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Abstract 

In this paper, we develop a new video-to-video face 

recognition algorithm. The major advantage of the 

video based method is that more information is 

available in a video sequence than in a single image. In 

order to take advantage of the large amount of 
information in the video sequence and at the same time 

overcome the processing speed and data size problems 

we develop several new techniques including temporal 

and spatial frame synchronization and multi-level 

subspace analysis for video cube processing. The 

method preserves all the spatial-temporal information 
contained in a video sequence. Near perfect 

classification results are obtained on the XM2VTS face 

video database.

1. Introduction 

Automatic face recognition is a challenging task in 

pattern recognition research. In recent years, a number 

of techniques have been proposed including local 

feature analysis methods such as the Active Appearance 

Model (AAM) [14] and the elastic graph matching 

(EGM) method [5] and the appearance-based subspace 

methods such as the eigenface method [4], the LDA 

method [1][6], and the Bayesian algorithm [2]. Many of 

these methods and their combinations have shown 

promising recognition performance in the FERET test 

[3].

However, all of these methods focus exclusively on 

image-based face recognition that uses a still image as 

input data. One problem with the image-based face 

recognition is that it is possible to use a pre-recorded 

face photo to confuse a camera to take it as a live 

subject. The second problem is that the image-based 

recognition accuracy is still too low in some practical 

applications comparing to other high accuracy biometric 

technologies. To alleviate these problems, video based 

face recognition has been proposed recently 

[8][9][10][11]. One of the major advantages of video-

based face recognition is to prevent the fraudulent 

system penetration by pre-recorded facial images. The 

great difficulty to forge a video sequence (possible but 

very difficult) in front of a live video camera may 

ensure that the biometric data come from the user at the 

time of authentication. Another key advantage of the 

video based method is that more information is available 

in a video sequence than in a single image. If the 

additional information can be properly extracted, we can 

further increase the recognition accuracy. 

However, contrary to the large number of image-

based face recognition techniques, the research on 

video-to-video face recognition has been limited. Most 

research on face recognition in video has mainly been 

focusing on face detection and tracking in video. Once a 

face is located in a video frame, the conventional image 

based face recognition technique will be used for a 

single frame recognition. For recognition directly using 

video data, Satoh [8] matches two video sequences by 

selecting the pair of frames that are closest across the 

two videos, which is inherently still image-to-image 

matching. Methods in [9][10] use video sequence to 

train a statistical model face for matching. Even though 

the trained model is more stable and robust than a model 

trained from a single image, the overall information 

contained in the model is still similar to a single image 

given the same feature dimension. This is similar to 

image-to-image matching with increased training data 

size. The mutual subspace method in [8][11] uses the 

video frames for each person separately to compute 

many individual eigenspaces. Since it cannot capture 

discriminant information across different people, the 

recognition accuracy is lower than other methods. 

In this paper, we propose a new video-to-video face 

recognition algorithm that takes full advantage of the 

complete spatial temporal information contained in a 

video sequence. Although more information is available 

in a video sequence than a single image, and thus may 

help to increase the recognition accuracy, this advantage 

comes at a cost. More data means more information, at 

the same time, means higher processing complexity. In 

order to extract discriminant information efficiently 

from video sequence for face recognition, we have to 

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04) 

1063-6919/04 $20.00 © 2004 IEEE 



overcome several key hurdles of processing speed and 

large data size.  

First we develop a video frame temporal 

synchronization method. The idea is to align frames of 

similar images across the two video sequences so that 

they can be better matched. Given the large amount of 

data in video, we cannot afford to use a complicated 

algorithm for this purpose. We propose a very simple 

and effective algorithm taking advantage of the audio 

signal in video. We use the waveform of the audio 

signal to allocate desired frames in each video. After the 

temporal synchronization, we conduct spatial 

synchronization by aligning key fiducial points on each 

image using Gabor wavelet feature [5]. Alignment of the 

fiducial points is critical for subspace methods to take 

advantage of the shape correlation across different face 

images. Finally, for fast matching of the large spatial 

and temporal synchronized video sequence, we develop 

a multi-level subspace analysis algorithm. Experiments 

on the largest standard video face database, the 

XM2VTS database [7], show near perfect recognition 

accuracy. 

2. Video Frame Synchronization 

In video based recognition, for the video to provide 

more information, individual frames in a video have to 

be different from each other. Since if all the frames are 

similar to each other, the information contained in the 

video sequence will be basically the same as a single 

image. However, for videos of varying frame contents, a 

simple matching of the two video sequence frame by 

frame will not help much, since we may be matching a 

frame in one video with a frame of different expression 

in another video. This may even deteriorate the face 

recognition performance. 

The key for the performance improvement is that the 

images in the sequence has to be in the same order for 

each individual, so that neutral face matches with 

neutral face and smile face matches with smile face. 

Therefore, if we want to use video sequence for face 

recognition, it is important to synchronize similar video 

frames in different video sequence. We call this 

“temporal synchronization” since we will re-order the 

original temporal video sequence according to different 

content in each frame. To accomplish this we can use 

regular image-based expression recognition techniques 

to match similar expression in different video. However, 

the computation is too costly for the large amount of 

video data. The expression recognition accuracy is also 

not very high. Here we propose a new approach using 

information in the audio signal in the video. 

For example, the video data in the XM2VTS 

database (the largest publicly available face video 

database) contains video sequences for 295 people. For 

each person, several video sequences of 20 seconds each 

are taken over four different sessions. In each session, a 

person is asked to recite two sentences “0, 1, 2, …, 9” 

and “5, 0, 6, 9, 2, 8, 1, 3, 7, 4” when recording the video 

sequences. We can use these speech signals to locate 

frames with distinctive expressions. An example is 

shown in Fig. 1, where we locate the maximum point of 

each word and select the corresponding video frames. 

We can see different expressions when one read 

different word. Of course more sophisticated speech 

recognition technique can also be used to improve the 

result with added computational cost. We found our 

simple approach already very effective and efficient and 

is good enough for our recognition purpose. The audio-

guided method helps us to synchronize video sequence 

and select a number of distinctive frames for face 

recognition. In addition, the method can be easily 

extended to include more speech information. For 

example, speaker verification based on the user’s voice 

and verbal information verification based on the 

message content can also be integrated with the video 

sequence to achieve better performance. 

After the temporal synchronization, the next step is to 

align key fiducial points on each image since when 

people are talking, their face will move and change. We 

call this step spatial synchronization. Alignment of the 

fiducial points is critical for subspace methods to take 

advantage of the shape correlation across different 

human faces. We use the Gabor wavelet feature [5] to 

allocate key fiducial points for the spatial 

synchronization. 

3. Multi-level Subspace Analysis 

After the spatial and temporal synchronization, we 

finally have an aligned 3D face data cube for each 

person. There are a number of ways that we can conduct 

the video sequence matching. As discussed earlier, using 

traditional methods such as nearest image or mutual 

subspace methods cannot utilize all the discriminant 

information in the video data. A straightforward 

approach is to treat the whole data cube as a single large 

feature vector and conduct regular subspace analysis to 

extract features. Although this feature level fusion 

approach utilized all the data in video, there are several 

problems with this approach. First, the data size will be 

extremely large. In our experiments, we use 21 images 

of size 41x27 for each video sequence, thus the feature 

dimension is 23247. Direct subspace analysis on such a 

large vector is too costly. Second, a more serious 

problem is the over fitting problem because of the small 

sample size versus large feature dimension for 

discriminant subspace analysis algorithms. 

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04) 

1063-6919/04 $20.00 © 2004 IEEE 



To overcome these problems, we develop a multi-

level subspace analysis algorithm. We first break the 

video cube into slices, with features from each frame as 

a slice. Then we perform unified subspace analysis [12] 

on each feature slice. The extracted discriminant 

features from each slice are then combined to form a 

new feature vector. We then apply PCA to the new 

feature vector to remove redundant information among 

the feature slices to extract the final feature vector. The 

detail algorithm is as follows. 

In the first level subspace analysis, for each feature 

slice: 

1. Project each feature slice to its PCA subspace 

computed from the training set of the slice and 

adjust the PCA dimension to reduce most noise. 

2. Compute the intrapersonal subspace using the 

within-class scatter matrix in the reduced PCA 

subspace and adjust the dimension of intrapersonal 

subspace to reduce the intrapersonal variation. 

3. For the L individuals in the gallery, compute their 

training data class centers. Project all the class 

centers onto the intrapersonal subspace, and then 

normalize the projections by intrapersonal 

eigenvalues to compute the whitened feature 

vectors. 

4. Apply PCA on the whitened feature vector centers 

to compute the final discriminant feature vector. 

     In the second level of subspace analysis,  

1.   Combine the extracted discriminant feature vectors   

from each slice into a new feature vector. 

2.  Apply PCA on the new feature vector to remove 

redundant information in multiple frames. The 

features with large eigenvalues are selected to form 

the final feature vector for recognition.

     In the second level subspace analysis we only use 

PCA instead of unified subspace analysis. This is 

because the intrapersonal variation has already been 

reduced in the first level whitening step and 

discriminant features have been extracted in step 4 of 

the first level. Repeating them will not add any new 

information. However, there is a significant amount of 

overlap information between different slices since the 

frames are still quite similar with each other even with 

expression changes. PCA is needed to reduce the 

redundant information. 

     We can show that the multiple level subspace 

analysis does not loss much information compared to 

the original subspace analysis. This is similar to the 

multilevel dominant eigenvector estimation algorithm in 

[13]. Here we gave a more detailed proof. Since the 

whitening step removes intra-personal variations which 

contain only unwanted information, we do not need to 

consider them when analyzing information lose in the 

algorithm. So we only need to focus on the two PCA 

steps. To compute PCA, we first form an n by m sample 

matrix, 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

=
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,  (1) 

where ix  is a video cube feature vector, n is the vector 

length, and m is the number of training samples. By 

breaking the long feature vector into g = n/k groups of 

small feature slices of length k, 

“Zero”                “one”                       “two”                  “three”                  “four” 

(b) Face Video Frames 

Figure. 1. Example video sequence and corresponding speech signal. 

(a) Speech Signal

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04) 

1063-6919/04 $20.00 © 2004 IEEE 



+−+−+−

+++

=

)()()(

)1)1(()1)1(()1)1((

)2()2()2(

)1()1()1(

)()()(

)1()1()1(

21

21

21

21

2

21

21

1

nxnxnx

kgxkgxkgx

B

kxkxkx

kxkxkx

B

kxkxkx

xxx

B

A

m

m

g

m

m

m

m

       , (2) 

we can perform PCA on each of the g group short 

feature vector set iB . Then a new feature vector is 

formed by the first few selected eigenfeatures of each 

group. The final eigenvectors are computed by applying 

PCA to this new feature vector. To prove that the 

eigenvalues computed this way are a close 

approximation of the standard one step PCA, we study 

the two-group case here. The feature vector matrix and 

its covariance matrix are 

=
2

1

B

B
A ,   (3) 
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Let the eigenvector matrices of the covariance 

matrices 1W  and 2W  be 1T  and 2T  respectively, then 

1111 Λ=TWT T ,   (5) 

2222 Λ=TWT T ,  (6) 

Where 1Λ  and 2Λ  are the diagonal eigenvalue 

matrices. The effective rotation matrix for the first-step 

group PCA is 

1
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T is also an orthogonal matrix, since 
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So, after the first-step group PCA, the covariance matrix 

of the rotated feature vector, 
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is a similar matrix of the original feature vector 

covariance matrix W , because of the orthogonality of 

the rotation matrix T . Since similar matrices have the 

same eigenvalues, we can use the right most term of Eq. 

(9) to discuss the impact on W  by keeping only the first 

few dominant eigenvalues in each group. In Eq. (9), 

nbΛ  and nsΛ  represent the larger dominant eigenvalue 

section and the smaller negligible eigenvalue section of 

the eigenvalue matrix nΛ  respectively, for 1n =  or 2. 

xxC , where x b=  or s , represents the cross-

covariance matrix of the two groups of rotated features. 

By keeping only the dominant eigenvalues in the second 

level PCA, the new feature vector covariance matrix 

becomes 

1

2

T

b bb

d

bb b

C
W

C

Λ
=

Λ
.   (10) 

The terms removed from rW  are 1sΛ , 2sΛ , ssC ,

bsC , and sbC . Since most energy is contained in the 

dominant eigenvalues, the loss of information due to 

1sΛ  and 2sΛ  should be very small. The energy 

contained in the cross-covariance matrix of the two 

small energy feature vectors, ssC , should therefore be 

even smaller. 

We can also show that bsC  and sbC  cannot be large 

either. If the two group features 1B  and 2B  are fairly 

uncorrelated with each other, then all the cross-

covariance xxC  matrices in Eq. (9) will be very small. 

On the other hand, if the two group features are strongly 

correlated with each other, the dominant eigenfeatures 

of the two groups will be very similar. Therefore the 

cross-covariance matrix bsC  of group-two large 

features with group-one small features will be similar to 

the cross-covariance matrix of the group-one large 

features with group-one small features, which is zero 

due to the decorrelation property of PCA. 

When the two group features 1B  and 2B  partially 

correlated, the correlated part should be mostly signal, 

since noise parts of the variable 1B  and 2B  rarely 

correlate with each other. The basic property of PCA is 

to preserve all signal energy in the first few large 
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eigenvalues. Therefore, most signal energy in 2B , and 

especially most of the 2B  signal energy that is 

correlated with 1B , will be preserved in the large 

eigenvalue section of 2B  covariance matrix. The energy 

that is discarded in the small eigenvalue section of 2B

will contain little if any energy that is correlated with 

1B . Therefore, bsC  and sbC  should be very small, and 

we will not lose much information by removing them 

from the covariance matrix rW .

Now that we have shown that the covariance matrix 

dW  is a close approximation of rW , and rW  is a 

similar matrix of W , we can say that the eigenvalues 

from dW  of the multi-level subspace method, are indeed 

a close approximation of the eigenvalues computed from 

W  of the standard PCA method. 

4. Experiments 

In this section, we conduct experiments on the 

XM2VTS face video database [7]. We select 294*4 

video sequences of 294 distinct persons from the four 

different sessions. For the training data, we select the 

294*3 video sequences of the first three sessions. The 

gallery set is composed of the 294 video sequences of 

the first session. The probe set is composed of the 294 

video sequences of the fourth session. The persons in 

the video are asked to read two sequence of numbers, “0 

1 2 3 4 5 6 7 8 9” and “5 0 6 9 2 8 1 3 7 4”. 

    From each video, 21 frames are selected by means of 

two strategies respectively: Audio-Video Temporal 

Synchronization and random selection without the audio 

information. So there are two different sets of face 

image sequences labeled as A-V Synchronization data 

and A-V non-synchronization data respectively. For the 

A-V synchronization data, each frame corresponds to 

the waveform peak of a digit. An additional frame is 

located at the midpoint of the end of the first sentence 

and the start of the second sentence.  

We first look at the recognition results of appearance 

based methods using image gray scale values directly as 

features. The results for both still image and video 

sequence are summarized in Table 1. The still image is 

either selected from the first frame of the video 

sequence (A-V Synchronization case), or is selected 

randomly from the video sequence (A-V Non-

Synchronization case). We can see that the performance 

of using still image directly by Euclidean distance 

classification is very poor (61%). This baseline result 

actually reflects the difficulty of the database. As we 

know that for face recognition experiments, if the probe 

image and the gallery image are from different sessions, 

the result is usually poor. This is the case for our 

experiments. Significant improvement is achieved by 

video data using the same Euclidean distance (78.3%). 

The recognition rate further jumps to 98% after we 

apply the multi-level subspace analysis algorithm. This 

clearly demonstrates that there are indeed a significant 

amount of information contained in the video sequence.  

Next we compare the temporal synchronization and 

non-synchronization results in the two columns of Table 

1. We again see a clear improvement of recognition 

accuracy by the A-V temporal synchronization approach 

for all the classification methods. Notice that although 

the improvement for the video classification using 

subspace analysis is only 1.7%, it reflects over 45% 

reduction of the recognition error rate, thus is more 

impressive than the other results. 

Table 1. Comparison of recognition results on the 

gray level appearance features. 

A-V temporal 

Synchronization 

(%) 

Non-

Synchronization 

(%) 

Euclidean 

Distance 
61.0 53.9 

Still

Image Subspace 

Analysis 
85.8 80.3 

Euclidean 

Distance 
78.3 74.9 

Video 
Subspace 

Analysis 
98.0 96.3 

Now we look at the results on spatially synchronized 

local wavelet features, summarized in Table 2. As 

expected, all results are further improved. The 

comparison among different methods further confirms 

our observation in Table 1. Notice the final recognition 

accuracy of the experiment using all the three 

algorithms, temporal synchronization, spatial 

synchronization, and multi-level subspace analysis, is 

99%. This is a very high accuracy considering that this 

is a cross session recognition. Finally, we compare our 

video recognition method with existing video based face 

recognition methods, the nearest frame method [8] and 

the mutual subspace method [8][11], in Table 3. Notice 

that the results for existing methods in Table 3 are 

computed from the A-V temporal synchronized video 

sequence, and our subspace analysis method is also 

applied to the nearest frame method. So they are already 

better than the original methods. We can still clearly see 

the significant improvement of our algorithms with only 

5% to 10% of their error rates. 

5. Conclusion 

  In this paper, we have developed an effective video-

based face recognition algorithm. The algorithm takes 

full advantage of all the spatial-temporal information in 
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the video sequence. In order to overcome the processing 

speed and data size problems, the spatial and temporal 

frame synchronization algorithm and multilevel 

subspace analysis algorithm are developed. Experiments 

on the largest available face video database have shown 

that all the three techniques are effective in improving 

the recognition performance. Near perfect recognition 

results are achieved by the new algorithm. It is a 

significant improvement comparing to still image based 

method and existing video based method. 

Table 2. Comparison of recognition results on the 

local wavelet features. 

A-V temporal 

Synchronization 

(%) 

Non-

Synchronization 

(%) 

Euclidean 

Distance 
71.2 65.4 

Still

Image Subspace 

Analysis 
94.2 86.4 

Euclidean 

Distance 
82.7 80.3 

Video 
Subspace 

Analysis 
99.0 97.6 

Table 3. Comparison of recognition results with existing 

video based methods. 

Video-based methods Recognition accuracy (%) 

Mutual Subspace 79.3 

Nearest frame using 

Euclidean distance 
81.7

Nearest frame using 

subspace analysis 
93.2

Multi-level Subspace 

using gray features 
98.0

Multi-level Subspace 

using wavelet features 
99.0
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