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Abstract 

In this paper, we first develop a direct Bayesian based 

Support Vector Machine by combining the Bayesian 

analysis with the SVM. Unlike traditional SVM-based face 

recognition method that needs to train a large number of 
SVMs, the direct Bayesian SVM needs only one SVM 

trained to classify the face difference between intra-

personal variation and extra-personal variation. 

However, the added simplicity means that the method has 

to separate two complex subspaces by one hyper-plane 

thus affects the recognition accuracy. In order to improve 
the recognition performance we develop three more 

Bayesian based SVMs, including the one-versus-all 

method, the Hierarchical Agglomerative Clustering based 

method, and the adaptive clustering method. We show the 

improvement of the new algorithms over traditional 

subspace methods through experiments on two face 
databases, the FERET database and the XM2VTS 

database. 

1. Introduction 

A number of subspace based face recognition methods 

have been developed in recent years. Eigenface method 

[1] uses the Karhunen-Loeve Transform (KLT) to 

produce a most expressive subspace for face 

representation and recognition. LDA or Fisherface 

[2][3][4] uses linear discriminant analysis to seek a set of 

features best separating face classes. Another important 

subspace method is Bayesian algorithm using 

probabilistic subspace [5]. Different from other subspace 

techniques, which classify the test face image into M

classes of M individuals, the Bayesian algorithm casts the 

face recognition problem into a binary pattern 

classification problem with each of the two classes, 

intrapersonal variation and extrapersonal variation, 

modeled by a Gaussian distribution.  

After subspace features are computed, most methods 

use simple Euclidian distance of the subspace features to 

classify the face images. Recently, more sophisticated 

classifiers, such as support vector machines (SVM) [6], 

have been shown to be able to further improve the 

classification performance of the PCA and LDA subspace 

features [7][8][9]. Given any two classes of vectors, the 

aim of support vector machines is to find one hyperplane 

to separate the two classes of vectors so that the distance 

from the hyperplane to the closest vectors of both classes 

is the maximum. The hyperplane is known as the optimal 

separating hyperplane. Support vector machines excel at 

two-class recognition problem and outperform many other 

linear and non-linear classifiers. 

Since SVM is basically a binary classifier, to apply it 

to face recognition, which is a typical multi-class 

recognition problem, we have to reduce the multi-class 

classification to a combination of SVMs. There are 

several strategies to solve this problem, among which 

one-versus-all strategy and pairwise strategy are often 

used [7][10]. Although both approaches can achieve high 

recognition accuracy, the former is much simpler than the 

latter. Studies have shown similar face classification 

performance for the two approaches [7]. 

Since the number of classes in face recognition is often 

very large, for both the one-versus-all strategy and the 

pairwise strategy, a large number of SVMs have to be 

trained. In order to alleviate this problem, besides a one-

versus-all Bayesian SVM algorithm, we also develop a 

direct Bayesian SVM by combining the Bayesian analysis 

method with the SVM directly. The Bayesian method 

effectively converts the multi-class face recognition 

problem into a two-class classification problem, which is 

suitable for using the SVM directly. Therefore, the 

Bayesian SVM needs only one SVM trained to classify 

the face difference between intra-personal variation and 

extra-personal variation. 

However, using only one hyper-plane may not be 

enough to separate the entire within-class space and 

between-class space given the large number of samples. 

From experimental comparison we see that the simplicity 

of the direct Bayesian SVM comes at a cost of accuracy. 

We can see that the two methods are at the two extremes, 

one needs too many classifiers and the other has too few 

classifiers. In order to balance the two extremes, we 

further develop a two-stage Bayesian SVM. In the first 

stage we estimate a similarity matrix to measure the 

degree of similarity between each pair of faces using the 
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direct Bayesian SVM. Then using the similarity matrix 

and the Hierarchical Agglomerative Clustering (HAC) 

algorithm [11][12] we group all face classes into clusters 

of similar faces. In the second stage we perform the one-

versus-all SVMs on the small number of classes within 

each cluster. During testing, we first use the original 

Bayesian method to classify the probe face to a cluster, 

and then the final classification is obtained within this 

cluster by the second stage SVM. The method is shown to 

be as effective as the one-versus-all approach but is more 

efficient in computation.  

Notice that the clustering is based on the training data 

thus stays the same in the testing stage. In order to cluster 

the data adaptively for each testing face we develop an 

adaptive clustering Bayesian SVM algorithm. We first use 

a simple Bayesian algorithm to find a cluster of faces that 

are most similar to the testing face, then use a one-versus-

all algorithm to re-classify the face in this cluster to find 

the final result. Finally, we apply the adaptive clustering 

algorithms to the unified subspace analysis method [15] to 

further improve the classification performance. We use 

experiments on two face databases, the FERET face 

database [13] and the XM2VTS face database [14] to 

compare the new algorithms with traditional subspace 

methods. 

2. Combining Bayesian and Support Vector 

Machine 

In this section, we first briefly review the support 

vector machine [6] and Bayesian face recognition [5]. We 

then develop the direct Bayesian SVM and the one-

versus-all Bayesian SVM. 

2.1. Support Vector Machines

Consider N points that belong to two different classes, 

1{( , )}N

i i ix y =  and { }1,1 −+=iy ,       (1) 

where ix  is an n-dimension vector and iy is the label of 

the class that the vector belongs to. SVM separates the 

two classes of points by a hyper-plane, 

0=+ bxwT ,    (2) 

where x  is an input vector, w  is an adaptive weight 

vector, and b is a bias. The functional margin of the 

hyper-plane is represented as, 
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For a given 0w  and 0b , the geometrical distance of a 

point x from the optimal hyper-plane is, 
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The goal of the SVM is to find the parameters 0w  and 

0b  for the optimal separating hyper-plane to maximize 

the geometrical margin, 
w

2 , i.e. the distance between the 

hyper-plane and the closest point of both classes. Hence 

the hyper-plane that optimally separates the data is the 

one that minimizes 
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subject to the constraints ( ) 1,i iy w x b i⋅ + ≥ ∀ . The 

solution to this optimization problem is found through the 

maximization of the dual Lagrangian,  
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with respect to Lagrange multiplier 
iα , subject to the 

constraints, 
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In the solution, only a small number of 
iα  is none zero, 

each of which corresponds to one training data point. 

These data points are called support vectors since they lie 

on the margin border. These support vectors are therefore 

the only data points that appear in the resulting hyper-

plane, i.e. decision function, 
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where each six  represents a support vector and m is the 

number of support vectors. Each test vector x is then 

classified by the sign of  f(x).

    The solution can be extended to the case of nonlinear 

separating hyper-planes by a mapping of the input space 

into a high dimensional space, ( )x xφ→ . The key 

property of this mapping is that the function φ  is subject 

to the condition that the dot product of the two functions 

( ) ( )i jx xφ φ⋅  can be rewritten as a kernel function 

( , )i jK x x . The decision function in Eq. (8) then becomes, 
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    We use the popular Gaussian kernel in our study. 

2.2. Bayesian Analysis 

     The Bayesian analysis converts the multi-class face 

recognition problem into a two-class classification 

problem by classifying the face difference as intra-

personal variations for the same person and extra-personal 

variations for different persons [5]. Let 
IΩ  represent the 

intra-personal variations and 
EΩ  represent the extra-

personal variations, the ML similarity between any two 

images can be defined as, 

)|(),( 21 IPIIS Ω∆=  .  (10) 

     To estimate )|( IP Ω∆ , we perform PCA on the face 

difference set { }IΩ∈∆∆ |  to decompose the image 

difference space into two orthogonal and complementary 

subspaces: the principle subspace F , called intra-

personal eigenspace with K eigenvectors, and its 

complementary space F  with N – K eigenvectors. The 

likelihood can be estimated as, 
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where, )(∆Fd  is the so-called distance-in-feature-space 

(DIFS),   
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In Eq. (11) and (12), iy  is the principle component of the 

principle subspace F, iλ  is the corresponding eigenvalue, 

)(2 ∆ε  is the PCA residual error in F , also called the 

“distance-from-feature-space” (DFFS), and ρ  is the 

average of all the eigenvalues of F ,
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     From Eq. (11), we can see that the estimation of 

)|( IP Ω∆  is equivalent to computing the distance 

measure in the intrapersonal subspace, 

ρε /)()( 2 ∆+∆= FI dD .  (14) 

We use DIFS in our study since DFFS and ML are much 

more costly to compute.  

2.3. Combining Bayesian and SVM

     As discussed before, SVM is a binary classifier. For 

face recognition problem we need to extend it to a multi-

class classifier. The pair-wise strategy and the one-versus-

all strategy are the two most popular methods. For the 

pair-wise strategy, one support vector machine is trained 
to separate each pair of classes. So the method needs 

c*(c-1)/2 support vector machines trained, where c is the 

number of classes. During the testing, each support vector 

machine votes for one class, and the winning class is the 

one that has the largest number of votes. For the one-

versus-all strategy, each support vector machine is trained 
to separate a single class from the remaining classes.  In 

other words, each class is associated to one hyper-plane. 

So it needs c support vector machines trained. Each test 

vector is assigned to the class whose hyper-plane is 

farthest from it. Since the one-versus-all method is 
simpler and is as effective as the pair-wise method, we 

first adopt it to implement a straightforward one-versus-

all Bayesian SVM. 

     However, for face recognition, the number of classes 

often is very large. The one-versus-all method needs to 

train a large number of SVMs. In order to alleviate this 
problem, we develop a direct Bayesian SVM for face 

classification. The method is straightforward since the 

traditional Bayesian algorithm already converts the face 

recognition problem into a two-class problem for the 

intra-personal and the extra-personal variation. We 

therefore only need to train one SVM for the two-class 
features. 

     For the training data, we first compute image 

difference between images of the same person to 

construct the intrapersonal variation set { }|I I I∆ ∆ ∈Ω .

We then compute image difference between images of 

different persons to construct the extra-personal variation 

set { }|E E E∆ ∆ ∈Ω . The eigenvalue matrix 
IΛ  and 

eigenvector matrix 
IV  of the intra-personal subspace are 

then computed from the intra-personal variation 

set { }|I I I∆ ∆ ∈Ω . Finally, all the image difference 

vectors are projected and whitened in the intra-personal 

subspace, 

I

T

III V ∆Λ=∆
−

2

1
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These two sets of image difference vectors are used to 

train the SVM to generate the decision function ( )f ∆ .
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For the testing process, we again compute the face 

difference vector i∆  between the probe vector x and each 

gallery vector 
g
ix , and then project and whiten the 

difference vector in the intra-personal subspace, 

i

T

IIi V ∆Λ=∆
−

2

1

' .   (17) 

The final classification decision is made by, 

( )( )'

1
maxarg)( i

ci
fxd ∆=

≤≤
.  (18) 

where c is the number of people in the gallery. The larger 

is the value of d, the more reliable the result is. 

     The direct Bayesian SVM is simpler than the one-

versus-all Bayesian SVM since it only needs one SVM 
trained. However, this new method may have over 

simplified the problem since it uses one hyper-plane to 

separate the intra-personal variation and the extra-

personal variation. To balance the trade off between the 

two methods, we develop a two-stage SVM method in the 

next section. 

3. Two-Stage Clustering Based Classification 

The problem with the one-versus-all approach is that 
too many SVMs need to be trained. On the contrary, the 

problem with the direct Bayesian SVM is too many 

samples for just one SVM. In this section, we try to find a 

solution that balances the two extremes. 

When we train a SVM, the most important region in 

the training data space is around the decision hyper-plane, 
since that is where mistakes often happen. Samples that 

are further away from the hyper-plane play less 

significant roles in the training process. Therefore it is 

reasonable to train a SVM for samples that are near the 

hyper-plane. Toward this, we first partition the gallery 

data into clusters, with each cluster containing only 
similar images. 

We first use the Bayesian SVM to quickly estimate the 

similarity matrix of the gallery set, and then use the 

Hierarchical Agglomerative Clustering (HAC) technique 

[11][12] to group the similar face clusters in order to 
reduce the number of binary SVMs in the second stage. 

3.1. Hierarchical Agglomerative Clustering 

(HAC) 

    In the Hierarchical Agglomerative Clustering process, 

clusters are constructed by combining existing clusters 
based on their proximity. The basic process of the HAC 

can be summarized by the following steps: 

     (1)  Initialize a set of clusters. 

     (2) Find the nearest pair of clusters that have the 

largest similarity measure, and then merge them into a 

new cluster. Estimate the similarity measure between the 

new cluster and all the other clusters. 

     (3)  Repeat step (2) until it satisfies the stopping rule. 
     In each of the three steps of the basic algorithm, 

different strategies can be used to lead to different designs 

of the HAC algorithm. For example, in the first step, we 

can either assign each data point as a distinct cluster or 

form some initial small clusters for seeding. For face 

recognition, we can simply assign each image in the 
gallery as a cluster (assuming only one image per person 

in the gallery). In the third step, the stopping rule could 

either be that clustering has reached its root, or the 

clustering has reached the number of clusters specified by 

the user, or the similarity measure between the two 

nearest clusters is above a preset threshold. In our study, 
we will use the cluster number as stopping criteria. One of 

the key design issues for the HAC algorithm is the 

similarity measure between clusters in the second step. In 

the new algorithm described in the following section, we 

use the direct Bayesian SVM to estimate the similarity 

measure between face clusters. The output of the HAC 
will be a dendrogram. An example is shown in Fig. 1, 

where 10 classes are merged into 3 clusters. 

Figure 1. A dendrogram example. 

3.2. Two-Stage SVM

     In order to use HAC to partition the gallery face data 

into clusters, we first need to compute the similarity 

among the face images. For a pair of face images i and j

in the gallery, we first compute the image difference ij

E∆ ,

then project and whiten it in the intra-personal subspace, 

ij

E

T
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−

2

1
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The similarity measure between the two images is then 

defined as, 

)(
'ij

Eij fS ∆= ,            (20) 
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where f is the SVM decision function in Eq. (9). The 

further away is the image difference from the decision 

hyper-plane, the larger the similarity value is. This means 
the image difference is closer to intra-personal variation, 

thus the two images are more similar to each other. The 

similarity values for all the image pairs form the 

similarity matrix for the image gallery set.  

     Using the similarity matrix, we then group the gallery 

data set into clusters of similar images through the HAC.  
     After the similar images are clustered, in the second 

stage, we perform the one-versus-all Bayesian SVM 

within each cluster. Since the image number is much 

smaller in each cluster, the training complexity is 

significantly reduced. In addition, the SVM only need to 

focus on a small number of similar images within each 
cluster. These data points are closer to the decision 

surface, thus are more likely to become support vectors. 

     During the testing, we first compute the whitened face 

difference vector 
i
′∆  between the probe vector x and each 

gallery vector, and then simply find the face class that 

gives the smallest 
i
′∆ . This is equivalent to the original 

Bayesian method. If the output is class k, we find the face 

cluster C(k) that contains class k. A second stage one-

versus-all SVM is then performed on the cluster C(k) to 
obtain the final classification result. Since the original 

Bayesian method only requires computation between two 

short feature vectors so it is much faster and is used in the 

first stage to rank all the data. Then the more costly one-

versus-all Bayesian SVM is only needed to process one 

small cluster. So the complexity of the HAC clustering 
based algorithm is much less than the one-versus-all 

approach. 

     However, since the clustering is based on the training 

data only, the face clusters will stay the same in the 

testing stage. They are tuned to the training data without 

any adaptation to the testing data. In order to cluster the 
data adaptively for each testing face we further develop 

an adaptive clustering Bayesian SVM algorithm. We first 

use the original Bayesian algorithm to find a cluster of 

faces that are most similar to the testing face. We then use 

a one-versus-all algorithm to re-classify the face in this 

cluster to find the final result. Unlike the HAC clustering 
approach that only need to train SVM classifiers in the 

training stage, if we have to re-train the one-versus-all 

classifier for each new cluster in the testing stage, the cost 

of computation will be simply too high. Instead, we train 

the one-versus-all Bayesian SVM in the training stage for 
all the training data just like the original one-versus-all 

Bayesian SVM. We then use this one-versus-all Bayesian 

SVM to re-classify only the faces in the new cluster. So 

for training the complexity is the same as one-versus-all, 

but for testing, the new cluster method will be much fast 

since it only need to focus on a small cluster and the first 
step original Bayesian algorithm is much faster. In 

experiments, we will see that this algorithm improves the 

recognition accuracy over all other methods.  

     So far, we have been focusing on Bayesian face 
recognition. In fact, the two-stage SVM can also be 

extended to other subspace methods. The unified 

subspace analysis method [15] has been shown to 

outperform most of the traditional subspace methods. 

Here, we apply the two-stage cluster based SVM to the 

unified subspace method. Experiments show that this 
method achieves even better results than the Bayesian 

based SVM methods.   

4. Experiments 

In this section, we conduct experiments on two face 

databases, the FERET face database [13] and the 

XM2VTS face database [14]. To better evaluate the 
recognition performance we preprocess the face images 

through the following steps: 1) rotate the face images to 

align the vertical face orientation; 2) scale the face images 

so that the distances between the two eyes are the same 

for all images; 3) crop the face images to remove the 
background and the hair region; 4) apply histogram 

equalization to the face images for photometric 

normalization. 

4.1. Experiment on the FERET face database 

For the FERET face database (fa/fb), we use 495*2 
images of 495 people as training data, and use images of 

the other 700 people as testing data. Therefore, the gallery 

set is composed of 700 images of 700 people. The probe 

set is composed of 700 images of the same 700 people.

The recognition results of all the tested methods are 

summarized in Table 1. From the results we can see that 
the direct Bayesian SVM is only slightly better than the 

original Bayesian algorithm. This lack of significant 

improvement confirms that using only one hyperplane is 

not enough to separate the intrapersonal and extrapersonal 

subspaces. Both the one-versus-all method and the HAC 

based method improve the recognition accuracy 
significantly. Comparing to original Bayesian method, the 

recognition error rate is reduced by 45%. Finally, the 

adaptive clustering method gives the best accuracy of 

97.4% among all Bayesian based methods. This is a very 

high accuracy for the FERET database. Both the HAC 
clustering and adaptive clustering methods are more 

efficient in computational cost since they only need to 

compute a small number of SVMs in the testing stage. 

     The good result for the adaptive clustering method is 

particularly interesting. Given that we use a regular one-

versus-all method to re-classify the cluster of images 
selected by the original Bayesian method in the first step, 

instead of re-train the SVM, the method is effectively the 

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04) 

1063-6919/04 $20.00 © 2004 IEEE 



same as combining the two classifier in a series operation. 

For the sake of comparison, we can also use the one-

versus-all method first then use the original Bayesian 
method. Of course, this is not a good approach since the 

former method is more expensive to compute. We select 

different number of samples in the first step clustering for 

the two methods and compute the recognition accuracy. 

Figure 2(a) shows the results for both methods. Clearly, 

using the first approach is much better. 
     This can be explained by the complementary 

properties of the two classifiers. The Bayesian method is 

more stable but less accurate. The one-versus-all Bayesian 

on the other hand is more accurate but less stable, since it 

is possible that one or a few of the large number of SVMs 

may produce a larger than normal distance measure 
outlier that happens to over shadow the real face class. 

When a stable Bayesian classifier is used first, it will help 

to remove these outliers from the selected cluster of 

candidates to help to improve the performance of the one-

versus-all Bayesian classifier. In the experiment, the 

algorithm reaches the best performance with only 20 
images in the cluster. If we use the less stable one-versus-

all method first then use the original Bayesian, the 

performance is actually worse than using one-versus-all 

method alone, since the Bayesian method is less accurate. 

As the number of the images in the cluster increase, the 
combined method actually gets closer to the second 

algorithm with decreased influence of the first. 

     Finally, when using the adaptive clustering method on 

the unified subspace method, the recognition error rate is 

further reduced by 45%. We achieve the best accuracy of 

98.6% on the FERET database.        

4.2. Experiment on the XM2VTS face database 

For the XM2VST database, we select all 295 people 

with four face images from four different sessions for 

each person. For the training data, we select 295*3 

images of 295 people from the first three sessions. The 
gallery set is composed of 295 images of 295 people from 

the first session. The probe set is composed of 295 images 

of 295 people from the fourth session. 

     We implement the comparative experiments similar to 

the FERET face database experiment. Although the data 
size is smaller than the FERET database, the fact that the 

probe set and the gallery set in this experiment are from 

different sessions makes the recognition task also very 

challenging. This can be seen from the poor results of the 

PCA method, which is similar to direct matching of face 

images. The recognition results of all the tested methods 
are summarized in Table 1. The adaptive clustering 

recognition results for different number of images are 

shown in Fig. 2(b). The results further confirm our 

observation in the FERET data experiments. 

Table 1. Recognition error rate on the FERET database 

and the XM2VTS database. 

Recognition error rate (%) 

Methods 

FERET XM2VTS 

PCA 15.4 33.9 

LDA 9.7 11.9 

Bayesian 6.7 11.5 

Unified Subspace 3.9 6.8 

Direct Bayesian SVM 6.1 10.8 

One-Versus-All Bayesian 
SVM

4.0 2.7 

HAC Bayesian SVM 3.7 2.7 

Adaptive Clustering 

Bayesian SVM 
2.6 1.0 

Adaptive Clustering 

Unified Subspace SVM 
1.4 1.0 

5. Conclusion 

In this paper, we first develop a direct Bayesian based 
Support Vector Machine by combining the Bayesian 

analysis with the SVM. The direct Bayesian SVM needs 

only one SVM trained to classify the face difference 

between within-class variation and between-class 

variation. However, with the added simplicity, the new 
method also has an inherent drawback. It tries to separate 

two complex subspaces by just one hyperplane. In order 

to improve the recognition performance we further 

develop three more Bayesian based SVMs, including the 

one-versus-all method, the HAC based method, and the 

adaptive clustering method. Experimental results clearly 
demonstrate the superiority of the new algorithm over 

traditional subspace methods. In addition, the clustering 

strategy is also extended to the unified subspace face 

recognition method. 

    Finally, as pointed out earlier, similar to traditional 

subspace methods, all the new Bayesian based SVM 
methods developed in this paper can be easily applied to 
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local features such as Elastic graph Gabor features or 

Active Shape Model local features to further improve the 

recognition performance.  
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(a) FERET database. 
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(b) XM2VTS database. 

Figure 2. Comparison of the recognition results for 

adaptive clustering using different number of samples in 

the first step cluster. 
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