
Nonparametric Subspace Analysis for Face Recognition

Zhifeng Li1, Wei Liu1, Dahua Lin1, and Xiaoou Tang1, 2

1Department of Information Engineering
The Chinese University of Hong Kong, Shatin, Hong Kong

2Microsoft Research Asia, Beijing, China
{zli0, wliu, dhlin4, xtang}@ie.cuhk.edu.hk

Abstract

Linear discriminant analysis (LDA) is a popular face
recognition technique. However, an inherent problem with
this technique stems from the parametric nature of the scat-
ter matrix, in which the sample distribution in each class
is assumed to be normal distribution. So it tends to suf-
fer in the case of non-normal distribution. In this paper a
nonparametric scatter matrix is defined to replace the tra-
ditional parametric scatter matrix in order to overcome this
problem. Two kinds of nonparametric subspace analysis
(NSA): PNSA and NNSA are proposed for face recognition.
The former is based on the principal space of intra-personal
scatter matrix, while the latter is based on the null space.
In addition, based on the complementary nature of PNSA
and NNSA, we further develop a dual NSA-based classi-
fier framework using Gabor images to further improve the
recognition performance. Experiments achieve near perfect
recognition accuracy (99.7%) on the XM2VTS database.

1. Introduction

Linear Discriminant Analysis (LDA), which is based
on Fisher Linear Discriminant (FLD) [11], is a popular
face recognition technique. It aims to find the most dis-
criminative features maximizing the ratio of determinant of
between-class variations to within-class variations. A num-
ber of LDA-based methods [1][4][8] have been proposed
in face recognition. However, due to their parametric na-
ture which assumes that the samples satisfy normal distri-
bution, all these methods suffer from serious performance
degeneration for cases of non-normal distribution. In [7], a
nonparametric technique is proposed to overcome this prob-
lem for the case of two classes, in which a nonparamet-
ric between-class scatter is defined. However, it does not
give a definition for multi-class problems. To apply it to
face recognition, which is a typical multi-class recognition

problem, we propose a novel algorithm called nonparamet-
ric discriminant analysis (NDA) which extends the defini-
tion of the nonparametric between-class scatter matrix to
the multi-class problem. Similar to conventional LDA, the
NDA features are obtained by computing the leading eigen-
vectors of S−1

w SN
b , where Sw is the within class scatter and

SN
b is the nonparametric between class scatter.

For high dimensional problems, there are often not
enough training samples to guarantee the within class scat-
ter matrix non-singularity. Inspired by the idea of the uni-
fied subspace [12][17], we propose a novel method called
principal nonparametric subspace analysis (PNSA) to ex-
tract nonparametric discriminating features within the prin-
cipal subspace of within class scatter matrix, This will help
to stabilize the transformation and thus improve the recog-
nition performance.

A limitation with the PNSA method is that it only utilizes
the principal subspace of the intra-personal scatter with the
whole null space discarded. Practically the null space of
within class scatter also contains a great deal of discrimi-
native information [13], so we develop another null-space
method called null-space nonparametric subspace analysis
(NNSA) that is based on the null space of the within-class
scatter matrix. The two NSA based approaches: PNSA
and NNSA are inherently complementary. PNSA utilizes
the principal subspace of the intra-personal scatter matrix,
while NNSA focuses on null space, thus it is desirable to
combine the two types of classifiers. This strategy is simi-
lar to the one developed in [18] and [19].

Gabor wavelets have been shown to outperform original
appearance features in recent study [6][15]. However, pre-
vious methods either downsample the Gabor responses or
use only the Gabor responses at certain fiducial points. Ap-
parently, the used Gabor features are not selected from the
whole Gabor feature set in a statistically optimal way. This
is mainly because the huge dimensions of the complete Ga-
bor features prevent the application of traditional subspace
methods. In this paper, we propose a multiple Gabor-based
classifiers using the dual NSA framework to handle the high



dimentionality of Gabor features. By using this new algo-
rithm, our experiments yield very encouraging results: near
perfect recognition accuracy (99.7%) are obtained on the
XM2VTS database.

2. Parametric Discriminant Analysis

Linear Discriminant Analysis has been widely used for
feature extraction in pattern recognition. It is also called
the parametric discriminant analysis (PDA) in [7] since it
uses the parametric form of the scatter matrix. In PDA,
the within-class scatter matrix and the between-class scatter
matrix are used to measure the class separability. They are
defined as,

Sw =
c∑

i=1

∑

j∈Ci

(xj − µi)(xj − µi)T (1)

Sb =
c∑

i=1

Ni(µi − µ)(µi − µ)T , (2)

where µi denotes the mean of the class Ci and Ni denotes
the number of samples in class Ci.

The PDA features are the optimal projections Wopt,
which maximizes the ratio of the determinant of between-
class matrix to that of the within-class matrix,

Wopt = [w1, w2, · · · , wf ] = arg max
W

|WT SbW |
|WT SwW | , (3)

and mathematically it is equivalent to the leading eigenvec-
tors of S−1

w Sb.
From Eq. (1) to (3), we can see that the PDA has at least

three disadvantages. Firstly, the PDA algorithm is based
on the assumption that all classes share the same normal
distribution. So it cannot perform well in the cases of non-
normal distribution. Practically, the real samples often are
not normally distributed. Secondly, the number of the fi-
nal LDA features has an upper limit because the rank of the
between-class matrix is at most c − 1. However, it is of-
ten insufficient to separate the classes well with only c − 1
features, especially in high dimensional spaces. Third, with
only the centers of classes taken into account for computing
between class scatter matrix, it fails to capture the boundary
structure of classes effectively, which has been proven to be
essential in classification.

3. Nonparametric Discriminant Analysis

For the two-class problem, a nonparametric technique
called nonparmetric discriminant analysis (NDA) was pro-
posed to solve above problems [7]. In NDA, the calculation
of within-class scatter matrix keeps the same form as PDA.

The difference between NDA and PDA is in the definition
of the between-class scatter matrix. In [7], the two-class
nonparametric between-class scatter matrix is defined as,

SN
b =

N1∑

t=1

W (t)(x1
t − µ2(x1

t ))(x
1
t − µ2(x1

t ))
T +

N2∑

t=1

W (t)(x2
t − µ1(x2

t ))(x
2
t − µ1(x2

t ))
T , (4)

where xi
t denotes the t-th face vector of class i, and µj(xi

t)
is the local K-NN mean, defined by

µj(xi
t) =

1
k

k∑

p=1

NNp(xi
t, j), (5)

where NNp(xi
t, j) is the p-th nearest neighbor from class

j to the face vector xi
t. W (t) is the value of the weighting

function. Later we will give an extended definition of W (t)
for multi-class problem.

However, such nonparametric between-class matrix def-
inition is only available for two-class cases. For face recog-
nition, which is a typical multi-class recognition problem,
we need to generalize Eq. (4) to its multi-class form. We
propose a new definition of the nonparametric between-
class scatter matrix for multi-class problem is as follows:

SN
b =

c∑

i=1

c∑

j=1,j �=i

Ni∑

t=1

W (i, j, t)(xi
t−µj(xi

t))(x
i
t−µj(xi

t))
T ,

(6)
where w(i, j, t) is defined as

W (i, j, t) =
min{dα(xi

t, NNk(xi
t, i)), d

α(xi
t, NNk(xi

t, j))}
dα(xi

t, NNk(xi
t, i)) + dα(xi

t, NNk(xi
t, j))

(7)
Here α is a control parameter that can be selected between
zero and infinity, d(v1, v2) is the distance between two vec-
tors v1 and v2. The weighting function has the property that
for samples near the classification boundary it approaches
0.5 and drops off to zero if the samples are far away from the
classification boundary. By using such a weighting func-
tion, the boundary information contained in the training set
is emphasized.

After computing Sw and SN
b , the final NDA features are

the eigenvectors of the matrix S−1
w SN

b . To overcome the
singularity problem, PCA is required before hand.

From Eq. (6) we have the following observations.
Firstly, if we select k = Ni and set all the values of the
weighting function equal one, µj(xi

t) will become µj , the
center of the class j. It means the nonparametric discrimi-
nant analysis is indeed a generalized version of the paramet-
ric discriminant analysis (PDA). So it is expected to inherit
the advantage of PDA and furthermore provide more flexi-
bility.



Secondly, compared to the PDA, which can at most ex-
tract c−1 discriminant features, the nonparametric discrim-
inant does not have such limitation. Thus more features can
be extracted for discrimination, and accordingly enhance
the classification performance with more information uti-
lized.

Thirdly, the nonparametric discriminant analysis is more
effective in capturing the boundary structural information
for different classes compared with the PDA algorithm.
This can be explained by examining the vectors (xi

t −
µj(xi

t)) . As illustrated in Figure 1, where k is set to 1
and some of these vectors are visualized, NDA has two
advantages over PDA in utilization of boundary informa-
tion. Firstly, the non-parametric between-class scatter ma-
trix spans a space involving the subspace spanned by the
vectors {v2, · · · , v8} where boundary structure is embed-
ded. Therefore, the boundary information can be fully uti-
lized. Secondly, as mentioned before, the weighting func-
tion in Eq. (6) can help to emphasis the samples near the
boundary, and thus capture the boundary structure informa-
tion more effectively. For PDA, it computes the between-
class scatter matrix only using the vector v1, which is
merely the difference between the centers of the two classes.
It is obvious that v1 fails to capture the boundary structure
information effectively.

Figure 1. Nonparametric between-class scat-
ter and parametric between-class scatter.
v1: Difference vector of the centers of two
classes; v2, · · · , v8: Difference vectors from
the samples located in the classification
boundary.

Furthermore, inspired by the idea of the unified sub-
space [12][17] and the dual-space LDA [18][19], we pro-
pose two kinds of nonparametric subspace analysis (NSA).

One is based on the principal space of the intra-personal
scatter, and the other is based on the null space of the intra-
personal scatter. We call them principal nonparametric sub-
space analysis (PNSA) and nullspace nonparametric sub-
space analysis (NNSA) respectively.

The detailed algorithm of the PNSA is as follows:
Step 1. Project a face vector to its PCA subspace estab-

lished by training samples and then adjust the PCA dimen-
sion to better reduce noise.

Step 2. Compute the whitened intrapersonal subspace
using the within-class scatter matrix in the reduced PCA
subspace and adjust the dimension of the whitened intrap-
ersonal subspace to reduce the dimension of intrapersonal
variation.

Step 3. Determine the nonparametric between-class
scatter matrix in the intra-personal subspace and then ap-
ply PCA to obtain the final nonparametric discriminant fea-
tures.

The difference between standard NDA and PNSA is that
the dimension of the whitened space is variant instead of
fixed. This will not only help to reduce the feature dimen-
sion but can also make the transform more stable and hence
increase the generalization ability.

NNSA is another NSA based technique. As opposed to
PNSA that is based on the principal space of the within-
class scatter matrix, NNSA focuses on the null-space.

Step 1. Compute the within-class scatter matrix from the
training data.

Step 2. Calculate the null space projection of within-
class scatter matrix.

Step 3. Project the sample space to the null space and
compute the nonparametric between-class scatter matrix in
null space.

Step 4. Project the sample to the space of the null space
nonparametric inter-personal scatter matrix.

4. Dual NSA-based Classifiers Framework

As discussed before, the PNSA and the NNSA are com-
plementary of each other. The former preserve the principal
space of the within-class scatter matrix with the information
residing in the null space of the within-class scatter matrix
discarded. On the contrary, the latter preserve the null space
while discard the information in the principal space. Moti-
vated by the complementary nature of the two kinds of clas-
sifiers, it is desirable to integrate them together to fully uti-
lize the discriminative information in the whole space, thus
further boost the recognition performance.

Moreover, the property of the Gabor wavelet feature
makes it attractive in face representation [6]. The Gabor
images obtained by different kernels is similar to multi-
ple frames in a video sequence, thus the fusion technique



for video sequence [14] can be applied here to improve the
recognition accuracy and efficiency.

Based on the analysis above, we develop a multiple
NSA-based classifiers framework to further improve the
recognition performance, in which the two types of com-
plementary classifiers: PNSA and NNSA based on Gabor
images are combined.

4.1. Gabor Wavelet Representation

We use the method in [6] to extract the Gabor wavelet
features of an image by convolving the image with a family
of Gabor kernels (wavelets, filters) , which is the product of
a Gaussian envelope and a plane wave, defined as follows

ψ�k(�z) =
‖�k‖2

σ2
· e−‖�k‖2·‖�z‖2

2σ2 · [ei�k·�z − e−
σ2
2 ], (8)

where �z = (x, y) is the variable in the spatial domain, and
‖ · ‖ denotes the norm operator. �k is the frequency (wave)
vector, which determines the scale and the orientation of
Gabor kernels

�k = kse
iφd , (9)

where

ks =
kmax

fs
, kmax =

π

2
, f =

√
2, s = 0, 1, 2, 3, 4

and

φd =
πd

8
, for d = 0, 1, 2, 3, 4, 5, 6, 7.

Let s and d denote the scale and orientation of the
Gabor kernels, here we use Gabor kernels of five differ-
ent scales, s ∈ {0, · · · , 4}, and eight different directions,
d ∈ {0, · · · , 7}. For simplicity, we express the Gabor ker-
nels ψ�k(�z) as ψs,d(�z).

Let I(x, y) = I(�z) be the gray level distribution of
an image, the convolution of image I and a Gabor kernel
ψs,d(�z) is defined as follow

Ws,d(�z) = I(�z) ∗ ψs,d(�z), (10)

where ∗ denotes the convolution operator, and Ws,d(�z)
is the convolution result corresponding to the Gabor ker-
nel at orientation d and scale s. Hence, the set S =
{Ws,d(x, y) | s ∈ {0, · · · , 4}, d ∈ {0, · · · , 7}} forms
the Gabor wavelet representation of the image I(x, y). As
in [6], Ws,d(x, y) can be computed efficiently via the Fast
Fourier Transform (FFT).

Different from the feature extraction in [6], we extend
the Gabor representation Ws,d(x, y) to float valued images,
called Gabor-based images or Gabor images, instead of con-
catenating all Gabor representation results to derive an aug-
mented feature vector. Therefore, we can obtain an image

sequence composed of 40 float valued images, which is sim-
ilar to an extended video, for each facial image. In addition,
we will not conduct arbitrary down sample to reduce the
data size. In stead we use efficient multiple subspace analy-
sis algorithms to optimally extract Gabor features from the
full set of Gabor responses.

4.2. Integration of Dual NSA-based Classifiers

By applying Gabor wavelet transform, for each face, we
can finally acquire a sequence composing of a set of Gabor-
based images. Contrary to the traditional Gabor wavelet
representation where only the Gabor wavelet coefficients
around some discrete fiducial points [15] are computed, we
extract the Gabor wavelet features based on the whole im-
age. Therefore, much more information is available for fur-
ther analysis. Nonetheless, such approach improves the uti-
lization of information at the expense of increasing process-
ing complexity. For example, in our experiments we have
40 images of size 61x41 for each sequence, thus the fea-
ture dimension is 100040. Such a huge amount of data is
infeasible to manipulate directly.

In order to handle these data efficiently and extract the
discriminative feature effectively, a multiple classifiers fu-
sion framework is developed. We first break the whole se-
quence into slices, with features from each Gabor image as
a slice. Then, we apply the appropriate classifier to process
each individual slice. Finally all the slice-based classifiers
are integrated via a fusion rule to obtain the final decision.

A variety of methods on combining multiple classifiers
have been proposed [9][10]. In this paper, we use the major-
ity voting rule to combine the frame-based classifiers: ma-
jority voting and sum rule. More sophisticated combination
algorithms may further improve the recognition accuracy.

This framework has obvious advantages both in effi-
ciency and effectiveness. Firstly, this fusion framework is
composed of several parallel classifiers with each one pro-
cessing a portion of data. So, efficient parallel computation
is enabled. Secondly, in our framework only the synchro-
nized data are contained in the same classifier. It has been
shown that the synchronization information is conductive to
increase the recognition accuracy [14]. So this framework
is also quite effective in extracting the discriminating fea-
tures. Another advantage of this framework is the functional
agility. We can apply different algorithms to this framework
respectively and then combine them easily.

By incorporating all these strategies, a novel framework
integrating both PNSA and NNSA on Gabor image repre-
sentation is developed. It is called dual NSA-based classi-
fiers fusion method.

The detailed procedure of the whole framework is sum-
marized as below:

In the training stage



Step 1. For each Gabor Kernel, train PCA model based
on the slices obtained by filtering with that kernel.

Step 2. Construct PNSA and NNSA classifiers based on
slices obtained using different Gabor kernels.

In the testing stage, for a new testing image
Step 1. Obtain the 40 Gabor images by convolution with

Gabor kernels.
Step 2. Use each PNSA or NNSA classifier to determine

the classification respectively based on the corresponding
Gabor image.

Step 3. Combine the decisions made by slice-based clas-
sifiers with the majority voting rule.

The procedure of the algorithm is clearly illustrated in
Figure 2.

Figure 2. The procedure of dual NSA-
based classifiers framework. PNSAi(i =
1, 2, · · · , 40), NNSAi(i = 1, 2, · · · , 40) means
performing PNSA and NNSA on the i-th slice

5. Experiments

In this section, we conduct experiment on the
XM2VTS face database [5]. We select 293*4 face images
of 293 distinct persons captured in four different sessions.
For training, we select the 293*3 face images of 293 people
captured in the first three sessions. For testing, we use the
293 face images captured in the first session as gallery sam-
ples and the 293 face images captured in the fourth session
as probe samples.

The first experiment is to compare the three proposed
nonparametric methods, NDA, PNSA and NNSA, with all
the three traditional subspace methods, PCA [3], LDA [1],
and Bayesian method [2]. The comparative recognition re-
sults are summarized in Table 1. From these results we can
see that the NDA method, which is the original nonpara-
metric method, outperforms all the three traditional sub-
space methods, PCA, LDA, and Bayesian analysis. In ad-
dition, further improvement on the recognition accuracy is
achieved by the two improved nonparametric algorithms
PNSA and NNSA. This clearly shows the superiority of the
nonparametric technique. Comparing to the best results of
the conventional subspace methods, the error rate is reduced
at least by 45%.

In the second experiment, we investigate the perfor-
mance of the NSA-based multi-classifier fusion framework
on Gabor wavelet images. As mentioned above, 40 Gabor
wavelet images are obtained for each face, accordingly 40
PNSA based classifiers and 40 NNSA based classifiers are
constructed with each one corresponding to the images ac-
quired by a certain Gabor kernel. Three different fusion
schemes are tested in the experiments. The first fusion
scheme combines the 40 PNSA classifiers, while the second
fusion scheme combines the 40 NNSA classifiers. And the
third fusion scheme integrates all PNSA and NNSA classi-
fiers together.

Table 2 reports the results in this experiment. Com-
pared with the results in experiment 1, the classifier fu-
sion strategy does remarkably boost the recognition perfor-
mance. This clearly shows the superiority of NSA-based
multiple-classifier framework. In addition, it is encouraging
to see that the third scheme which combines both PNSA and
NNSA classifiers achieves a near perfect recognition accu-
racy (99.7%).

Table 1. The comparison of the nonparamet-
ric methods with all the three traditional sub-
space methods.

Method Recognition Accuracy

PCA 66.6%
LDA 88.7%

Bayesian method 89.1%
NDA 92.2%
PNSA 94.5%
NNSA 94.2%



Table 2. The recognition results of the NSA-
based multi-classifier fusion framework on
the Gabor wavelet images.

Method Recognition Accuracy

The first fusion scheme
using PNSA 99.0%

The second fusion scheme
using NNSA 98.0%

The third fusion scheme
using PNSA and NNSA 99.7%

6. Conclusions

Conventional LDA has an inherent problem due to its
parametric nature of the scatter matrix. In this paper, a
novel algorithm based on the definition of nonparametric
between-class scatter matrix is proposed. Inspired by the
idea of the unified subspace and null space, two kinds of
nonparametric subspace analysis method PNSA and NNSA
are presented to achieve better stability and generalization
performance. Moreover, based on the complementary na-
ture of PNSA and NNSA, and the Gabor feature representa-
tion, we further develop a dual NSA-based classifiers fusion
framework to further boost the recognition performance.
Experiments show the effectiveness of our framework with
near perfect recognition accuracy (99.7%) achieved on the
XM2VTS face database.
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