
3D Object Reconstruction from a Single 2D Line
Drawing without Hidden Lines

Liangliang Cao and Jianzhuang Liu
Department of Information Engineering
The Chinese University of Hong Kong

{llcao3,jzliu}@ie.cuhk.edu.hk

Xiaoou Tang
Microsoft Research Asia

Beijing, China
xitang@microsoft.com

Abstract

The human vision system can interpret a single 2D line
drawing as a 3D object without much difficulty even if the
hidden lines of the object are invisible. Several reconstruc-
tion approaches have tried to emulate this ability, but they
cannot recover the complete object if the hidden lines of the
object are not shown. This paper proposes a novel approach
for reconstructing complete 3D objects from line drawings
without hidden lines. First, we develop some constraints
and properties for the inference of the topology of the in-
visible edges and vertices of an object. Then we present a
reconstruction method based on perceptual symmetry and
planarity of the object. We give a number of examples to
demonstrate the ability of our approach.

1. Introduction
A line drawing is defined as a 2D projection of the edges
and vertices of a 3D object in a generic view, with or with-
out hidden lines visible. The human vision system has the
ability to interpret 2D line drawings as 3D objects without
difficulty. Emulating this ability is an interesting research
topic for machine vision. The applications include provid-
ing 2D sketch query interface for 3D object retrieval from
large databases or from the web [1], interactive generation
of 3D models from images [2], [3], and flexible sketching
interface for designers to sketch ideas in object design [4],
[5].

Since the early stage of computer vision , a large amount
of work called line labeling has been carried out for line
drawing interpretation [6], [7]. Line labeling focuses on
finding a set of consistent labels from a line drawing without
hidden lines, and does not explicitly give the 3D structure
represented by a line drawing. Another body of work on
line drawing interpretation is related to judging the correct-
ness of line drawings and give their possible reconstruction
based on algebra test with linear equalities and inequalities
[8], [9], [10]. The common problem of these methods is
that the formulation is superstrict and not robust; an origi-

nally correct line drawing will be judged as impossible after
a little deviation of one or more vertices, causing a 3D re-
construction to fail [10].

Recently, some researchers formulated the 3D recon-
struction as an optimization problem based on different ob-
jective functions. Marill proposed a criterion, minimizing
the standard deviation of the angles (MSDA) in a recon-
structed object to emulate human 3D perception of 2D line
drawings [11]. This idea is followed by the researchers in
[4], [5], [12], [13]. This approach is tolerant of freehand
sketching errors, but cannot reconstruct complete 3D ob-
jects if their hidden lines are not drawn.

This paper proposes an approach to the 3D reconstruc-
tion from line drawings without hidden lines. Compared
with the line drawings with hidden lines visible, these line
drawings are easier and more natural to draw. In addition,
if we want to recover the complete 3D shape of an object in
an image, we usually do not have the invisible edges. Our
approach mainly consists of two elements: inference of the
topology of the hidden part of an object and reconstruction
of the complete shape of the object. Fig. 1 shows the two
steps with an example.

Fig. 1: (a) A line drawing without hidden lines. (b) The in-
ferred hidden topological structure. (c) Reconstructed com-
plete 3D object.

For easier understanding of the technical content of our
approach, we first summarize the terms that will be used in
the rest of the paper. Some of these terms are illustrated
with Fig. 2.

• Degree. The degree d(v) of a vertex v is the number
of edges meeting at v in a line drawing.
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• Incomplete vertex. An incomplete vertex v is a vertex
of d(v) = 2.

• Complete vertex. A complete vertex v is a vertex of
d(v) = 3.

• Broken vertex. A broken vertex v is a vertex of
d(v) = 1.

• Cycle. A cycle is a closed trail in a line drawing where
all its vertices except the end vertices are distinct.

• Visible face. A visible face is a face bounded by a
cycle composed of all visible edges in a line drawing.

• Rank. The rank R(e) of an edge e is the number of
visible faces with edges passing through e.

• Zero edge. A zero edge e is an edge of R(e) = 0.
• Boundary edge. A boundary edge e is an edge of

R(e) = 1.
• Boundary cycle. A boundary cycle is a cycle where

all its edges are boundary edges.
• Hidden cycle. A hidden cycle is a cycle where all its

edges and vertices are hidden.
• NHNHNH . NH denotes the number of hidden vertices.
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Fig. 2: Illustration of some terms. Here v1−9 are complete
vertices, v10−14 are incomplete vertices, v15 is a broken ver-
tex, (v11, v9) is a boundary edge, (v1, v15) is a zero edge,
and (v10, v5, v11, v9, v12, v8, v10) is a boundary cycle.

2. Theoretical Inference of the Hidden
Topological Structure

2.1. Assumptions
Given a line drawing without hidden lines, there are infi-
nite possible structures that might be the hidden part of the
object although human beings usually have the unique per-
ception of the complete 3D shape. Therefore, we have to
impose reasonable constraints for the inference of the hid-
den structure such that the final recovered 3D object is in
accordance with our perception from the line drawing. In
this first work to tackle the problem, we focus on a class
of relatively simple solids and make the following assump-
tions.

Assumption 1 The 3D objects are polyhedra with all the
vertices met by three edges and all the edges passed through
by two faces.
Assumption 2 A line drawing is the parallel or near-parallel
projection of the visible edges and vertices of a single poly-
hedron defined above in a generic view.

Assumption 3 Every hidden vertex is connected with at
least one visible vertex.

2.2. Finding the Degrees and Ranks
Given a line drawing, there are three types of vertices as
defined in Section 1. Incomplete vertices are easy to find,
but to distinguish broken vertices from complete vertices is
not obvious. The following theorem allows us to identify
the broken vertices.

1v 2v

3v

0v

1f

2f 3f

Fig. 3: Part of a line drawing where v1, v0 and v2 are
collinear.

Theorem 1 If a vertex v0 touches a straight line in a line
drawing as shown in Fig. 3, then v0 is a broken vertex.

Proof. Suppose, to the contrary, that v0 is not a broken
vertex. Then it is a complete vertex. With the assumption
that every edge of the object is passed through by two faces,
there are three planar faces passing through v0. Let them be
f1 = (v1, v0, v2, ..., v1), f2 = (v1, v0, v3, ...v1) and f3 =
(v2, v0, v3, ..., v2). since v1, v0, v2 are collinear, the straight
line (v1, v2) and the vertex v3 that is not on this line defines
a plane, implying that the two faces f2 and f3 are coplanar.
Thus the edge (v3, v0) should not exist. Therefore, if edge
(v3, v0) is a visible edge of the object, v0 is a broken vertex.

�

Knowing all the types of vertices, we can find the degrees
of the vertices directly. To find the ranks of the edges, we
have to find the visible faces first. Face identification from a
line drawing is not a trivial problem. Fortunately, there have
been algorithms available for this purpose. We can use one
of the algorithms published in [14] and [15] to find the visi-
ble faces. For example, the four visible faces found from
the line drawing shown in Fig. 2 are (v1, v2, v3, v4, v1),
(v6, v9, v12, v8, v6), (v2, v3, v5, v10, v8, v6, v7, v14, v2), and
(v4, v3, v5, v11, v9, v6, v7, v13, v4). Since v15 is a broken
vertex, we cannot find the visible face passing through
(v1, v15) at this stage. Thus, R(v1, v15) = 0. Note that
when v15 is found to be a broken vertex, the line from v7 to
v13 is one edge but not two.

2.3. Constraints for the Inference
The key to the inference of the invisible vertices and edges
is to determine the number of hidden vertices NH and the
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connections among invisible, incomplete, and broken ver-
tices. The following theorems gives constraints useful for
the inference.

Theorem 2 Let VI and VB be the set of incomplete and
broken vertices of a given line drawing, respectively. Then
we have

NH ≤ |VI | + |VB|, (1)

where | · | denotes the number of elements in a set.

Proof. A complete vertex does not connect to any hidden
vertex. An incomplete vertex connects to one hidden vertex.
A broken vertex connect to one hidden vertex too. From
Assumption 3, the largest value of NH appears when all the
hidden vertices connect to different visible vertices, which
implies the inequality in (1). �

The following Lemma [16] is used to prove Theorem 3.

Lemma 1 Let G be any graph, E be the set of edges and V
be the set of vertices in G. It holds that

∑

v∈V

d(v) = 2|E|.

Theorem 3 Given a line drawing, if |VI | + |VB| is even
(odd), NH of the line drawing must be even (odd).

Proof. Suppose there are NH hidden vertices and l hidden
edges in the object. If we construct a graph using all the hid-
den edges, hidden vertices, incomplete vertices, and broken
vertices (without all visible edges), from Lemma 1 we have

∑

v∈VI

1 +
∑

v∈VB

1 +
∑

v∈VH

3 = 2l,

where VI ,VB and VH are the sets of incomplete, broken,
and hidden vertices, respectively, and |VH| = NH . The
above equation can be rewritten as |VI | + |VB| + NH =
2(l − NH). Therefore, if |VI | + |VB| is even (odd), NH

must be even (odd) too. �

3. An Algorithm to Recover the
Hidden Topological Structure

In this section, an algorithm based on the constraints and
properties stated in the previous theorems is designed to in-
fer the hidden vertices and edges in a line drawing.

3.1. Outline of the Algorithm
Step 1. Finding the degrees of all the vertices and the ranks
of all the edges from a line drawing.

Step 2. Constructing an initial hidden topological structure
(see Fig. 4(b)).

(a) (c)(b)

4v

5v

3v

2v

1v

Fig. 4: An example of inferring the hidden topology from
line drawing. (a) A line drawing. (b) Initial hidden vertices
(open circles). (c) Reduction of the initial hidden vertices.

Step 3. Reducing the initial hidden structure to one ac-
cording to human visual perception of the 3D object (see
Fig. 4(c)).

Step 1 has been described in Section 2.2. We discuss
Steps 2 and 3 in the following two sections.

3.2. Constructing the Initial Hidden Structure
Theorem 2 lets us know that the largest NH = |VI | since
we consider the line drawings without zero edges (thus
VB = ∅). We set |VI | hidden vertices and connect each in-
complete vertex to a different hidden vertex. Two hidden
vertices are connected if their corresponding incomplete
vertices are closest on the boundary cycle. One example
is given in Fig.4(b), where the cycle (v1, v2, v3, v4, v5, v1)
is a hidden cycle.

3.3. Reducing Initial Hidden Structure
Beginning with the initial hidden structure, we design a pro-
cedure to search for other possible hidden structures with
fewer hidden vertices. The procedure uses a strategy of
cutting-and-merging of edges and vertices. Cutting one
edge on a hidden cycle removes this edge from the cycle
while keeping the two vertices of the edge. After the cut-
ting, the two hidden vertices of the edge are met by only two
hidden edges (see Fig. 5(b)). To maintain that every vertex
is met by three edges, we merge the two vertices to their
adjacent hidden vertices (see Fig. 5(c)). Since each cutting-
and-merging reduces two of the hidden vertices, the result-
ing number of hidden vertices is even (odd) if the initial NH

is even (odd), which satisfies the constraint by Theorem 3.
At first, the cutting is applied to one hidden edge on the

hidden cycle each time, resulting in different hidden struc-
tures. The cutting is also used to cut two or more such edges
each time. It should be emphasized that not every cutting of
two edges or more each time is valid. Fig. 5(d) and (f) show
two examples of cutting two edges each time. The former
is valid but the latter is not.

The cutting-and-merging procedure is always applied to
the initial hidden structure, cutting one edge or multiple
edges each time. The maximal edges that can be cut each

3

Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05) 

1550-5499/05 $20.00 © 2005 IEEE 



(a) (b) (c) 

(d) (e) (f)

1v e

dc

b

a

2v

3v 4v
5v

1v e

dc

b

a

2v

3v 4v
5v

e

dc

b

a

2v

3v 4v

1v e 

dc

b

a

2v

3v 4v
5v

e

dc

b

a

2v
1v e 

dc

b

a

2v

3v 4v
5v

Fig. 5: Illustration of the cutting and merging procedure
where a-e are incomplete vertices, v1−5 are hidden vertices,
and (v1, v2, v3, v4, v5, v1) is a hidden cycle. (a) The initial
hidden structure. (b) Cutting one edge (v1, v5), (c) Merging
v1 to v2 and v5 to v4. (d) Cutting two edges (v1, v5) and
(v3, v4). (e) Merging v1 and v3 to v2; v5 and v4 disappear-
ing after being merged. (f) Cutting two edges (v1, v5) and
(v4, v5), where v5 has no place to be merged.

time is the largest integer ≤ NH/2 because removing one
edge reduces two hidden vertices. All the hidden structures
obtained from the procedure plus the initial structure are
kept for the selection of the most plausible one. Fig. 6 shows
one example.

Fig. 6: The initial hidden structure and all others derived by
the cutting-and-merging procedure.

3.4. Selecting the Most Plausible Structure
Given a set of possible hidden structures, the selection of
the most plausible one is based on some visual psychologi-
cal properties from Gestalt psychology, which is one of the
most influential perception theories. It asserts that human
being are innately driven to experience things as good a
whole as possible. Here good can mean many things such
as symmetry, simplicity, regularity, and order of an object
[17], [18]. This nature leads us, when seeing, to strongly
favoring certain shapes and configurations over others with-
out high level identification.

The law of symmetry is one of the most important

Gestalt laws, which reveals that the human visual system
is overwhelmed by symmetry and tends to interpret a figure
in such a way as to produce an object that is as symmetrical
as possible. When this law is applied to the inference of the
hidden structure of a line drawing, each hidden face should
correspond to a similar visible face. At this stage, since we
discuss topological structures only, we say that two faces
are similar if they have the same number of edges. These
two similar faces are also called topologically same. Mo-
tivated by this law, the rule of selecting the most plausible
hidden structure is: given a set of hidden structures from a
line drawing, select the one having as many hidden faces
similar to the visible faces as possible.

We define a non-symmetry measure NSM for the selec-
tion. Suppose there are n hidden structure, at first, we set
NSMi = 0, 1 ≤ i ≤ n. For every hidden face in the ith
structure, we check if there is a corresponding topologically
same visible face. If no, increase NSMi by 1. For each
structure, one visible face cannot be used more than once in
the checking. The most plausible is the jth structure with
NSMj = min

1≤i≤n
{NSMi}.

With the method above , we can select the most plausible
hidden structure for each line drawing. For the example
shown in Fig. 6, the second hidden structure is selected.

4. Reconstruction of 3D Objects

In what follows, we call a line drawing with its recovered
hidden structure a complete line drawing. After recover-
ing a complete line drawing, the next important work is to
reconstruct its 3D shape. Since we already know the face
topology of the complete line drawing, we only need to de-
rive the 3D coordinates of all the visible and hidden ver-
tices. We consider a line drawing is a parallel (or near par-
allel) projection of a 3D object. The x- and y-coordinates
of each visible vertex is thus already known, and only the
z-coordinate (depth) has to be derived. However, all the x-,
y- and z-coordinates have to be found for hidden vertices.
This reconstruction problem is more difficult than those in
the previous work [4], [5], [11], [12], where all the vertices
and edges of a line drawing are given in the 2D projection.
In addition, the previous methods cannot recover the com-
plete 3D object from a line drawing without hidden vertices
and edges. In the following, we develop a new objective
function to recover the 3D position of both visible part and
hidden part, which is in accordance with human visual per-
ception.

Based on the spirit of the law of symmetry from Gestalt
psychology, we consider a symmetry measure S for a closed
planar figure first. It is defined as:

S =
P 2

A
(2)
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where A and P are the area and perimeter of the figure,
respectively.

It holds that S ≥ 4π for any closed planar figure, among
which the most symmetrical one is a circle with S = 4π.
For a polygon with m vertices, its most symmetrical figure
has m equal-length sides. These facts indicate that (2) is a
rather reasonable measure of symmetry.

An object consists of more than one face. We treat the
recovered object as the integration of all its 3D planar faces.
For an object with n faces, we define the whole symmetry
measure of the object as

Sw =

n∑

i=1

P 2

i

Ai

(3)

where Ai and Pi, 1 ≤ i ≤ n, are the area and perimeter
of face i, respectively. We expect that given a line drawing,
minimizing Sw combined with other two criteria would pro-
vide us with the most plausible recovered 3D object. This
measure Sw plays the main role in the reconstruction, with
the other two involved to get better results.

Marill [11] presented his approach to 3D reconstruction
based on a simple criterion: minimizing the standard de-
viation of all the angles (SDA) in the reconstructed object.
SDA can be calculated by:

SDA = Var
i,j

(cos−1(ui · uj)) (4)

where ui and uj are the unit vectors of two lines meeting
at a vertex of the 3D object. This criterion can be regarded
as another form of symmetry constraint and is also incorpo-
rated into the objective function.

When we observe a line drawing representing a 3D
polyhedron, we can clearly identify the cycles representing
faces. This face information is very useful in helping our
perception of the shape of the object [12]. We also enforce
this planarity constraint in the object function.

Suppose that face i has m vertices (xij , yij , zij), 1 ≤
j ≤ m. The plane that fits these vertices best can be ex-
pressed as:

aix + biy + ciz − 1 = 0. (5)

Thus, we evaluate the deviation from planarity DPi for
face i, by the sum of all the distances of the m vertices from
the plane:

DPi =
1√

a2

i + b2

i + c2

i

m∑

j=1

|aixij +biyij +cizij−1|. (6)

The coefficients ai, bi, ci of the plane can be obtained by the
least square best-fit plane algorithm [19].

For an object with n faces, the total deviation from pla-
narity DP is defined as DP =

∑n

i=1
DPi.

Finally, the objective function to be minimized is defined
as

f(z1, z2, ..., zv, xh1,yh1, xh2, yh2, ..., xhu, yhu)

= λ1Sw + λ2SDA + λ3DP (7)

where λ1, λ2 and λ3 are weighting factors, z1, z2, ..., zv

are the depths of all the v visible and hidden vertices,
and (xh1, yh1), (xh2, yh2), ..., (xhu, yhu) are the x- and y-
coordinates of all the u hidden vertices. Minimizing f ex-
presses our aim to construct a 3D object as symmetrical as
possible under the constraint of planarity. We perform the
minimization using a hill-climbing method [12].

5. Experimental Results
Fig. 7 shows a set of line drawings and their reconstruction
results. The original line drawings are given in the first col-
umn. The results of the inference of the hidden structures
are illustrated in the second column. The third and fourth
columns show the recovered 3D shapes in two views each.
From Fig. 7, we can see that the reconstructed objects quite
accord with our visual perception. The algorithm imple-
mented in C runs fast enough. It takes less than 1 second to
do the inference and reconstruction for every line drawing.

Although the objects shown in Fig. 7 are not very com-
plex, our work with these encouraging results is the first step
towards the research on handling a wider range of objects.

6. Conclusions
We have proposed a novel approach to 3D reconstruction
from single 2D line drawings without hidden lines. We first
infer the hidden structure of a line drawing with the help of
the constraints given in several theorems. Then we present
an optimization-based method to recover the 3D shape from
the complete line drawing. The objective function is de-
veloped based on perceptual symmetry and planarity. A
number of encouraging results have been obtained, which
demonstrate the success of the proposed approach. Our fu-
ture work will focus on handling more complex polyhedra
and curved objects.
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