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A. Definition of the Run-Length Matrices

With the observation that, in a coarse texture, relatively long gray-
level runs would occur more often and that a fine texture should

Texture Information in Run-Length Matrices contain primarily short runs, Galloway proposed the use of a run-
length matrix for texture feature extraction [7]. For a given image, a
Xiaoou Tang run-length matrixp(<, j) is defined as the number of runs with pixels

of gray leveli and run lengthy. Various texture features can then be

) ) ) o derived from this run-length matrix.
‘ Abstract—We use a multilevel dominant eigenvector e‘stlmatlon‘algo- Here, we design several new run-length matrices, which are slight
rithm to develop a new run-length texture feature extraction algorithm

that preserves much of the texture information in run-length matrices PUt unique Yariqtiqns of the traditional run-length matrix. For a run-
and significantly improves image classification accuracy over traditional length matrixp(7, j), let M be the number of gray levels and

run-length techniques. The advantage of this approach is demonstrated be the maximum run length. The four new matrices are defined as
experimentally by the classification of two texture data sets. Comparisons ¢q||ows

with other methods demonstrate that the run-length matrices contain ' . .

great discriminatory information and that a good method of extracting 1) Gray Level Run-Length Pixel Number Matrix:

such information is of paramount importance to successful classification. ppliy J) = p(iv j) - 4. (1)
Index Terms—Pattern classification, run-length matrix, texture analy-

sis Each element of the matrix represents the number of pixels of run-

lengthj and gray-level. Compared to the original matrix, the new
matrix gives equal emphasis to all length of runs in an image.
I. INTRODUCTION 2) Gray-Level Run-Number Vector:

Textureis the term used to characterize the surface of a given ) N
object or region and it is one of the main features utilized in image pyli) = ZP(“ J)- @
processing and pattern recognition. Many texture analysis methods 7=l
have been developed over the past few decades [2], [7]-[11], [14his vector represents the sum distribution of the number of runs
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Fig. 1. Four directional run-length matrices of several Brodatz texture samples. Each image sample is of si&2 3@ith 32 gray levels. The four
directional (0, 45°, 90°, and 138 directions) run-length matrices are combined into a single matrix. The left-most column of each directional matrix is
the run-length-one vector, which has much larger values than the other columns.

4) Gray-Level Run-Length-One Vector:

Do(i) = p(i, 1). (4) LGRE SRLGE | LRLGE

Fig. 1 shows the four-directional run-length matrices of several R
natural texture samples. Notice that the first column of each of the E
four directional run-length matrices is overwhelmingly larger than HGRE SRHGE | LRHGE
the other columns. This may mean that most texture informatio
is contained in the run-length-one vector. The advantages of usin . . o

. . Lo . Fig. 2. Run-emphasis regions of several traditional run-length texture fea-
this vector are that it offers significant feature length reduction ang..
that a fast parallel run-length matrix computation can replace the
conventional serial searching algorithm. For example, the positions of
pixels with run-length one in the horizontal direction can be found by The matrix and vectors defined above are not designed for the
a logical “and” operation on the outputs of the forward and backwagktraction of traditional features. Along with the original run-length
derivative of the original image: matrix, they are used in the new feature extraction approach in
Section II-C. The next section gives a review of the traditional feature

jesl-~Re

fl, gy =i, j)— (i, j— 1) () extraction.
b(ia J) ::L'(i, J- 1) - :L‘(i, j) (6)
o(i, j) =f(i, j)Nb(, j) (7) B. Traditional Run-Length Features

Lo . . . . From the original run-length matrix(i, j), many numerical tex-
wherez(i, j) is the texture image whose pixels outside the |maqe 4 .
T Ure measures can be computed. The five original features of run-
boundary are set to zero, amu represents the logical “and” op- o .
) . : . . I{sngth statistics derived by Galloway [7] are as follows.
eration. Therp, (i) can be obtained by computing the histogram o i
(i, )i, jy=1. To find the starting pixel position for runs with length 1) Short Run Emphasis (SRE)
two, a similar scheme can be employed as follows:

L= 20d) _ 1 smpelh)
oo AT o SRE= — —lt = AL 11
Falis ) = (£, ) # 0) = (i, J) ® D 3D Vi b nD Dhs
ba(d, j) = (b(d, j) # 0) — o(i, j) 9)
) ) 2) Long Run Emphasis (LRE
0s(i. ) = foli, ) O ba(i, j +1). oy 2o phasis (LRE)
M N N
In fact, the gray level run number vector,(i) can also be LRE= — Z Zp(i, -t = L Zp,.(j)-jz. (12)
obtained with the above approach by computing the histogram of [ o i3

x(i, J)gai, j#o-
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Fig. 3. Eight Brodatz textures. Row 1: burlap, seafan, rice paper, pebbles23. Row 2: tree, mica, straw, raffia.

3) Gray-Level Nonuniformity (GLN) 2) Short Run High Gray-Level Emphasis (SRHGE)
1 M N 2 1 M 1 M N (i,7) .2
A 7, -2
GLN= = %" (Z (i, n) == D pe(i) (13) SRHGE= — Y O (19)
Toi=1 \j=1 "=l = j=1 J
4) Run Length Nonuniformity (RLN) 3) Long Run Low Gray-Level Emphasis (LRLGE)

N M

2 N
1 . 1 . M N RPN
RLN = — p(i, )] = — pr(i)?. 14 _ 1 pli,j)-J
o J; (; p(i, J)) o ; pr(i) (14) LRLGE = . E E R (20)
=1 j=1

5) Run Percentage (RP) 4) Long Run High Gray-Level Emphasis (LRHGE)

Ny
RP= . (15) LMW
! LRLGE= — S 3" p(i. j)-i* - j*. (21)
In the above,n, is the total number of runs and, is the (A

number of pixels in the image. Based on the observation that most -
features are only functions of.(5), without considering the gray —Dasarathy and Holder [5] tested all eleven features on the classifi-
level information contained |pg (l), Chuet al. [3] proposed two new cation of a set of cell images and showed that the last four features

features, as follows, to extract gray level information in the matrixgave better performance. o o
1) Low Gray-Level Run Emphasis (LGRE) These features are all based on intuitive reasoning, in an attempt
to capture some apparent properties of run-length distribution. For
s (i) example, the eight features illustrated in Fig. 2 are weighted-sum
5;,2 . (16) measures of the run-length concentration in the eight directions, i.e.,
[ the positive and negative°p45°, 90°, and 135 directions. Two
drawbacks of this approach are: there is no theoretical proof that,
given a certain number of features, maximum texture information can
| Mox | M be extracted from the run-length matrix, and many of these features
.. .2 . .2 . .
HGRE = - Z Z p(i, j)-i* = - ; py(i)-i%. (17) are highly correlated with each other.

i=1 j=1

M N

_ 1 plig) 1
LGRE_EZZ A=

=1 j=1 B

-

2) High Gray-Level Run Emphasis (HGRE)

In a more recent study, Dasarathy and Holder [5] described anotfer Pominant Run-Length Method (DRM)
four feature extraction functions following the idea of joint statistical Instead of developing new functions to extract texture information,
measure of gray level and run length, as follows. we use the run-length matrix as the texture feature vector directly to
1) Short Run Low Gray-Level Emphasis (SRLGE) preserve all information in the matrix. However, this again introduces
two problems: the large dimensionality of the feature vector and the
1 M X ) high-degree correlation of the neighborhood features.
SRLGE= _~ Z Z FaE (18) To alleviate the first problem, observe the run-length matrix in

‘ c Ul .
i=1 j=1 Fig. 1 more closely. We see that most nonzero values concentrate
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Fig. 4. Sixteen Vistex textures.

TABLE |
BRODATZ TEXTURE CLASSIFICATION RESULTS USING THE NEW FEATURE SELECTION METHOD ON THE TRADITIONAL RUN-LENGTH FEATURES
Original Number of Correct classification rate
Feature feature selected

name u ’ Training data | Testing data All data
length features

G5 20 12 88.5 749 78.6

2 8 8 61.2 41.8 47.0

D4 16 16 84.4 59.1 65.8

ALL 44 24 99.4 83.7 87.9

in the first few columns of the matrix. Moreover, because of thein-length matrix computation algorithm described in Section II-A
correlation between the short-run section and the long-run sectican be used.

using only the first few columns as the feature vector will also To further reduce the feature vector dimension and to decorrelate
preserve most of the information in the long-run section. Anotheeighboring element values in the matrices, we use the principal
advantage of using only the first few columns is that the fast paral®mponent analysis method, also called Karhunen—Loeve transform
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Fig. 5. Scatter plots of several highly correlated traditional run-length texture features of the eight Brodatz textures. Due to overlap, hiotlabsig

symbols can be discerned.
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Fig. 6. Scatter plots of the top eight features extracted by applying an MDEE transform on the original run-length matrices of the Brodatz textures.

Linearly separable clustering is observed for most of the eight texture classes.

0 50

feature # 7

100

150



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 11, NOVEMBER 1998 1607

TABLE I To avoid this problem, we use a new multilevel dominant eigenvec-
BRODATZ TEXTURE CLASSIFICATION RESULTS USING tor estimation method developed in [12]. By breaking the long feature
THE NEw DOMINANT RUN-LENGTH MATRIX FEATURES vector intog = n/k groups of small feature vectors of length
Original Number Correct classification rale B,
Feature name feature ()1:sclcclcd Training Testing data All data B
length features data A= < (2 4)
p: columns 1:4 512 1 100.0 100.0 100.0 B
p: columns 5:32 3584 8 533 413 445 g
p: whole matrix 4096 11 100.0 100.0 100.0 where
Pp: columns 1:4 512 7 100.0 100.0 100.0
P ni((g-Dk+1)am((g—Dk+1)
Pp: columns 5:32 3584 17 69.6 41.4 489 B — .
9= D
: whole matrix | 4096 10 100.0 100.0 100.0
Pp i (gk) - zm(gk)
py: GLRNV 128 8 100.0 100.0 100.0
o RLRNV 128 20 952 639 723 We can perform the KLT on each Qf thyegroup short feature vector
setB,. Then a new feature vector is formed by the first few selected
Po: GLRLOV 128 1 100.0 100.0 100 dominant eigenfeatures of each group. The final eigenvectors are

computed by applying the KLT to this new feature vector. For proof
that the eigenvalues computed by MDEE are a close approximation
v . ° TABLE IIl . y of the standard KLT, refer to [12].
ISTEX TEXTURE CLASSIFICATION RESULTS USING THE : rs . . : :
NEW DOMINANT RUN-LENGTH MATRIX FEATURES Significant reduction of computational time can be achieved by the
MDEE over the standard KLT. For example, if a feature vector of

Original | Number of Correet classification rate lengthn = 1000 is broken into ten vector groups of length 100, and
Feature name feature sclected Training | Testing data | Al data 10% of the eigenfeatures in each group are saved for the second-
length featurcs data level eigenvalue computation, the computational complexity for the
p: columns 1:4 512 17 99.9 96.8 97.6 MDEE is 11(»/10)*, which is nearly two orders of magnitude faster
p: whole matrix | 4096 18 999 98.0 98.5 than the KLT's1000°.
ppr columns 14 | 512 1 1000 96.8 976 2) Bhattacharyya Distance Measurddowever, it is well known

that the KLT features are optimal for data representation but not

- whole matri 24 100.0 975 98.1 X C b

pp: whole matrix| 4096 necessarily the best for discrimination. To measure the class separa-
Py GLRNV 128 23 100.0 93.9 95.6 bility of each feature, some other criterion must be employed. We
p,: GLRLOV 128 18 99.8 97.0 97.8 choose the Bhattacharyya distance measure. An analytical form of

this measure is [6]

_1 T {01+ 02 -1
1= L = (%) 1 =

In |%(01 + 02)|

(KLT), and then use the Bhattacharyya distance measure to rank the 1
2 o' /2]oo '/

eigenfeatures according to their discriminatory power.
1) Multilevel Dominant Eigenvector Estimation (MDEE) Method: )
To compute the KLT, let;; be a feature vector sample. We form affvheres; and.; are the class variance and mean. From (25) we see

(25)

n by m matrix that the Bhattacharyya distanges proportional to both the distance
w1(Das(1)- - am(1) of class means and the difference of class variances. The feature
;1(2);3(2) L }m(9) selection criterion is to only retain those decorrelated features with
A= | s (22) large 5 value.
BN Throughout the experiments, we select the first 30 features with
x1(n)az(n) - wm(n) largest eigenvalues, rank these KLT-decorrelated features by/their

where n is the feature vector length andh is the number of values, and use the firgtfeatures with the largest for classification.

training samples. The eigenvalues of the sample covariance matrix\éf% run the feature lengti from one t0 30 to select the one that gives
computed in two ways, depending on the size of the feature vect e best performance as the final feature vector length.

If the feature vector lengtm is a small number, eigenvalues are

computed by a standard procedure. The sample covariance matriRisClassification Algorithm

estimated by Since the main focus of this work is the feature extraction algo-

) 1 & " 1 " rithm, we use a simple Gaussian classifier for the experiments. Let

W=_ S @i— )i - = —AA (23) ' the class mean and covariance matrix of the feature vectoe ;

=1 ’ andW;, respectively, a distance measure is defined as [13]

where 1. is the mean vector. The eigenvalues and eigenvectors are
computed directly fromi¥. However, for the feature vector formed D, =(x—p) W (x — pi) +1In |W;
by the four directional run-length matrices, is a large number.
For a neighborhood of 3% 32 with 32 gray levelsp can reach where the first term on the right of the equation is actually the
a maximum of 4096, producing a covariance matrix of size 40¥ahalanobis distance. The decision rule is
x 4096. Direct computation of the eigenvalues and eigenvectors
becomes impractical. z € Cr, when D =min{D;}. (27)

(26)
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TABLE IV TABLE V
VISTEX TEXTURE CLASSIFICATION RESULTS USING THE VIsTEX TEXTURE CLASSIFICATION RESULTS USING THE Co-OCCURRENCE
Co-OccURRENCE WAVELET, AND NEW RUN-LENGTH FEATURES WAVELET, AND RUN-LENGTH FEATURES, WITH IMAGE SAMPLE SIZE 64 X 64
Original Number Correct classification rate Original Number Correct classification rate
Feature name 1c‘ulurc ”1]?1“:{?“ Training | Testing data | All data Feature name featre | ofselected | Tryining | Testing data | All duta
length features data length features data
Co-oceurrence 52 29 100.0 97.4 98.1 Co-occurrence 52 24 100.0 99.8 99.8
% Level 2 16 13 98.2 90.6 927 Level 2 16 10 100.0 99.5 99.6
B
= Level 3 64 20 98.6 90.1 92.4 5 Level 3 64 12 100.0 99.3 99.5
All Levels 84 15 979 90.6 925 ;:j Level 4 256 22 100.0 98.2 98.6
Run-length 4096 18 99.9 98.0 98.5 All Levels 340 24 100.0 98.1 98.5
Run-length 8192 13 100.0 100.0 100.0

Ill. EXPERIMENTS AND DiSCUSSION

In this section, two separate data sets are used for the textaremall number of features, perfect classification is achieved with
classification experiment. We first make detail comparisons betwet&e original matrix and with most of the new matrices and vectors.
various DRM features and the traditional run-length features on thiée only exceptions are the run-length run-number vector and the
classification of eight Brodatz images. We then compare the bégng-run region of the run-length matrix. The poor performance of
DRM features with the co-occurrence and wavelet features on tie long-run matrix and the good performance of the short-run matrix
classification of a larger data set—16 Vistex images. indicate that most texture information is indeed concentrated in the

short-run region.

A. Data Description

The eight Brodatz images [1] are shown in Fig. 3. Each image is §f Comparison with Other Methods
size 256x 256 with 256 gray levels. The images are first quantized We now compare the new run-length method with the co-
into 32 gray levels using equal-probability quantization. Each classcurrence method and the wavelet method on the Vistex data
is divided into 225 sample images of dimension 822 with 50% set. For the co-occurrence method, 13 co-occurrence features are
overlapping. Sixty samples of each class are used as training datanputed for each of the four directions as described in [8]; for
so the training data size is 480 samples and the testing data $h® wavelet method, the texture feature used for each wavelet
is 1320. decomposition channel is the energy feature. The same feature

To further compare the performance consistency of the DRBelection method in Section II-C is applied to the co-occurrence and
features, we conducted a second experiment on a larger data set-wagelet feature vectors.
images from Vistex texture image data base of the MIT Media The classification results on the sixteen Vistex images using
Laboratory. Unlike Brodatz images, which are mostly obtained ivarious DRM features are first shown in Table lll. About 97%
well controlled studio conditions, the Vistex images are taken undéassification accuracy is achieved by most feature vectors. An
natural lighting conditions. The Vistex images shown in Fig. 4 ar@specially interesting result is that the run-length-one vector gives
Bark.08, Brick.04, Buildings.09, Fabric.01, Fabric.05, Fabric.13, Fabxcellent performance, similar to that of the original full matrix.
ric.17, Flowers.07, Food.01, Food.05, Grass.02, Leaves.02, Metal.01Classification results using co-occurrence and wavelet features on
Tile.07, Water.06, Wood.02. The same 32 gray level quantizationtlse sixteen Vistex images are shown in Table IV. From the results,
applied to each image. Each class is again divided into 225 samplss can see that the run-length features perform comparably well
of dimension 32x 32 with 50% overlapping. Sixty samples of eactwith the co-occurrence features and better than the wavelet features.
class are used as training data. So the training data has 960 samphés demonstrates that there is rich texture information contained in

and the testing data has 2640 samples. the run-length matrices and that a good method of extracting such
information is important to successful classification.

B. Comparison of the Traditional Run-Length The poor results of the wavelet features are inconsistent with

Features and the New DRM Features several previous studies [2], [10], where wavelet features generate

) . . o near perfect classifications. This is mainly because that we use a
We first use the feature selection algorithms on the traditional run- . .
o ) .. _much smaller texture sample size, 3232, than the ones used in

length features for the classification of the Brodatz images. Similar to ) .
. . most previous studies, 64 64 or 128 x 128 [2], [10]. Such a

[5], the feature groups tested are the original five features of Gallowa

[7], the two features of Chet al. [3], and the four new features of small image size may not be enough to estimate a stable frequency

Dasarathy and Holder [5]. All four-direction features are used. ResuftacrdY distribution. To confirm this sample size effect, we divide

. . each Vistex image class into 169 sample images of dimension
are shown in Table I. The feature vector containing all three gro . . .
. . 4 x 64 with 75% overlapping between neighborhood samples.
features gives the best result of 88% accuracy. Fig. 5 shows the scaite . -
nly 39 samples in each class are used as training data, so the

plots of several run-length features. The strong correlations among. . N . S
different features shown in the figure indicate that these featurtégmmg data size is 624 samples and the testing data size is 2080

ST ) samples. Table V shows the classification results. Near perfect clas-
contain similar information.

Fig. 6 shows the scatter plots of the top eight features obtainsf;(f{catlons are achieved by all three methods, similar to results in

by applying the MDEE transform on the run-length matrix. Almos and [10].

perfectly separable clustering can be seen for most of the eight

image classes, in sharp contrast to the overlapping clusters of the IV. CoNCLUSION

traditional run-length features in Fig. 5. This is reflected by the good We extract a new set of run-length texture features that significantly
classification results using the DRM features in Table 1l. With onlimprove image classification accuracy over traditional run-length
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features. By directly using part or all of the run-length matribReal-Time Computation of Two-Dimensional Moments on
as a feature vector, much of the texture information is preserved. Binary Images Using Image Block Representation
This approach is made possible by the utilization of the multi-

level dominant eigenvector estimation method, which reduces the Iraklis M. Spiliotis and Basil G. Mertzios
computation complexity of KLT by several orders of magnitude.

Combined with the Bhattacharyya measure, they form an efficient

feature selection algorithm. Abstract—This work presents a new approach and an algorithm for

. . : inary image representation, which is applied for the fast and efficient
The advantage of this approach is demonstrated eXpe”ment@mputaﬂon of moments on binary images. This binary image represen-

by the classification of two independent texture datfi sets. ExP&Hrion scheme is calledmage block representatiarsince it represents the
mentally, we also observe that most texture information is storediinage as a set of nonoverlapping rectangular areas. The main purpose of
the first few columns of the run-length matrix, especially in the firdbe image block representation process is to provide an efficient binary

column. This observation justifies development of a new, fast, paralf@@Je representation rather than the compression of the image. The block
run-length matrix computation scheme ’ ’ represented binary image is well suited for fast implementation of various

) - . processing and analysis algorithms in a digital computing machine. The
Comparisons of this new approach with the co-occurrenggo-dimensional (2-D) statistical moments of the image may be used for

and wavelet features demonstrate that the run-length matric@sge processing and analysis applications. A number of powerful shape
possess as much discriminatory information as these succesénglysis methods based on statistical moments have been presented, but
conventional texture features and that a good method of extract$ y suffer from the drawback of high computational cost. The real-

. . . e ie computation of moments in block represented images is achieved
such |nformat|9n is .key. to the succ.ess.of the classification. Wg exploiting the rectangular structure of the blocks.
are currently investigating the application of the new feature dex T s . . vsis. i block
extraction approach on other texture matrices. We hope our wi Irg: ;’;meerm: inary image, image analysis, image block representa-
here will renew interest in run-length texture features and promote ' '
future applications.

|I. INTRODUCTION
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