2(1) � � � xm(1)
x1(2)x2(2) � � � xm(2)

...
...
...
...

x1(n)x2(n) � � � xm(n)

(22)

where n is the feature vector length andm is the number of
training samples. The eigenvalues of the sample covariance matrix are
computed in two ways, depending on the size of the feature vector.
If the feature vector lengthn is a small number, eigenvalues are
computed by a standard procedure. The sample covariance matrix is
estimated by

W =
1

m

m

i=1

(xi � �)(xi � �)T =
1

m
AAT (23)

where� is the mean vector. The eigenvalues and eigenvectors are
computed directly fromW . However, for the feature vector formed
by the four directional run-length matrices,n is a large number.
For a neighborhood of 32� 32 with 32 gray levels,n can reach
a maximum of 4096, producing a covariance matrix of size 4096
� 4096. Direct computation of the eigenvalues and eigenvectors
becomes impractical.

To avoid this problem, we use a new multilevel dominant eigenvec-
tor estimation method developed in [12]. By breaking the long feature
vector intog = n=k groups of small feature vectors of lengthk,

A =

B1

B2

...
Bg

(24)

where

Bg =

x1((g � 1)k+ 1) � � � xm((g � 1)k+ 1)
...
...
...

x1(gk) � � � xm(gk)

we can perform the KLT on each of theg group short feature vector
setBi. Then a new feature vector is formed by the first few selected
dominant eigenfeatures of each group. The final eigenvectors are
computed by applying the KLT to this new feature vector. For proof
that the eigenvalues computed by MDEE are a close approximation
of the standard KLT, refer to [12].

Significant reduction of computational time can be achieved by the
MDEE over the standard KLT. For example, if a feature vector of
lengthn = 1000 is broken into ten vector groups of length 100, and
10% of the eigenfeatures in each group are saved for the second-
level eigenvalue computation, the computational complexity for the
MDEE is 11(n=10)3, which is nearly two orders of magnitude faster
than the KLT’s 10003.

2) Bhattacharyya Distance Measure:However, it is well known
that the KLT features are optimal for data representation but not
necessarily the best for discrimination. To measure the class separa-
bility of each feature, some other criterion must be employed. We
choose the Bhattacharyya distance measure. An analytical form of
this measure is [6]

� =
1

8
(�1 � �2)

T �1 + �2
2

�1

(�1 � �2)

+
1

2
ln

1

2
(�1 + �2)

j�1j1=2j�2j1=2
(25)

where�i and�i are the class variance and mean. From (25) we see
that the Bhattacharyya distance� is proportional to both the distance
of class means and the difference of class variances. The feature
selection criterion is to only retain those decorrelated features with
large � value.

Throughout the experiments, we select the first 30 features with
largest eigenvalues, rank these KLT-decorrelated features by their�
values, and use the firstn features with the largest� for classification.
We run the feature lengthn from one to 30 to select the one that gives
the best performance as the final feature vector length.

D. Classification Algorithm

Since the main focus of this work is the feature extraction algo-
rithm, we use a simple Gaussian classifier for the experiments. Let
the class mean and covariance matrix of the feature vectorx be �i
andWi, respectively, a distance measure is defined as [13]

Di = (x� �i)
TW�1

i (x� �i) + ln jWij (26)

where the first term on the right of the equation is actually the
Mahalanobis distance. The decision rule is

x 2 CL when DL = minfDig: (27)
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TABLE IV
VISTEX TEXTURE CLASSIFICATION RESULTS USING THE

CO-OCCURRENCE, WAVELET, AND NEW RUN-LENGTH FEATURES

III. EXPERIMENTS AND DISCUSSION

In this section, two separate data sets are used for the texture
classification experiment. We first make detail comparisons between
various DRM features and the traditional run-length features on the
classification of eight Brodatz images. We then compare the best
DRM features with the co-occurrence and wavelet features on the
classification of a larger data set—16 Vistex images.

A. Data Description

The eight Brodatz images [1] are shown in Fig. 3. Each image is of
size 256� 256 with 256 gray levels. The images are first quantized
into 32 gray levels using equal-probability quantization. Each class
is divided into 225 sample images of dimension 32� 32 with 50%
overlapping. Sixty samples of each class are used as training data,
so the training data size is 480 samples and the testing data size
is 1320.

To further compare the performance consistency of the DRM
features, we conducted a second experiment on a larger data set—16
images from Vistex texture image data base of the MIT Media
Laboratory. Unlike Brodatz images, which are mostly obtained in
well controlled studio conditions, the Vistex images are taken under
natural lighting conditions. The Vistex images shown in Fig. 4 are:
Bark.08, Brick.04, Buildings.09, Fabric.01, Fabric.05, Fabric.13, Fab-
ric.17, Flowers.07, Food.01, Food.05, Grass.02, Leaves.02, Metal.01,
Tile.07, Water.06, Wood.02. The same 32 gray level quantization is
applied to each image. Each class is again divided into 225 samples
of dimension 32� 32 with 50% overlapping. Sixty samples of each
class are used as training data. So the training data has 960 samples
and the testing data has 2640 samples.

B. Comparison of the Traditional Run-Length
Features and the New DRM Features

We first use the feature selection algorithms on the traditional run-
length features for the classification of the Brodatz images. Similar to
[5], the feature groups tested are the original five features of Galloway
[7], the two features of Chuet al. [3], and the four new features of
Dasarathy and Holder [5]. All four-direction features are used. Results
are shown in Table I. The feature vector containing all three group
features gives the best result of 88% accuracy. Fig. 5 shows the scatter
plots of several run-length features. The strong correlations among
different features shown in the figure indicate that these features
contain similar information.

Fig. 6 shows the scatter plots of the top eight features obtained
by applying the MDEE transform on the run-length matrix. Almost
perfectly separable clustering can be seen for most of the eight
image classes, in sharp contrast to the overlapping clusters of the
traditional run-length features in Fig. 5. This is reflected by the good
classification results using the DRM features in Table II. With only

TABLE V
VISTEX TEXTURE CLASSIFICATION RESULTS USING THE CO-OCCURRENCE,

WAVELET, AND RUN-LENGTH FEATURES, WITH IMAGE SAMPLE SIZE 64� 64

a small number of features, perfect classification is achieved with
the original matrix and with most of the new matrices and vectors.
The only exceptions are the run-length run-number vector and the
long-run region of the run-length matrix. The poor performance of
the long-run matrix and the good performance of the short-run matrix
indicate that most texture information is indeed concentrated in the
short-run region.

C. Comparison with Other Methods

We now compare the new run-length method with the co-
occurrence method and the wavelet method on the Vistex data
set. For the co-occurrence method, 13 co-occurrence features are
computed for each of the four directions as described in [8]; for
the wavelet method, the texture feature used for each wavelet
decomposition channel is the energy feature. The same feature
selection method in Section II-C is applied to the co-occurrence and
wavelet feature vectors.

The classification results on the sixteen Vistex images using
various DRM features are first shown in Table III. About 97%
classification accuracy is achieved by most feature vectors. An
especially interesting result is that the run-length-one vector gives
excellent performance, similar to that of the original full matrix.

Classification results using co-occurrence and wavelet features on
the sixteen Vistex images are shown in Table IV. From the results,
we can see that the run-length features perform comparably well
with the co-occurrence features and better than the wavelet features.
This demonstrates that there is rich texture information contained in
the run-length matrices and that a good method of extracting such
information is important to successful classification.

The poor results of the wavelet features are inconsistent with
several previous studies [2], [10], where wavelet features generate
near perfect classifications. This is mainly because that we use a
much smaller texture sample size, 32� 32, than the ones used in
most previous studies, 64� 64 or 128� 128 [2], [10]. Such a
small image size may not be enough to estimate a stable frequency
energy distribution. To confirm this sample size effect, we divide
each Vistex image class into 169 sample images of dimension
64 � 64 with 75% overlapping between neighborhood samples.
Only 39 samples in each class are used as training data, so the
training data size is 624 samples and the testing data size is 2080
samples. Table V shows the classification results. Near perfect clas-
sifications are achieved by all three methods, similar to results in
[2] and [10].

IV. CONCLUSION

We extract a new set of run-length texture features that significantly
improve image classification accuracy over traditional run-length
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features. By directly using part or all of the run-length matrix
as a feature vector, much of the texture information is preserved.
This approach is made possible by the utilization of the multi-
level dominant eigenvector estimation method, which reduces the
computation complexity of KLT by several orders of magnitude.
Combined with the Bhattacharyya measure, they form an efficient
feature selection algorithm.

The advantage of this approach is demonstrated experimentally
by the classification of two independent texture data sets. Experi-
mentally, we also observe that most texture information is stored in
the first few columns of the run-length matrix, especially in the first
column. This observation justifies development of a new, fast, parallel
run-length matrix computation scheme.

Comparisons of this new approach with the co-occurrence
and wavelet features demonstrate that the run-length matrices
possess as much discriminatory information as these successful
conventional texture features and that a good method of extracting
such information is key to the success of the classification. We
are currently investigating the application of the new feature
extraction approach on other texture matrices. We hope our work
here will renew interest in run-length texture features and promote
future applications.
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Real-Time Computation of Two-Dimensional Moments on
Binary Images Using Image Block Representation

Iraklis M. Spiliotis and Basil G. Mertzios

Abstract—This work presents a new approach and an algorithm for
binary image representation, which is applied for the fast and efficient
computation of moments on binary images. This binary image represen-
tation scheme is calledimage block representation, since it represents the
image as a set of nonoverlapping rectangular areas. The main purpose of
the image block representation process is to provide an efficient binary
image representation rather than the compression of the image. The block
represented binary image is well suited for fast implementation of various
processing and analysis algorithms in a digital computing machine. The
two-dimensional (2-D) statistical moments of the image may be used for
image processing and analysis applications. A number of powerful shape
analysis methods based on statistical moments have been presented, but
they suffer from the drawback of high computational cost. The real-
time computation of moments in block represented images is achieved
by exploiting the rectangular structure of the blocks.

Index Terms—Binary image, image analysis, image block representa-
tion, moments.

I. INTRODUCTION

The most common image representation format is a two-
dimensional (2-D) array, each element of which has the brightness
value of the corresponding pixel. For a binary image these values are
zero or one. In a serial machine, only one pixel is to be processed at
a time, by using the 2-D array representation. Many research efforts
have considered the problem of selecting an image representation
suitable for concurrent processing in a serial machine. The need
for such approaches arises from the fact that an image contains a
great amount of information, thus rendering the processing a difficult
and slow task. Existing approaches to image representation aim to
provide machine perception of images in pieces larger than a pixel
and are separated in two categories: 1) boundary-based methods
and 2) region-based methods. Such approaches include quadtree
representations [1], chain code representations [2], contour control
point models [3], autoregressive models [4], the interval coding
representation [5], and block implementation techniques [6]–[8]. One
common objective of the above methods is the representation of an
image in a more suitable form for a specific operation.

This correspondence presents a new advantageous representation
for binary images calledimage block representation(IBR) and con-
stitutes an efficient tool for image processing and analysis techniques
[9], [10]. Using the block represented binary images, real-time
computation of 2-D statistical moments is achieved through analytical
formulae. The computational complexity of the proposed technique
is O(L2), where(L � 1; L � 1) is the order of the 2-D moments
to be computed.

Various sets of 2-D statistical moments constitute a well-known
image analysis and pattern recognition tool [11]–[20]. In pattern
recognition applications, a small set of the lower order moments is
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