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Abstract 

In this paper, we present a novel approach to solving the 
supervised dimensionality reduction problem by encoding 
an image object as a general tensor of 2nd or higher or-
der.  First, we propose a Discriminant Tensor Criterion 
(DTC), whereby multiple interrelated lower-dimensional 
discriminative subspaces are derived for feature selection.  
Then, a novel approach called k-mode Cluster-based Dis-
criminant Analysis is presented to iteratively learn these 
subspaces by unfolding the tensor along different tensor 
dimensions.  We call this algorithm Discriminant Analysis 
with Tensor Representation (DATER), which has the fol-
lowing characteristics: 1) multiple interrelated subspaces 
can collaborate to discriminate different classes; 2) for 
classification problems involving higher-order tensors, 
the DATER algorithm can avoid the curse of dimensional-
ity dilemma and overcome the small sample size problem; 
and 3) the computational cost in the learning stage is re-
duced to a large extent owing to the reduced data dimen-
sions in generalized eigenvalue decomposition.  We pro-
vide extensive experiments by encoding face images as 
2nd or 3rd order tensors to demonstrate that the proposed 
DATER algorithm based on higher order tensors has the 
potential to outperform the traditional subspace learning 
algorithms, especially in the small sample size cases. 

1. Introduction 

Subspace learning [15] is an important topic in computer 
vision research.  Most traditional algorithms, such as 
Principal Component Analysis (PCA) [10] and Linear 
Discriminant Analysis (LDA) [1], treat an input image 
object as a vector [2][6].  Some recent works, however, 
have started to consider an object as a two dimensional 
matrix for unsupervised learning [8][17].  Liu et. al. [5] 
proposed a special LDA to compute the intra-class and 
inter-class scatter matrices by replacing the feature vectors 
with matrix-formed features.  These recent approaches beg 
the question of whether it is possible to gain even more in 
supervised or unsupervised learning by taking into account 
the representation of higher-order tensors.  In this paper, 
we give a positive answer to this question. 

                                                
  *This work was performed at Microsoft Research Asia. 

Our observation is as follows.  In the real world, the ex-
tracted feature of an object often has some specialized 
structures and such structures are in the form of 2nd or 
even higher-order tensors.  For example, this is the case 
when a captured image is a 2nd-order tensor, i.e. matrix, 
and when the sequential data such as a video sequence for 
event analysis, is in the form of 3rd-order tensor.  It would 
be desirable to uncover the underlying structures in these 
problems for data analysis.  However, most previous work 
on dimensionality reduction and classification would first 
transform the input image data into a vector, which ig-
nores the underlying data structure and often leads to the 
curse of dimensionality problem and the small sample size 
problem.  In this paper, we investigate how to conduct 
discriminant analysis by encoding an object as a general 
tensor of 2nd or higher order.  Also, we explore the char-
acteristics of the higher-order-tensor based discriminant 
analysis in theory.  We will demonstrate that this analysis 
allows us to avoid the above two problems when using the 
vector representation. 

More specifically, our contributions are as follows.  
First, we propose a novel criterion for dimensionality re-
duction, called Discriminant Tensor Criterion, which 
maximizes the inter-class scatters and at the same time 
minimizes the intra-class scatters both measured in the 
tensor based metric.  Different from the traditional sub-
space learning criterion which derives only one subspace, 
in our approach multiple interrelated subspaces are ob-
tained through the optimization of the criterion where the 
number of the subspaces is determined by the order of the 
feature tensor used. 

Second, we present an efficient procedure to iteratively 
learn these interrelated discriminant subspaces via a novel 
tensor analysis approach, called the k-mode cluster-based 
discriminant analysis.  We explore the theoretical founda-
tion of the k-mode cluster-based discriminant analysis to 
show that it unfolds the tensors into matrices along the k-
th dimension.  When the column vectors of the unfolded 
matrices are considered as the new objects to be analyzed, 
the cluster-based discriminant analysis is performed by 
clustering these samples according to their column indices 
of the unfolded matrices.  This explanation, as we show 
later, provides an intuitive explanation for the superiority 
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of our proposed algorithm in comparison to other vector 
based approaches. 

We summarize the advantages of our algorithm, Dis-
criminant Analysis with Tensor Representation (DATER), 
as follows:  

1) DATER is a general supervised dimensionality re-
duction framework.  It can avoid the curse of dimensional-
ity dilemma using higher order tensors and k-mode clus-
ter-based discriminant analysis, because the latter is per-
formed in a much lower-dimension feature space than the 
traditional vector-based methods, such as LDA, do. 

2) DATER also helps overcome the small sample 
problem.  As explained later, in the k-mode cluster-based 
discriminant analysis, the sample size is effectively multi-
plied by a large scale.  

3) Much more feature dimensions are available in 
DATER than in LDA, because the available feature di-
mensions of LDA is theoretically limited by the number of 
classes in the data, whereas DATER is not.   

4) The computational cost can be reduced to a large 
extent as the generalized eigenvalue decomposition in 
each step is performed on a feature space with smaller size. 

As a result of all the above characteristics, we expect 
DATER to be a natural alternative to LDA algorithm and 
a more general algorithm for the pattern classification 
problems in image analysis in which an object can be en-
coded in tensor representation. 

2. Discriminant Analysis with Tensor Repre-
sentation

Most previous approaches to subspace learning, such as 
the popular PCA and LDA, consider an object as a vector.  
The corresponding learning algorithms are performed on a 
very high dimensional feature space.  As a result, these 
methods usually suffer from the problem of Curse of Di-
mensionality.  On a close examination, however, we have 
found that most objects in computer vision are more natu-
rally represented as a 2nd or higher order tensor.  For ex-
ample, the image matrix in Figure 1 (a) is a 2nd-order ten-
sor and the filtered Gabor-image in Figure 1 (b) is a 3rd-
order tensor.  In this work, we study how to conduct dis-
criminant analysis in the general case that objects are rep-
resented as tensors of 2nd or higher order. 

2.1. Discriminant Tensor Criterion 

In this paper, the bold uppercase symbols represent ten-
sor objects, such as , , ,A B X Y ; the normal uppercase 
symbols represent matrices, such as ,U S ; the italic lower-
case symbols represent vectors, such as ,x y ; and the 

normal lowercase symbols represent scale numbers, such 
as a,b,c . Assume that the training sample set consists of 

the n-th order tensors 1 2 ...{ ,  =1,..., }nm m m
i i N× × ×∈X R , where 

N is the number of tensor objects and 
iX  belongs to the 

class and is indexed as {1,2,..., }i cc N∈ .  Consequently, 

the sample set can be represented as an (n+1)-th order 

sample tensor 1 2 ... nm m m N× × × ×∈X� R .
Before describing the Discriminant Tensor Criterion,

we review the terminologies on tensor operations 
[3][4][11][12]. The inner product of tensors A and B with 

the same dimensions is 1

1 11

,...,

,..., ,...,1,..., 1
, n

n nn

m m

i i i ii i= =
=∑A B A B ;

the norm of a tensor A  is defined as || || ,=A A A and 

the distance between tensors A and B are defined 
as ( , ) || ||D = −A B A B . In the 2nd-order tensor case, i.e.

matrix-form, the norm is called Frobenius norm and is 
written as || ||FA .  The k-mode product of tensor A  and 

matrix k km mU ′×∈R is defined as k U= ×B A , where 

1 1 1 1 1 1,.., , , ,..., ,.., , , ,..., ,1
, 1,...,k

k k n k k n

m

i i j i i i i i i i i j ki
U j m

− + − +=
′= ∗ =∑B A [12]. 

The Discriminant Tensor Criterion is designed to pur-
sue multiple interrelated projection matrices, i.e. sub-
spaces, which maximize the inter-class scatters and at the 
same time minimize the intra-class scatters as measured in 
the tensor metric as described above.  That is,  

2
1 1 1 1

2
1 1 1 11

|| ... ... ||*
1 || ... ... |||

( | ) c c n n n nc

n i n n c n niik k

n U U U Un
k k U U U UU

U arg max
=

× × − × ×

= × × − × ×

∑=
∑

X X

X X (1)

where cX is the average tensor of the samples belonging to 

class c, X is the total average tensor of all the samples, 
and cn is the sample number of class c.  Similar to the 

Fisher Criterion [1], the inter-class scatter is measured by 
the sum of the weighted distances between the class center 
tensors cX and total sample center tensor X ; meanwhile, 

the intra-class scatter is measured by the sum of the dis-
tances between each sample to its corresponding center 
tensor.  Despite the similarity, the data representation and 
metric are different between these two criterions.  

Equation (1) is equivalent to a high-order nonlinear 
programming problem with a nonlinear constraint; thus 
normally there is no closed-form solution.  Alternatively, 
we search for an iterative optimization approach to derive 
the interrelated discriminative subspaces.  

Figure 1. Tensor representation examples: 2nd and 
3rd order object representations. 
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2.2. k-mode Cluster-based Discriminant Analysis  

Before describing the iterative approach to optimizing 
the Discriminant Tensor Criterion, we introduce the k-
mode cluster-based Discriminant Analysis approach, 
which optimizes the objective function from the k-th di-
mension of the n-th order tensor.  We also provide a sound 
theoretical foundation for the optimization of the criterion 
by introducing the cluster-based Discriminant Analysis 
algorithm.   

Cluster-based Discriminant Analysis.  In the face rec-
ognition problem, it is often the case that the difference 
between the images of the same person is larger than the 
difference between the images of different persons due to 
the pose, illumination and expression variations.  For this 
problem the highly nonlinear properties can be observed 
in the classification hyper-plane.  An intuitive solution for 
this nonlinearity problem is to partition the sample data 
into several clusters and conduct LDA within each cluster 
in a local or global manner.  To this end, a Cluster-based 
Discriminant Analysis method can be applied.  It derives 
the same optimal projections for different clusters by op-
timizing the global Fisher Criterion that sums the scatter 
matrices from different clusters. 

In describing the Cluster-based Discriminant Analysis,
we assume that the samples are represented as vec-
tors { ,  =1,..., }m

ix i N∈R .  The data are clustered into K

clusters, and ki is the corresponding cluster index for 
sample xi.  The Cluster-based Discriminant Analysis opti-
mizes the following objective function: 

*

1 1

,
1 1

( ' )
( ' )

, ( )( )

, ( )( )

c

i i i

w

NK
k k k k k k k

B B B c c c
k c

K N
k k k k

w W W k k i c i c
k i

B

W

Tr w S w
Tr w S w

w arg max

S S S n x x x x

S S S x x x xδ

Τ

= =

Τ

= =

=

= = − −

= = − −

∑ ∑

∑ ∑

(2)

where symbols with superscript k means that their values 
are computed within the cluster k; e.g. k

cx  is the average 

vector of the samples belonging to class c and cluster k.
The operator ( )Tr ⋅ is the trace of a matrix and , 1

ik kδ =  if 

ik k= ; 0, otherwise.  Cluster-based Discriminant Analysis 

is a dimensionality reduction algorithm that is linear lo-
cally while nonlinear globally; thus, it has the potential to 
be superior to the LDA algorithm in the ability to separate 
different classes. 

k-mode Cluster-based Discriminant Analysis.  We 
now discuss how to optimize the objective function from 
only one direction of the tensor, i.e.

*
2

2

|| ||

|| ||
( )

k
k

U

c c k k k kc

ci k k k kii

n U U

U U
U arg max

× − ×

× − ×
= ∑

∑

X X

X X
(3)

Before this analysis, we introduce the conception of k-
mode unfolding of a tensor.  Figure 2 demonstrates two 
ways to unfold a 3rd-order tensor.  In the 1-mode version, 
a tensor is unfolded into a matrix along 1i -axis, and the 

matrix width direction is indexed by searching 2i -index 

and 3i -index iteratively.  For the 2-mode version, the ten-

sor is unfolded along the 2i -axis.  This process can be 

extended to the general n-th order tensor. 
Formally, the k-mode unfolding of a tensor into a matrix 

is defined as

1 2 ...k ii k n
m m m m mk

kF ≠
× × × ×∏∈ ⇐ ∈XR R             with 

1, ,..., 1, 1,
, 1 ( 1)

k n

nnk
i j i i l ol l k o l o k

F j i m
= ≠ = + ≠

= = + −∑ ∏X
(4)

The problem in Eqn. (3) is actually a special, k-mode, 
cluster-based discriminant analysis problem.  It can be 
understood in two steps: 1) the sample tensors are un-
folded into matrices in k-mode; 2) the column vector of 
the unfolded matrices is considered as a new object with 
the same class label as the original sample tensor and then 
the Cluster-based Discriminant Analysis is conducted by 
partitioning these new objects into multiple clusters ac-
cording to their column indices in the unfolded matrices.  
Theorem 1 below proves this property. 

Theorem 1.  The optimization problem in Eqn. (3) can be 
reformulated as a special Cluster-based Discriminant 
Analysis problem as follows 

Figure 2. Illustration of the k-Mode unfolding and k-
Mode Cluster-Based Discriminant Analysis for a 3rd 
-order Tensor.
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*
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, , , ,

1
1

( )

( )

, ( )( )

, ( )( )

k

co
o k

o
o k

i i

k
U

Nm
j j k j k j k j k j

B B B c c cj
c

Nm
j j k j k j k j k j

W W W i c i cj
i

Bk k

Wk k

Tr U S U

Tr U S U
U arg max

S S S n X X X X

S S S X X X X

≠

≠

Τ
=

=

Τ
=

=

Τ

Τ

= =

= =

=

∏
− −

∏
− −

∑ ∑

∑ ∑

(5)

where, for the ease of presentation, ,k j
iX represents the j-th 

column vector of matrix k
iX that is the k-mode unfolded 

matrix from sample tensor iX . ,k j
cX and ,k jX are defined 

in the same way as ,k j
iX with respect to tensors cX and X .

In this formulation, the objects to be analyzed are the col-
umn vectors of the k-mode unfolded matrices of the tensor 
samples and they are clustered according to their column 
indices in the unfolded matrices. 
Proof.  Here, we take WS as example to prove the theo-

rem. With simple algebraic computation, we can obtain 
|| || || ||k

k FU X UΤ× =X , where kX is the k-mode unfolding 

of tensor X ; then, we have 
2 2

, , , ,

1

|| || || ||

[ ( )( ) ]

[ ( ( )( ) ) ]

[ ( ( )( ) ) ]

( )

i i

i i

i i

o
o k

i i

k k
i k k c k k i k c k Fi i

k k k k
k i c i c ki

k k k k
k i c i c ki

m
k j k j k j k j

k i c i c kj i

k W k

U U X U X U

Tr U X X X X U

Tr U X X X X U

Tr U X X X X U

Tr U S U

≠

Τ Τ

Τ Τ

Τ Τ

Τ Τ
=

Τ

× − × = −

= − −

= − −

∏
= − −

=

∑ ∑

∑

∑

∑ ∑

X X

Similarly, we can prove that  
2|| || ( )k

c c k k k k k B kc
n U U Tr U S UΤ× − × =∑ X X

Therefore, the optimization problem in Eqn. (3) can be 
reformulated as a special formulation of Eqn. (2), in which 
the tensor object is first unfolded into a matrix and each 
column vector of the k-mode unfolded matrices is consid-
ered as a new object.  Then the Cluster-based Discrimi-
nant Analysis is conducted by clustering these new objects 
according to their column indices in the unfolded matrices.  
The new formulation of Eqn. (4) integrates the k-mode 
unfolding method and the Cluster-based Discriminant 
Analysis algorithm; hence the procedure to optimize it is 
called k-mode Cluster-based Discriminant Analysis and it 
can be solved via the generalized eigenvalue decomposi-
tion method.                                                               �

2.3. Discriminant Analysis with Tensor Representa-
tion

As aforementioned, Discriminant Tensor Criterion often 
has no closed-form solutions.  In response to this problem, 
we present an iterative procedure to solve the problem. In 
each iteration, assuming that 1 1 1,..., , ,...,k k nU U U U− + were 

known, the Discriminant Tensor Criterion can be revised 
to

*
2

1 1 1 1
2

1 1 1 1

|| ... ... ||

|| ... ... ||k
k

U

c c n n n nc

n n c n ni ii

n U U U U

U U U U
U arg max

× × − × ×

× × − × ×
= ∑

∑

X X

X X
(6)

Denote 1 1 1 1 1 1... ...i i k k k k n nU U U U− − + += × × × ×Y X , then 

*
2

2

|| ||

|| ||k
k

U

c c k k k kc

ci k k k kii

n U U

U U
U arg max

× − ×

× − ×
= ∑

∑

Y Y

Y Y
(7)

Eqn (7)  has the same appearance of Eqn. (3) by replacing 

iX with iY ; thus, it can be solved using the above de-

scribed k-mode cluster-based discriminant analysis algo-
rithm.  That is, we first conduct the k-mode unfolding for 
each tensor object iY , then the cluster-based discriminant 

analysis is applied on the column vectors of the unfolded 
matrices by partitioning the new objects into multiple clus-
ters according to their column indices in the unfolded ma-
trices.  Note that the tensor iY may have different dimen-

sions from iX , and the k-mode unfolding of the tensor iY is

defined according to its own tensor dimensions.  The en-
tire procedure to optimize the Discriminant Tensor Crite-
rion is listed in Figure 3. 

3. Algorithmic Analysis  

In this section, we discuss the merits of the proposed pro-
cedure in terms of learnablity and computational complex-
ity.  As described later, LDA is intrinsically a special case 
of Discriminant Analysis with Tensor Representation
(DATER), when the latter reduces to the first-order tensor.  

Discriminant Analysis with Tensor Representation:
Given the sample set 1 2 ... nm m m N× × × ×∈X� R , their class 
labels {1,2,..., }i cc N∈ , and the final lower dimen-

sions 1 2 ... nm m m′ ′ ′× × × .

1. Initialize
1 2

0 0 0
1 2, ,...,

nm m n mU I U I U I= = = ;

2. For t =1, 2, … , maxT  do 

  a) For k =1, 2,…, n do
1 1

1 1 1 1 1 1

, , , ,

1
1

, , , ,

1
1

... ...

, ( )( )

, ( )( )

,

co
o k

o
o k

i i

k k

t t t t
i i k k k k n n

k
i k i

Nm
j j k j k j k j k j

B B B c c cj
c

Nm
j j k j k j k j k j

W W W i c i cj
i

m mt t t
B k W k k k

U U U U

Y

S S S n Y Y Y Y

S S S Y Y Y Y

S U S U U

≠

≠

− −
− − + +

Τ
=

=

Τ
=

=
′×

= =

= =

= × × × ×

⇐
∏

− −

∏
− −

= Λ ∈

∑ ∑

∑ ∑

Y X

Y

R

  b)If t>2 and 1|| || , 1,..,t t
k k k kU U m m k nε− ′− < = ,     break;

3. Output the projections , 1,...,k km mt
k kU U k n′×= ∈ =R .

Figure 3.  The procedure for Discriminant Analysis 
with Tensor Representation
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We show that DATER with higher-order tensors is supe-
rior to LDA in many aspects. 

Singularity and Curse of dimensionality.  In LDA, the 

size of the scatter matrices are
1 1

n n

k kk k
m m

= =
×∏ ∏ if a ten-

sor is transformed into a vector.  It is often the case that 

1

n

c k k
N N m

=
− < ∏ for a moderate data set.  Thus in many 

cases, the intra-class scatter matrix is singular and the ac-
curacy and robustness of the solution are degraded.  For 

most pattern recognition problems, 
1

n

k k
m

=∏ is very large, 

hence to train a credible classifier requires a huge number 
of training samples for the learnablity of LDA.  In 
DATER, however, the step-wise intra-class scatter matrix 
is of size k km m× , which is much smaller than that of LDA.  

As described in Section 2, the objects to be analyzed in 
DATER are the column vectors of the unfolded matrices 

and the sample number is enlarged to
i k i

m N
≠

∗∏ .

ki k i
m N m

≠
∗ >∏ can be satisfied in most cases; therefore, 

there is far less singularity problem in DATER when using 
higher-order tensors. Moreover, the number km is much 

smaller than
1

n

k k
m

=∏ , so the curse of dimensionality di-

lemma is reduced to a large extent. 
Available Projection Directions. The most important 

factor limiting the application of LDA is that the available 
dimension for pattern recognition has the upper 
bound 1cN − .  Although many algorithms have been pro-

posed to utilize the null space of the intra-class scatter 
matrix, the intrinsic dimension cannot be larger 
than 1cN − .  In the proposed DATER algorithm, the larg-

est number of the available dimensions for each subspace 
can be obtained through the following theorem. 

Theorem 2.  The largest number of the available dimen-
sion is { , ( 1) }k c ii k

min m N m
≠

− ∏ for DATER in each step. 

Proof.  As in the Equation (5), 
1

o
o k

m
j

B Bj
S S≠

=
=

∏
∑ , then  

1
( ) ( ) ( 1)

i
i k

m
j

B B c ij i k
rank S rank S N m≠

= ≠

∏
≤ ≤ −∑ ∏ ; on the other 

hand, ( )B krank S m≤ and the equality is satisfied when all 

the column vectors of matrix BS  is in full rank along the 

row direction.  So, the largest number of the available 

dimension is { , ( 1) }k c ii k
min m N m

≠
− ∏ .                        �

Moreover, there are n projection matrices, thus there are 
far more projection directions for dimensionality reduction 
in DATER and DATER presents discriminating capability 
evaluation for most features.�

Computational Cost. For ease of understanding, let us 
assume that the sample tensor has uniform dimension 

numbers for all dimensions, i.e. , 1,..,im m i n= = .  There-

fore, the complexity of LDA is 3O(m )n , while in DATER, 

the complexity to compute the scatter matrices is 
n+1O(n m )∗ and complexity for general eigenvector de-

composition is 3O(n m )∗ for each loop, which is much 

lower than that of LDA.  Although DATER has no closed-
form solution and many loops are required for the optimi-
zation, it is still much faster than LDA owing to its sim-
plicity in each iteration loop. 

Connections to LDA and 2DLDA. LDA and 2DLDA 
[5] both optimize the so called Fisher Criterion: 

* ( )

( )w

B

W

Tr w S w

Tr w S w
w arg max

Τ

Τ=                     (8)

In LDA, the sample data are represented as vectors 
{ ,  =1,..., }m

ix i N∈R and the scatter matrices are  

1 1
( )( ) , ( )( )c

i i

N N

B c c c w i l i lc i
S n x x x x S x x x xΤ Τ

= =
= − − = − −∑ ∑

In 2DLDA, the sample data are matrices represented as 
1 2{ ,  =1,..., }m m

iX i N×∈R and the scatter matrices are com-

puted by replacing the vectors in (8) as matrices and: 

1 1

( ) ( ) ) ( )(,
c

i i

N N

B c c c w i c i c
c i

S n X X X X S X X X XΤ Τ

= =

= −− − −=∑ ∑

In both cases, the averages are defined in the same way as 
the case with tensor representation. Actually, with simple 
algebraic computation, LDA and 2DLDA are both special 
formulations of our proposed DATER: LDA can be re-
formulated as a special case of DATER with n=1; while 
2DLDA can be reformulated as a special case of DATER 
with n=2, 

11 mU I= and using only one subspace instead of 

two in regular DATER with n=2. 

4. Experiments 

In this section, two benchmark face databases CMU PIE 
[9] and FERET [7] were used to evaluate the effectiveness 
of our proposed algorithm, Discriminant Analysis with 
Tensor Representation, in face recognition accuracy. Our
proposed algorithm is referred to as DATER/2-2 and 
DATER/3-3 for problems with tensor of 2nd and 3rd order, 
respectively, where the first number (the first 2 in 2-2) 
refers to the tensor order and the second number means 
the number of subspaces used. 

These algorithms were compared with the popular Ei-
genface, Fisherface and the 2DLDA algorithms.  The 
2DLDA algorithm has been proved to be special DATER 
using a single subspace, thus is referred to as DATER/2-1 
in the experiment.  In order to compare with Fisherface 
fairly, we also report the best result on different feature 
dimensions, which is referred to as the symbol O after 
Fisherface in all results. 

In all the experiments, the gallery and probe data were 
both transformed into lower-dimension tensors or vectors 
via the learned subspaces, and the nearest neighbor was 
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used as the classifier for final classification. The experi-
ments were conducted by encoding the face images in 
different ways, i.e. vector, matrix and the filtered Gabor 
tensor.  Moreover, the algorithms are also evaluated with 
different number of training samples to demonstrate their 
robustness for small sample-size problems. 

4.1. PIE database—DATER/3-3 and DATER/2-2

The CMU PIE (Pose, Illumination, and Expression) da-
tabase contains more than 40,000 facial images of 68 peo-
ple.  The images were acquired over different poses, under 
variable illumination conditions and with different facial 
expressions.  In this experiment, two sub-databases were 
used to evaluate our proposed algorithms. 

In the first sub-database, referred to as PIE-1, five near 
frontal poses (C27, C05, C29, C09 and C07) and illumina-
tion indexed as 08 and 11 were used.  Each person has ten 
images and all the images were aligned by fixing the loca-
tions of two eyes, and normalized to 64*64 pixels.  
Histogram equilibrium was applied in the preprocessing 
step.   

The data set was randomly partitioned into gallery and 
probe sets; and two samples per person was used for train-
ing.  We extracted 40 Gabor features with five different 
scales and eight different directions in the down-sampled 
positions and each image is encoded as a 3rd order tensor 
of size 16*16*40.  Table 2 shows the detailed face recog-
nition accuracies.  The results clearly demonstrate that 
DATER/3-3 is superior to all other algorithms.  Moreover, 
it shows that the Gabor feature can help improve the face 
recognition accuracy in both Eigenface and Fisherface/O. 

Table 2. Recognition accuracy (%) comparison of Eigen-
face, Fisherface/O and DATER with tensors of different 
orders on PIE-1 database. 

Algorithm Accuracy 
Eigenface  (Grey) 56.9 
Eigenface (Gabor) 70.6 

Fisherface/O (Grey) 53.8/66.1 
Fisherface/O (Gabor) 71.6/79.8 
DATER/2-1 (Grey) 72.8 
DATER/2-2 (Grey) 80.2 

DATER/3-3 (Gabor) 82.9 

Another sub-database PIE-2 consists of the same five 
poses as in PIE-1, but the illumination indexed as 10 and 
13 were also used. Therefore, the PIE-2 database is more 
difficult for classification.  We conducted three sets of 
experiments on this sub-database.  Table 3 lists all the 
comparative experimental results of the DATER/2-2, Ei-
genface, Fisherface/O and DATER/2-1. The reconstruc-
tion based Eigenface performs very poor in all the three 
cases; Fisherface is better than Eigenface, yet it also fails 

in the cases with only two training images for each person. 
In all the three experiments, DATER/2-2 performs the 
best. 

Table 3. Recognition accuracy (%) comparison of 
DATER/2-2, Eigenface, Fisherface/O and DATER/2-1 on 
the PIE-2 database 

 G4/P6 G3/P7 G2/P8 
Eigenface 38.9 28.3 26.6 

Fisherface/O 79.9/80.2 65.3/65.8 38.1/47.6 

DATER/2-1 74.3 71.9 63.5 

DATER/2-2 82.3 80.7 66.7 

4.2. FERET database—DATER/3-3

In this experiment, seventy people of the FERET data-
base were used and each person has six different images, 
two of them were applied as gallery set and the other four 
for probe set. We extracted 40 Gabor features with five 
different scales and eight different directions in the down-
sampled positions and each image was encoded as a 3rd 
order tensor of size 28*23*40 for DATER/3-3.   

We compared all the above mentioned algorithms on 
the FERET database.  Table 4 demonstrates the compara-
tive face recognition accuracies.  Similar to the results in 
the PIE-1 sub-database, it shows that the Gabor features 
significantly improve the performance and DATER/3-3 
consistently outperforms all the other algorithms. 

Table 4. Recognition accuracy (%) comparison of 
DATER/3-3, Eigenface, Fisherface/O, DATER/2-1 and 
DATER/2-2 on the FERET database

Algorithm  Accuracies 
Eigenface (Grey) 65.7 

Eigenface (Gabor) 75.7 
Fisherface/O (Grey) 69.3/74.3 

Fisherface/O (Gabor) 73.9/76.1 
DATER/2-1 (Grey) 73.5 
DATER/2-2 (Grey) 80.4 

DATER/3-3 (Gabor) 83.6 

4.3. Discussions 

From the above experimental results, we can observe that: 
1) DATER/3-3 consistently outperforms the other algo-

rithms in all the cases.  And in all cases, DATER/2-2 
presents the best performance on the gray-level im-
ages. 

2) DATER/3-3 and DATER/2-2 are very robust in the 
cases with a small number of samples.  In these cases, 
Eigenface almost fails and no satisfying results are 
obtained.  Fisherface/O is slightly better than Eigen-
face, but is still much worse than DATER/2-2 and 
DATER/3-3.  
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3) DATER/2-1 is also robust in the cases with a small 
number of training samples and outperforms Fisher-
face/O in most cases.  However it is worse than 
DATER/2-2 and DATER/3-3 in face recognition ac-
curacy in all the cases. 

4) As discussed in [1] that LDA is not always superior to 
PCA, especially in the cases when the training set can 
not represent the data distribution well.  There are 
some cases in which Eigenface outperforms Fisher-
face, such as in the PIE-1 database. 

5) Many methods have been proposed to improve the 
performance of Fisherface.  In this work, we only 
tested one way that explores the performances on all 
feature dimensions. We did not further evaluate the 
other methods because those methods, such as ran-
dom subspace [13], dual-space LDA [14] and gener-
alized Singular Value Decomposition [18], can also 
be applied on DATER with higher order tensors. 

5. Conclusions 

In this paper, a novel algorithm, Discriminant Analysis 
with Tensor Representation (DATER), has been proposed 
for supervised dimensionality reduction with a general 
tensor representation. In DATER, image objects were en-
coded as n-th order tensors.  An approach called k-mode 
cluster-based Discriminant Analysis was proposed to it-
eratively learn the multiple interrelated discriminative 
subspaces for the dimensionality reduction of the higher 
order tensor.  Compared with traditional algorithms, such 
as PCA and LDA, the proposed algorithm effectively 
avoids the curse of dimensionality dilemma and over-
comes the small-sample-size problem.  Due to the low 
requirement on samples and the high performance in clas-
sification problem, DATER can be an alternative of the 
LDA algorithm for solving problems where objects are 
encoded as tensors.  An interesting future application of 
our proposed DATER algorithm is to apply DATER/4-4 
for video-based face recognition [16] and we are planning 
to explore this application in future work. 

Acknowledgment  

This work was partially supported by the Nature Science 
Fund of Anhui Province, P. R. China, under grant no. 
03042307, a Hong Kong RGC Grant HKUST-6180/02E 
and a Hong Kong RGC/NSFC joint project 
N_CUHK409/03. 

References 
[1]  P. Belhumeur, J. Hespanha and D. Kriegman. “Eigenfaces 

vs. Fisherfaces: Recognition Using Class Specific Linear 
Projection”, IEEE Trans. Pattern Analysis and Machine 
Intelligence, vol. 19, No. 7, 1997, pp. 711-720. 

[2]  X. He, S. Yan, Y.  Hu, P. Niyogi, and H. Zhang. "Face 
Recognition using Laplacianfaces”, IEEE Transactions on 
PAMI, Vol. 27, No. 3,  Mar. 2005.  

[3]  T. Kolda. “Orthogonal Tensor Decompositions”, SIAM 
Journal on Matrix Analysis and Applications, Volume 23, 
Number 1, 2001, pp. 243-255. 

[4]  L. Lathauwer, B. Moor and J. Vandewalle. “A Multilinear 
Singular Value Decomposition”, SIAM Journal on Matrix 
Analysis and Applications, Volume 21, Number 4, 2000, 
pp. 1253-1278. 

[5]  K. Liu, Y. Cheng and J. Yang. “Algebraic feature extrac-
tion for image recognition based on an optimal discrimi-
nant criterion”, Pattern Recognition (26), No. 6, June 1993, 
pp. 903-911. 

[6]  B. Moghaddam and A. Pentland. “Probabilistic Visual 
Learning for Object Representation”, IEEE Trans. On 
PAMI, vol. 19, pp. 696-710, 1997. 

[7]  I. Philips, H. Wechsler, J. Huang, and P. Rauss. “The 
FERET database and evaluation procedure for face recog-
nition algorithms”, Image and Vision Computing, Vol. 16, 
PP.295-306, 1998. 

[8]  A. Shashua and A. Levin. “Linear Image Coding for Re-
gression and Classification using the Tensor-rank Princi-
ple”, IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), Dec. 2001, Hawaii. 

[9]  T. Sim, S. Baker, and M. Bsat. “The CMU Pose, Illumina-
tion, and Expression (PIE) Database”, Proceedings of the 
IEEE International Conference on Automatic Face and 
Gesture Recognition, May, 2002. 

[10]  M. Turk and A. Pentland. “Face Recognition Using Eigen-
faces”, IEEE Conference on Computer Vision and Pattern 
Recognition, Maui, Hawaii, 1991. 

[11]  M. Vasilescu and D. Terzopoulos, "Multilinear Subspace 
Analysis for Image Ensembles'', Proc. Computer Vision 
and Pattern Recognition Conf. (CVPR '03), Vol.2, Madi-
son, WI, June, 2003, 93-99. 

[12]  M. Vasilescu and D. Terzopoulos. "TensorTextures: Multi-
linear Image-Based Rendering", Proc. ACM SIGGRAPH 
2004, Conference Los Angeles, CA, August, 2004. 

[13]  X. Wang and X. Tang, "Random sampling LDA for face 
recognition", Proc. IEEE Conf. Computer Vision and Pat-
tern Recognition (CVPR), June 2004. 

[14]  X. Wang and X. Tang, “Dual-space linear discriminant 
analysis for face recognition,” Proc. IEEE Conf. Computer 
Vision and Pattern Recognition, 2004. 

[15]  X. Wang and X. Tang, “A unified framework for subspace 
face recognition,” IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, vol. 26, no. 9, pp. 1222-1228, 2004. 

[16]  X. Tang and Z. Li, "Frame synchronization and multi-level 
subspace analysis for video based face recognition," Proc. 
IEEE Conf. Computer Vision and Pattern Recognition 
(CVPR), June 2004.  

[17]  J. Yang, D. Zhang, A. Frangi and J. Yang. “Two-
Dimensional PCA: A New Approach to Appearance-Based 
Face Representation and Recognition,” IEEE Trans. On 
PAMI, Vol. 26, No. 1, pp. 131-137, Jan. 2004. 

[18]  J. Ye, R. Janardan, C. Park, and H. Park. “An optimization 
criterion for generalized discriminant analysis on under-
sampled problems”, IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, V. 26, N. 8, pp. 982-994, 
2004.  

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) 

1063-6919/05 $20.00 © 2005 IEEE 


