
Orthogonal Complement Component Analysis for Positive Samples  

in SVM Based Relevance Feedback Image Retrieval 

Dacheng Tao and Xiaoou Tang 

Department of Information Engineering 

The Chinese University of Hong Kong 

{dctao2, xtang}@ie.cuhk.edu.hk

Abstract 

Relevance feedback (RF) is an important tool to 
improve the performance of content-based image 

retrieval system. Support vector machine (SVM) based 

RF is popular because it can generalize better than 

most other classifiers. However, directly using SVM in 
RF may not be appropriate, since SVM treats the 

positive and negative feedbacks equally. Given the 

different properties of positive samples and negative 

samples in RF, they should be treated differently. 
Considering this, we propose an orthogonal 

complement components analysis (OCCA) combined 

with SVM in this paper. We then generalize the OCCA 

to Hilbert space and define the kernel empirical OCCA 
(KEOCCA). Through experiments on a Corel Photo 

database with 17,800 images, we demonstrate that the 

proposed method can significantly improve the 

performance of conventional SVM-based RF. 

1. Introduction 

Content-based image retrieval (CBIR) system [1] 

tries to retrieve images semantically relevant to user’s 

query from an image database based on automatically 

extracted visual features. However, the gap [2] 

between the low-level visual feature and the high-level 

semantic concepts of the image often leads to poor 

results. 

To bridge the gap and to scale the performance, the 

interactions between the user and the search engine are 

required. The user labels the previous retrieved images 

as semantically relevant or irrelevant and the computer 

uses the information to refine the retrieval results. The 

technique is generally named as relevance feedback 

(RF) [2-4]. RF is widely used as an important method 

to scale the performance in CBIR systems.  

MARS [4] introduced both a query movement and 

re-weighting techniques to estimate user’s sentiment. 

MindReader [3] formulated a minimization problem on 

parameters estimation process. PicHunter [5] proposed 

a stochastic comparison search as its RF algorithm. 

Zhou and Huang [6-7] formulated the RF as an optimal 

learning problem. Jing modeled the RF as a multi-class 

problem [8]. Friedman tried to learn local feature 

relevance to combine the best ones for k-nearest-

neighbor search [9]. Recently, support vector machine 

(SVM), a small sample learning algorithm, was 

introduced to RF procedure [10-13] because of its 

generalization ability. However, directly using SVM to 

RF may not be suitable because SVM handles the 

positive and negative feedbacks equally. In order to 

improve the performance of SVM RF, we propose an 

orthogonal complement components analysis to put 

more emphasis on positive samples and also simplify 

the SVM hyper-plane. Experiments on a Corel 

database show significant improvement of the RF 

performance by the new approach. 

2. Orthogonal Complement Components 

Analysis for SVM 

2.1. Analysis 

From the statistical learning theory [14], we know 

that the following inequality (1) holds with probability 

of at least δ−1  for any hn > .
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where h  denotes the Vapnik-Chervonenkis (VC) 

dimension  of the classifier function set, n is the size of 

the training set, and empR  describes the empirical risk. 

For all 0>δ  and Ff ∈  the inequality bounds the risk. 

The inequality (1) gives us a way to estimate the error 

on future data based only on the training error and the 

VC dimension of the classifier function set.  

It is well known that the smaller the risk value 

][ fR , the better the performance of the classifier. 

From (1), we can see that the risk depends on the 

empirical risk empR  and ( )δ,, nhG . Based on the 

representation of ( )δ,, nhG , we know that ( )δ,, nhG  is 

a strictly monotonically increasing function of h  for 

given n  and δ . h  is determined by the support 
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vectors when training data number is smaller than 

feature dimension. In addition, the VC dimension h  is 

almost an increasing function of the number of support 

vectors. Consequently, SVM’s performance depends 

mostly on the empirical risk, the number of the support 

vectors, and δ . Since δ  cannot be controlled 

manually, we can restrict empR  and the number of 

support vectors to achieve a good performance. 

In CBIR RF, it is easy to achieve zero empirical risk 

empR  by enough number of the support vectors. 

However, a large number of support vectors enlarge 

the VC dimension of SVM classifier h . Therefore, we 

want to restrict both h and empR . To solve the problem, 

an intuitive way is to search a subspace to reduce the 

training set. There are two possibilities: 1. project all 

positive feedbacks onto their center and then project all 

negative feedbacks onto the subspace; 2. project all 

negative feedbacks onto their center and then project 

all positive feedbacks onto the subspace. For CBIR, the 

first method is much more reasonable than the second 

one because all positive feedbacks are similar to the 

query image. Meanwhile, in the projection step, the 

optimal hyper-plane of SVM classifier can be 

deformed by any increasing positive feedbacks and 

SVM classifier will not be sensitive to any negative 

feedbacks. Therefore, more emphasis is put on positive 

samples. In addition, the resulting SVM hyper-plane 

will be simpler around the projection center. Following 

this observation, we propose an orthogonal complem-

ent components analysis to improve SVM. 

2.2. Orthogonal Complement Components 

Analysis Support Vector Machine 

Orthogonal Complement Components Analysis 

SVM can be mainly implemented in three steps. The 

first step is to project all positive feedback samples 

onto their center, the second step is to project all 

negative feedback samples onto the subspace, and the 

last step is to construct a SVM classifier in the 

subspace. 

For a set of positive feedback samples { }Pii ≤≤+ 1,x ,

where M

i R∈+x , M  is the dimension of the feature 

space and P  is the number of the positive feedbacks, 

Karhunen-Leove transformation (KLT) can be used to 

extract the principal subspace and its orthogonal 

complement. The principle components describe the 

variation of the positive feedbacks’ distribution while 

the orthogonal complement components describe the 

in-variation of the positive feedbacks’ distribution. The 

basis functions for the KLT are obtained by solving the 

eigenvalue problem: 

[ ] [ ]⊥⊥=
00

0 T

,                     (2) 

where  is the covariance matrix of the positive 

feedbacks,  is the principle subspace of , ⊥  is 

the orthogonal complement subspace of  in ,  is 

the corresponding diagonal matrix of eigenvalues of 

, and the eigenvalues of ⊥  are 0 . The unitary 

matrix ⊥  defines a coordinate transform, which de-

correlates the data, makes explicit the invariant 

subspaces of the matrix operator , and ensures that 

all positive feedbacks are mapped to their center. By 

KLT, we can obtain the orthogonal complement 

feature vector ( ) ( )++⊥+ −= xxy
T

, where =
=

++ P

i
i

P 1

1
xx

is the center of the positive feedbacks, +x  is the data 

matrix constructed by all positive feedbacks, and +
y  is 

the projected data matrix of positive feedbacks (It is 

clear that all columns of +
y  are equal). We call the 

transformation as orthogonal complement component 

analysis (OCCA), just like principal component 

analysis (PCA). OCCA preserves the invariant 

direction of the data distribution. 

Table 1. The algorithm of OCCA SVM. 

1. Calculate the covariance matrix  of the positive 

feedbacks. 

2. Calculate the orthogonal complement components 
⊥  of  according to [ ] 0=⊥⊥ T

.

3. Project all positive feedbacks +x  onto their 

center +
y .

4. Project all negative feedback samples −x  onto the 

orthogonal complement subspace, 

( ) ( )+−⊥− −= xxy
T

.

5. Project the remaining images x  in the database onto 

the orthogonal complement subspace, 

( ) ( )+⊥ −= xxy
T

.

6. Train a standard SVM classifier on [ ]−+= yyz , .

7. Resort the remaining projected images y  using the 

output of SVM ( ) ( ) bKyf
sN

i
iii +=

=1

, yzy α .

After projecting all positive feedbacks onto their 

center, we can project all negative feedbacks onto the 

subspace according to ( ) ( )+−⊥− −= xxy
T

, where −x  is 

the data matrix constructed by all negative feedbacks 

and −
y  is the projected data matrix of the negative 

feedbacks. 

Then all the images x  in the database are also 

projected onto the subspace through ( ) ( )+⊥ −= xxy
T

,
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where y  is the projected data matrix of the original 

data matrix x .

The standard SVM classification algorithm is 

executed on [ ]−+= yyz , , where N+=1z  and N  is the 

number of the negative feedbacks. Finally, we can 

measure the dissimilarity through the output of SVM 

( ) ( ) bKyf
sN

i
iii +=

=1

, yzy α , where 
SN  is the number of 

the support vectors. The outline of the proposed 

algorithm is shown in Table 1. 

2.3. Orthogonal Complement Components 

Analysis SVM in the Kernel Space 

In last Section, we derived the linear space OCCA. 

We know that a single Gaussian distribution often 

accurately describes the distribution of samples in the 

input feature space when the positive feedbacks are 

similar objects under the same conditions (e.g. similar 

view angle, similar illumination, etc.). However, this is 

not the case for CBIR. Therefore considering all 

positive feedbacks forming a single Gaussian is not 

reasonable. Meanwhile, the dimension of the 

orthogonal complement components decreases with the 

increasing of the positive feedbacks. Consequently, the 

performance of the system will be degraded by the 

noise. Therefore, generalizing the algorithm to its 

kernel version (KEOCCA SVM) will be helpful. 

To complete the KEOCCA SVM, the kernel version 

of KLT is required. The principal components can be 

extracted by kernel principal component analysis 

(KPCA) [16], because all eigenvectors with nonzero 

eigenvalues must be in the span of the mapped data. 

However, we cannot obtain all the orthogonal 

complement components of the positive feedbacks in 

this way. A feasible solution is to extract a subset of 

the orthogonal complement components. It means we 

can think that parts of the orthogonal complement 

space of positive feedbacks are spanned by the positive 

and negative feedbacks in the Hilbert space. Note that 

the orthogonal complement space of the positive 

feedbacks cannot be spanned by all images in the 

database, because many of the images in the database 

which are query relevant but not positive feedbacks, 

and we can only obtain the covariance matrix of the 

positive feedbacks. Hence the orthogonal complement 

components of the positive feedbacks constructed by 

all feedbacks are called the kernel empirical orthogonal 

complement components (KEOCC), while the 

transformation is called kernel empirical orthogonal 

complement component analysis (KEOCCA). 

Similar to SVM and KPCA, we first map the data 

x to ( )xψ  in Hilbert space, and then the kernel trick 

( ) ( ) ( )
ji

T

ji
K xxxx ψψ ⋅=,  is utilized to obtain the solution. 

We first calculate the covariance matrix of the positive 

feedbacks in the Hilbert space according to, 

( ) ( )( ) ( ) ( )( )−−=
=

++++P

i

T

ii
1

xxxx ψψψψ ,           (3) 

where ( ) ( )=
=

++ P

i
i

P 1

1
xx ψψ  is the center of the positive 

feedbacks in the Hilbert space. According to the 

previous analysis of the orthogonal complement 

components in the Hilbert space, we know that 

( ) ( ) ( ) ( ) ( ){ }−−+++⊥ ∈
NP

span xxxxx ψψψψψ ,...,,,...,,
~

121
(because 

we cannot obtain the complete orthogonal complement 

space, we mark the empirical orthogonal complement 

components as ⊥~
.) Therefore the basis function for 

the KEOCCA can be solved by the eigenvalue problem, 

( ) ⊥⊥=0
~~ T

,

where ( ) ( )+=
+

+=

−
−

=

+⊥ PN

Pi
Pii

P

i
ii

11

~
xx ψξψξ .

Through the kernel trick, the eigenvalue problem 
can be solved by using the kernel matrix K ,

( ) ( ) ( ) ( ) ( )KKKK −−=
= =

⋅⋅
=

⋅⋅
⊥⊥ P

i

T
P

k
ki

P

k
ki

T
T

PP1 1
,,

1
,,
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.

(4)
Kernel matrix is defined as, 

( ) ( ) ( )[ ]
( ) ( ) ( ) ( )
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(5)

Therefore, we can obtain the KEOCC according to ,

which makes ( ) ⊥⊥=0
~~ T

.

Similar to OCCA SVM, we project the positive 

feedbacks, negative feedbacks, and all images in the 

database onto the KEOCC spanned space by 

( ) ( ) ( )( )+⊥ −= xxy ψψ
T~

. In KEOCC, the positive 

feedback, negative feedback, and image in the database 

are represented by −+
yy , , and y respectively. 

Using [ ]−+= yyz , , the standard SVM classification 

algorithm is trained. Finally, we can measure the 
dissimilarity through the output of SVM according to 

( ) ( ) bKyf
sN

i
iii +=

=1

, yzy α , where SN  is the number of 

the support vectors. The algorithm is shown in Table 2. 
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Table 2. The algorithm of KEOCCA SVM. 

1. Calculate the kernel matrix K .

2. Calculate the kernel empirical orthogonal 

complement components ⊥~
 of the kernel 

covariance matrix  of the positive feedbacks by 

( ) ⊥⊥=0
~~ T

.

3. Project all positive feedbacks +x  onto their center 
+

y  according to ( ) ( ) ( )( )++⊥+ −= xxy ψψ
T~

.

4. Project all negative feedback samples −x  onto the 
empirical kernel orthogonal complement subspace 

according to ( ) ( ) ( )( )+−⊥− −= xxy ψψ
T~

.

5. Project the remaining images x  in the database to 

the subspace according to ( ) ( ) ( )( )+⊥ −= xxy ψψ
T~

.

6. Train a standard SVM classifier on [ ]−+= yyz , .

7. Resort the projected remaining images y  using the 

output of SVM ( ) ( ) bKyf
sN

i
iii +=

=1

, yzy α .

3. Image Retrieval System 

In CBIR, we assume that the user expects the most 
possible retrieval results after each RF iterations, i.e. 

the search engine is required to feedback the most 

semantically relevant images according to the previous 

feedback samples. Meanwhile, the user is impatient, 
who will never label a large number of images in each 

RF iteration and only does a few numbers of iterations 

[17]. For image retrieval, the images are represented by 

color [18], texture [19], and shape [20]. Color 
information is the most important features for image 

retrieval because color is robust with respect to scaling, 

orientation, perspective, and occlusion of images [18]. 

Texture information is also an important cue for image 
retrieval. Previous studies on texture have shown that 

texture information based on structure and orientation 

fits the model of human perception well. Shape 

information is another type of important clues that fit 
the perception of human, and many image retrieval 

systems use the feature. In this paper, we select the 

color histogram [18], Gabor texture [19], and edge 

direction histogram [20] to represent images.  
Figure 1 shows the user interface of our image 

retrieval system. Here query by example is used. To 

scale the performance, we focus on the RF algorithms. 

First, user selects a query image from the thumbnail 
gallery and clicks the “Set as Query” button. Then user 

clicks the “Retrieval” button, and the images in the 

gallery are resorted. Next, user provide the feedback by 

clicking on the “thumb up” or “thumb down” button in 
terms of his judgment of the relevance of the retrieved 

image. Finally, user clicks the “Retrieval” button to 

resort the images in the gallery. The last two steps can 

be done iteratively to obtain a satisfactory performance. 

Figure 1. The user interface of the system. 

4. Experimental Results 

The experiments were divided into three parts. 
Accuracy, which is the ratio of the number of relevant 

images retrieved to the top N retrieved images, is used to 

evaluate the retrieval performance. For algorithms, i.e. 

SVM [10], OCCA SVM, KEOCCA SVM, we choose 
the Gaussian kernel: 

( ) 2

2,
yx

yx
−−= ρ

eK , 1=ρ .                              (6) 

The first evaluation experiment was executed on a 

small size database, which includes 1,600 wildlife 

images with 16 different types of wildlife animals from 
Corel. We use all 1,600 images as queries. During RF 

iterations, the first 5 query relevant and irrelevant 

images were selected as positive and negative 

feedbacks from the top 48 retrieved images in the 
previous iteration, respectively. In the first experiment, 

we want to compare the performance between these 

proposed algorithms and the traditional SVM based RF 

algorithms. In this experiment, we did RF 4 times. 
Figure 2 shows the experimental results. We can see 

that the proposed KEOCCA SVM can significantly 

outperform SVM. 

Most recent CBIR evaluation experiments were 
executed on large-scale image database. In this 

experiment, we compare the new algorithm KEOCCA 

SVM with SVM in a subset of Corel Photo Gallery [1], 

which includes 17, 800 images with 90 concepts. The 
computer randomly selected 300 queries. For each 

query image, 9 RF iterations were executed. The 

experimental results are shown in Figure 3. From the 

figure, we can see that the proposed method KEOCCA 
SVM performs much better than the original SVM. 
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Figure 2. Evaluation experiment on small database. 

At last, we also did some real-world experiments. 
We randomly select some images as the queries. For 

each query, we did RF iteration 4 times. For each RF 

iteration, we select some query relevant and irrelevant 

images as positive and negative feedbacks from the 
first three screen shots, respectively. The number of the 

positive and negative feedbacks is less than 10. 

Meanwhile, they are not the top retrieved images. We 

chose them according to the sentiments. Figure 4 
shows the experimental results. The top-left image of 

each figure is the query. We can see that the proposed 

algorithm KEOCCA SVM can work well in practical 

applications. 

5. Conclusion 

To improve the performance of content-based image 

retrieval (CBIR), relevance feedback (RF) plays an 
essential role. Recently, Support Vector Machine 

(SVM) has been used in RF. The advantage of SVM is 

that it can generalize better than many other classifiers. 

To improve SVM based-RF we propose the orthogonal 
complement component analysis (OCCA) combined 

with the SVM. We then generalize the OCCA to 

Hilbert space and define the kernel empirical OCCA 

(KEOCCA). Finally, we combine the KEOCCA with 
SVM. Through experiments on Corel Photo Galley 

with 17,800 images, we show that our new method can 

outperform the original SVM-based RF significantly. 
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Figure 3. Evaluation Experimental Results on Large-Scale Corel Photo Gallery with 17,800 images. The top-left, top-middle, 

top-right, bottom-left, bottom-middle, and bottom-right figures show the mean accuracy curve with 9 RF iterations in the top 10,

20, 30, 40, 50, and 60 retrieved images, respectively. 

Figure 4. Real-World Experimental results in the 4th RF iteration. The top-left image of each subfigure is the query. 
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