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Abstract

In this paper, a novel method for learning based im-
age super resolution (SR) is presented. The basic idea is
to bridge the gap between a set of low resolution (LR) im-
ages and the corresponding high resolution (HR) image us-
ing both the SR reconstruction constraint and a patch based
image synthesis constraint in a general probabilistic frame-
work. We show that in this framework, the estimation of
the LR image formation parameters is straightforward. The
whole framework is implemented via an annealed Gibbs
sampling method. Experiments on SR on both single image
and image sequence input show that the proposed method
provides an automatic and stable way to compute super-
resolution and the achieved result is encouraging for both
synthetic and real LR images.

1. Introduction

The task of super resolution (SR) is to infer a high reso-
lution image from low resolution images of the same scene.
One basic idea is that if there are several low resolution im-
ages available with sub-pixel displacement, then the high
frequency information of the super resolution image can
be inferred [10]. However, mathematically, the ML (max-
imum likelihood) estimation of the super resolution image
is highly ill-posed. Various methods are thus proposed to
achieve a MAP (maximum a-posterior) solution by using a
prior distribution over the high resolution image space.

There are mainly two categories of super resolution al-
gorithms. The first one includes the reconstruction based
super resolution algorithms which use the SR image re-
construction constraint together with a generic smoothness
prior such as Huber MRF (Markov Random Field) [13] and
Bilateral Total Variation [6]. However, the reconstruction
constraints provide less and less useful information as the
image magnification factor increases [1] [11] and it has of-
ten been assumed that the parameter of the camera’s point
spread function (PSF) is known in advance, which may
restrict its usage in various real scenarios. The second
group of algorithms are learning based super resolution al-

gorithms which use a learned co-occurrence prior to encode
the correspondences between high resolution and low reso-
lution image patches or coefficients of alternative represen-
tations [3] [7] [14]. Freeman et al. [7] propose an example-
based learning scheme that was applied to generic images
where the low to high resolution patch model is learned via
a Markov random field and loopy belief propagation is used
for inference. The method is somewhat dependent on the
training set. So the result is not stable and sometimes pro-
duces artifacts in real applications [2].

The models proposed in [1] [5] try to combine the
learned patch co-occurrence model and the SR reconstruc-
tion constraint in a simple sequential way. Dedeoglu et
al. [5] assume that there is a unique high resolution (HR)
template whose parameter peaks are around the true high-
resolution solution. So it first finds a most likely HR tem-
plate from the learned patch model through Iterated Con-
ditional Modes (ICM), then the final HR image is esti-
mated from the template in a SR reconstruction framework
through gradient based optimization. The method performs
well for high zoom super resolution of a very specific class
of objects, human faces. In particular, the training face and
testing face are from the same person, thus making the super
resolution task much simpler. This sequential optimization
procedure may have difficulties in finding an optimum solu-
tion for general images other than faces. Pickup et al. [12]
formulate the two constraints in a quadratic form objective
function. However, they found difficulty in calculating the
gradient with respect to the texture prior term and simply
ignored it. In addition, both [5] and [12] assume that the
PSF parameter is known in advance, which we know is diffi-
cult to obtain in many real applications. Tipping et al. [15]
proposed a Bayesian image SR approach which can simul-
taneously recover the HR image, PSF parameter and image
registration parameters. However, the dimension of the co-
variance matrix involved in the algorithm is the size of the
image, which can be extremely large. In addition, the esti-
mation of the PSF and registration parameters directly from
LR images lacks robustness for low quality real images.

In this paper, we propose a new probabilistic framework
to integrate the SR reconstruction constraint and the patch
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based image co-occurrence prior for image super resolution
where the PSF parameter of the real image formation pro-
cess is unknown (so called blind SR). The integration is not
straightforward mainly because of the PSF blurring effect in
the reconstruction constraint: a local LR image patch is gen-
erated by a set of neighboring HR image patches rather than
a single HR image patch as assumed in traditional learn-
ing based SR algorithm. We thus formulate the problem in
a general graphical model and solve it via annealed Gibbs
sampling. The main contributions of this paper include: 1)
a general probabilistic framework which combines the SR
reconstruction constraint and an image co-occurrence prior;
2) estimation of the PSF parameter in the image formation
process; 3) an adaptive locality sensitive hashing algorithm
for similarity search in a large training data set for fast im-
plementation of the SR algorithm.

2. Overview
In this section we give an overview of previous works

and the proposed method. Fig. 1 shows the graphical model
for the SR process. Fig. 1(a) is the MRF network for learn-
ing based SR [7]: each HR image patch Xi and the ob-
served LR image patch Yi are nodes in a Markov network,
where the links between nodes indicate statistical depen-
dencies. So the MRF graphical model in Fig. 1(a) implies
two things: 1) Knowing the HR patch Xi provides all the
information about the observed LR patch Yi since Xi has
the only link to Yi; 2) The HR patch Xi gives information
about nearby HR patches, by the links from Xi to nearby
HR patches. By using a discrete representation of MRF
nodes, the possible candidate states of HR patch Xi are ex-
tracted from the training data by its observed LR patch Yi,
and then the Loopy Belief Propagation algorithm is used as
an inference algorithm to obtain the final HR image x.

Fig. 1(b) shows the graphical model for the proposed
combination model which better illustrates the real image
formation process. It introduces a new node r representing
the PSF parameter of the reconstruction based SR method,
which can affect the statistical dependencies between the
HR image patch and LR image patches: now the PSF
blurring effect provides some additional links between HR
patch Xi and the neighboring nodes of LR patch Yi, which
also means that now the observed LR patch Yi depends both
on the PSF parameter node r and a set of neighboring nodes
of HR patch Xi. Note that this graphical model is not a typi-
cal MRF model. This paper starts from this graphical model
and in the following sections develops an efficient algorithm
to jointly infer both HR image x and the PSF parameter r.

3. The probabilistic combination model
In this section, we will first derive the formulations of the

proposed combination model and then we will introduce the
inference algorithm to get the MAP estimation of the model

Figure 1. Graphical model for SR. Left(a): The MRF
model [7]. Xi is a HR image patch. Yi is an observed
LR patch. The links indicate statistical dependencies
between nodes. Right(b): The proposed combination
model. r is the node representing the PSF parameter.
Note that only the links for node X5 are complete,
other nodes’ links are omitted for clarity.

state. The detailed information for learning and implemen-
tation will be described in Sec.4 and 5 respectively.

3.1. Formulations of the model

Denote the low resolution input images by y(k), k =
1...K, and the HR image to be estimated as x. As shown in
Fig. 1(b), the HR image x is represented as x = {xs|s ∈
S}, where xs is a HR patch indexed by the site s and S is
the set of all sites, S = {s1, s2, ...sM} = {(i, j)|1 ≤ i ≤
m, 1 ≤ j ≤ n}. Similarly, the LR images’ patch repre-
sentation is denoted as y(k) = {y(k)

s |s ∈ S}, k = 1...K.
By taking the PSF parameter r as a random variable and
assuming statistical independence between x and r, we get
the full posterior distribution of the HR image and the PSF
parameter given the model in Fig.1(b):

P (x, r|{y(k)}) ∝ P ({y(k)}|x, r)P (x)P (r), (1)

Where P ({y(k)}|x, r) can be derived from the reconstruc-
tion based image formation model [13]:

P ({y(k)}|x, r) =
K∏

k=1

(
1

2πσ2
k

)N1/2e−
∑K

k=1
‖y(k)−W (r)(k)x‖2/2σ2

k

(2)
W (r)(k) is a matrix which models the down sampling, PSF
blur and geometric warping effect during the generation of
y(k) from x. σk is the standard deviation of the independent
additive Gaussian noise in the LR image observation. N1 is
the size of the low resolution image. The HR image prior
distribution P (x) can be derived from the learning based
SR algorithm [7]:

P (x) = P ({xs}) =
∏
(i,j)

Ψ(xi, xj), (3)
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Ψ(·) is the pairwise compatibility function defined on the
neighboring nodes xi and xj . Denoting xl

i, x
m
j as a specific

candidate state of xi and xj respectively, we have:

Ψ(xl
i, x

m
j ) ∝ exp (−‖dl

ji − dm
ij‖/2σ2

o), (4)

dl
ji is a vector of pixels from patch xl

i which lie in the over-
lapped region with node xj ; dm

ij is a vector of pixels from
patch xm

j which lie in the overlapped region with node xi.
σo is the standard deviation of a Gaussian noise in training
patches. The PSF parameter’s prior distribution P (r) is as-
sumed to be a uniform distribution over a reasonable range
[r0, r1] since we have no prior knowledge on it. So we have:

P (r) =
{

0 r < r0, r > r1
1

r1−r0
r0 ≤ r ≤ r1

(5)

Now we have all the distributions in Eq.(1) which form
the posterior of the variables to be inferred. But note that
now the joint random vector (x, r) does not form a typical
MRF model as indicated in Fig. 1(b) and the observation
likelihood in Eq.(2) cannot be easily factorized to represent
the observation compatibility functions defined on pairs of
HR and LR nodes. Since there are too many compatibility
links between the HR node and the observed LR node, it
is difficult to model them in an MRF framework as in [7].
As a result, the Loopy Belief Propagation algorithm cannot
be used to infer (x, r) from Eq.(2). So we will develop an
appropriate inference algorithm in the following section.

3.2. Formulations of the model

The patch-based form of Eq. (1) can be written as:

P ({xs}, r|{y(k)
s }) ∝ P ({y(k)

s }|{xs}, r)P ({xs})P (r)
(6)

The conditional distribution of the above posterior is
specified by:

P (xt|{y(k)
s }, r, {xs : s �= t}) ∝ P ({y(k)}|x, r)P (xt) (7)

P (r|{xs}, {y(k)
s }) ∝ P ({y(k)}|x, r)P (r) (8)

The first conditional is the posterior distribution of patch
xt given all the other HR patches, LR patches and the PSF
parameter. The second conditional is the posterior distri-
bution of the PSF parameter given the HR and LR image
correspondences. The basic idea is that if we can efficiently
sample from the above two conditionals, then we will be
able to get the MAP estimation of {xs} and r through Gibbs
sampling [8].

The formulation of the conditional distribution in Eq.(7)
will be derived in Sec 3.3 and that of Eq.(8) will be derived
in Sec 3.4. After that, the annealed Gibbs sampling algo-
rithm can then be implemented to get the MAP estimation
of x, r from Eq. (6), and the implementation details will be
given in Sec 5.

3.3. Conditional distribution for HR patch

Denote ηt ⊂ S as the set of neighborhood sites for site t
where HR patch xt is located. From Eq.(3), we have:

P (xt) =
∏
i∈ηt

Ψ(xi, xt), (9)

Furthermore, the likelihood distribution P ({y(k)}|x, r) in
Eq.(7) can be significantly simplified because the varying
patch xt only affects a small portion of the whole image and
the part that is constant with respect to xt can be ignored.
Firstly, denote ht ⊂ S as the set of sites that will affect the
observed images at site t in the image formation process.
Note that ηt and ht are different; for example in Fig. 1(b), ηt

contains 4 nearest neighbors around site t while ht contains
9 sites, including 8 nearest neighbors around site t and t
itself. Normally, the size of ht depends on the camera’s PSF
parameter and the sizes of the HR and LR patch. Secondly,
we denote the reconstruction residue image as:

ϕ(k) = y(k) − W (r)(k)x̂. (10)

It is the residue image between the k-th observed LR image
and the synthesis of the k-th LR image using the current es-
timate of HR image x̂. Similarly as the patch representation
of HR image x, the residue image’s patch representation is
denoted as ϕ(k) = {ϕ(k)

s |s ∈ S} and Eq. (2) becomes:

P ({y(k)}|x, r) ∝ exp (−
∑
q∈S

K∑
k=1

‖ϕ(k)
q ‖2/2σ2

k), (11)

Finally, from (7), (9) and (11), we get the conditional distri-
bution of xt, t ∈ S as:

P (xt|{y(k)
s }, r, {xs : s �= t}) ∝∏

i∈ηt

Ψ(xi, xt) exp (−
∑
q∈ht

K∑
k=1

‖ϕ(k)
q ‖2/2σ2

k) (12)

Such a distribution can be in the form of a discrete dis-
tribution if xt has a discrete state space (the set of candidate
patches for xt) as in [7]. The details of learning the discrete
state space of the HR image x will be described in Sec. 4.

3.4. Conditional distribution for PSF parameter

By merging the distribution P ({y(k)}|x, r) and P (r), we
can easily get the conditional distribution of PSF parame-
ters:

P (r|{xs}, {y(k)}) ∝
{

0 r < r0, r > r1

P ({y(k)}|x, r) r0 ≤ r ≤ r1
,

(13)
where P ({y(k)}|x, r) is specified in (2). It is diffi-
cult to directly sample r from the continuous distribution
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P (r|x, {y(k)}) since it has a very complex form with re-
spect to r. We thus use an importance sampling method in-
stead to approximate the distribution of P (r|x, {y(k)}) and
then sample r through importance re-sampling, the details
of which can be found in Sec. 5.

4. Learning patch-based image configuration
Now we have derived all the probability models for our

framework. There is still one implementation issue: how
to get the discrete state space (the set of candidate patches
for each patch in x) of the HR image x. In this section, we
will describe how to learn such a patch-based image con-
figuration. The idea to learn an image co-occurrence model
similar to that described in [7], and we will briefly describe
it in Sec. 4.1. Then we propose a fast similarity search algo-
rithm to deal with the learning problem on a large training
data set in Sec. 4.2.

4.1. Image co-occurrence model

The image co-occurrence model models the co-
occurrence effect between the patch from a HR image and
the corresponding patch from a LR image. The image co-
occurrence model is learned from training data. The train-
ing data is formed by a set of image pairs. Each pair con-
tains a high-resolution image and the corresponding de-
graded low-resolution image. The patch pairs are then ex-
tracted from the image pairs (with overlap). For both com-
pression and generalization, we use principal components
analysis (PCA) to find a set of lower dimensional basis func-
tions for the HR patches and the LR patches respectively.
The PCA transformation process can be represented as:

θ = Λt(d̃ − u), (14)

where d̃ is the normalized image patch in vector form.
d̃ = d/e, where e is the energy of the patch, which is the
average of absolute pixel intensities. u is the mean of all
the normalized image patches. Λt is the PCA transforma-
tion matrix and θ is the transformed coefficient of the patch.

Now given an observed LR patch η, we first normal-
ize and get its PCA coefficient. Then we can find an ap-
propriate number of HR patch candidates from the image
co-occurrence model by searching the K-nearest neighbors
(KNN) of the observed LR patch. Then the PCA coeffi-
cients of the found HR patch candidates are used to recon-
struct the HR patch. Since a naive KNN search in a large
data set is unacceptably slow, we propose a fast KNN search
algorithm in Sec. 4.2. Denote one of the candidate HR
patch coefficient as θ′, then the formulation to reconstruct
the corresponding HR patch is:

ω̄ = e(Λdθ
′ + u), (15)

where ω̄ is the reconstructed HR patch, Λd is the PCA de-
formation matrix, e is the patch energy of ω̄ to be estimated.

Suppose that e0 is the energy of the observed LR patch η
corresponding to patch ω̄. Normally, e �= e0 since the cam-
era PSF blur effect will change the energy distribution of
each patch. We thus turn to an iterative update method by
setting the initial value of e to e0 and then update it by the
ratio between the two energies from the currently estimated
HR patch and its blurred correspondent patch.

Thus all the candidate HR patches obtained from the im-
age co-occurrence model constitute the state space of the
HR image x.

4.2. Fast Similarity search

Since the total number of image patches can be very
large (>15 million in our experiments), it is necessary to de-
velop an efficient similarity search algorithm for the KNN
search required in Sec. 4.1.

We start from a recently developed algorithm for fast
approximate neighbor search, Locality Sensitive Hashing
(LSH) [9]. The algorithm indexes the training examples
by a number of hash tables such that the probability of col-
lision is large for similar examples and small for dissimi-
lar ones. The LSH algorithm aims at solving the (R, ε)-
NN problem. The goal is to report a point within distance
(1+ε)R from a query u, if there is a data point v in the data
set X within distance R from u. Otherwise, the absence
of such points is reported. A family H of hash functions is
called (R, R(1 + ε), p1, p2)-sensitive if for any u, v ∈ X :
1) If d(u, v) ≤ R, then PRH

(h(u) = h(v)) ≥ p1

2) If d(u, v) > (1 + ε)R, then PRH
(h(u) = h(v)) ≤ p2,

where PRH
is the probability with respect to a random

choice of h ∈ H . We choose the hash family based on
2-stable distributions [4]. Formally, each hash function
ha,b(v) : Rd → N maps a d-dimensional vector v onto the
set of integers. Each hash function in the family is indexed
by a choice of random a and b, where a is a d-dimensional
vector with entries chosen independently from a 2-stable
distribution (the Gaussian distribution is 2-stable) and b is a
real number chosen uniformly from the range [0, w], where
w is the width of projection and the hash function is:

ha,b(v) = 	a · v + b

w

 (16)

The problem now is how to choose w. If w is too small,
the risk increases that no neighbor of a query is found. If
w is too large, then the risk increases that too many neigh-
bors will be found and cause the buckets of the hash table
to overflow. Furthermore, the returned result may not be
’similar’ enough. Actually, since the density of the training
image patches varies, it is not possible to choose a single
suitable w.

We thus propose to use an Adaptive LSH (ALSH)
scheme. The basic idea is to build a hierarchy of hash ta-
bles with respect to different w in the index construction
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stage and use adaptive search in the nearest neighbor query
stage. Since the algorithm uses variable length bucket num-
bers during hash table construction, the space complexity
of the ALSH is the same as LSH and the computational
complexity is at most m times that of LSH where m is the
number of w′s selected (in practice, the computational time
may increase only 1∼2 times). The detailed algorithm for
index construction and query is in Fig. 2.

Denote the point set as P = {p1, ...,pn} and the query
point as q. The index construction stage will generate
a sequence of projection width W = {w1, ...wm} and
l hash tables {Ti1, ...Til} for each projection width wi.
The query stage will access the hash tables and generate
K (or few) approximate nearest neighbors of q. The
algorithm is described as follows:
Index construction:
For i = 1...m
1. Set wi = 2i ∗ w0

2. Set the number of hash table buckets: bi = 2−i ∗ b0

3. For j = 1...l
3.1 For s = 1...n
3.1.1 Calculate k-dimensional projection index
(h1(ps), ...hk(ps)) for point ps according to (19).
3.1.2 Re-hash the projection vector using a standard
hash function Yh. Yh depends on the buckets number bi

3.1.3 Store point ps on the bucket Yh(ps) of hash table
Tij

Query:
S ← NULL
1. For i = 1...m
1.1 For j = 1...l
1.1.1 Calculate the projection vector and its re-hashed
value of point q same as the procedure in step 3.1.1 and
3.1.2 in index construction stage
1.1.2 S ← S∪ {points found in bucket of Yh(q) of hash
table Tij}
1.1.3 If |S| ≥ n0, break.
2. Sort S in increasing order according to its distance

Figure 2. ALSH algorithm.

5. MAP estimation

This section describes the algorithm implementation to
get the MAP estimation of x, r of the posterior distribution
in Eq. (6). The MAP estimation of x and r are carried out
using a Gibbs sampler with simulated annealing. Denote all
the random variables as Q = {{xt : t ∈ S}, r}. In order to
perform the simulated annealing, the energy term (negative
log function) of all the distribution is divided by a tempera-
ture T . The Gibbs sampler starts with an initial temperature
T0 and then gets the sample of Q by flipping it to the candi-

date state according to the conditional distribution specified
in (12) and (13). Then the temperature is decreased itera-
tively until it approaches 0 and finally the samples of Q will
converge to the MAP solution. The algorithm is described
in Fig. 3.

Initialization: Set x to a random state in Ω and sampling
r from a uniform distribution over [r0, r1], Ω is the state
space of HR image.
Loop i from 1 to I
1. Set T = C/ln(1 + g ∗ i)
2. Loop t from s0 to sM : (where S = {s0, ...sM})
2.1 Calculate the discrete conditional distribution of xt

in Eq.(12), denote it as q(xt).
2.2 Set xt to xi

t according to the probability q(xt = xi
t),

where xi
t is a specific state.

3. Loop j from 1 to J
3.1 Sampling r(j) from a uniform distribution on [r0, r1]
3.2 Calculate the importance weight w(j) of the sample
r(j) according to Eq.(13), when r is set to r(j)

4. Set r = r(j) according to a probability proportional
to its weight w(j)

Figure 3. Annealed Gibbs Sampling algorithm.

There are some parameters in the algorithm. C is a con-
stant related with the initial temperature T0 which can be
set to 1. g is a speed up parameter that controls the step
size of each iteration and we set it to 10 in the following
experiments. I is the number of iterations in the annealing
process. J is the number of samples that are used to ap-
proximate the conditional distribution of r and it depends
on the range of possible r. In the following experiments,
I = 5, J = 50 and the range of r is set to [0.3, 3.0].

Finally, in order to get a pixel level HR result, we apply
an iterative back projection operation [10] using the PSF
parameter estimated by the above algorithm for a few itera-
tions, where the parameter of the back projection kernel is
set to 0.5 and fixed in all the following experiments.

6. Experiments

In order to test the validity of the presented algorithm,
we performed two experiments. The first experiment is su-
per resolution from a single image with significant PSF blur.
Both a synthetically down-sampled LR image and the real
LR image captured from a mobile phone camera are used.
The second experiment is super resolution from image se-
quences where there exist image blur, noise, and registration
error.

The training data of the experiment is collected from
six different business cards. The HR images are of size
1200*720 and captured by a SLR digital camera (8 Mega-
pixel), the LR images are obtained by blurring the HR im-
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ages with Gaussian PSF of s.t.d=1, 2, 3 respectively. Thus
we get 18 training image pairs. All possible 7*7 patch pairs
are extracted and indexed by the ALSH algorithm described
in Sec. 4.2. The obtained training data is used in all the fol-
lowing experiments.

6.1. SR from a single image

In this experiment, we first get a collection of eight HR
images from other business cards to generate the synthetic
test LR images. The synthetic LR image is obtained by blur-
ring the HR test image and then down-sampled by a factor
of 2. The PSF is a Gaussian function with a standard devia-
tion of 2.5 and the corresponding convolution window size
is set to 13*13. The results are shown in Fig. 4. Since the
original image is too large, only regions of interest in the
image are cropped and shown. The bi-cubic interpolation is
similar to the directly sampled LR image because of the sig-
nificant PSF blur. The IBP (Iterative Back Projection) algo-
rithm is our implementation of the algorithm in [10], where
the PSF blurring kernel is set to 1.0, 2.0 and the ground
truth value of 2.5 respectively. The MRF-LBP (Markov
Random Field - Loopy Belief Propagation) algorithm is our
implementation of the algorithm in [7]. In order to make
fair comparison, all the learning based algorithms use the
same training data. We have not compared our result to re-
cently proposed learning based algorithms such as [5] be-
cause their method focuses on the super resolution of a spe-
cific class of objects and they use a much larger patch size
(16*16) which would be too large for general purpose su-
per resolution. Some parameters of the proposed algorithm
are as follows: the number of nearest neighbors during sim-
ilarity search is set to 100, parameter σo in Eq. (4) is set
to 1.0 times the number of pixels in the overlapped region,
and σk in Eq. (12) is set to 2.0 times the number of pixels in
the defined region. The initial PSF parameter is generated
randomly in an interval of [0.3, 3.0]. The non-optimized al-
gorithm’s speed is about 30 minutes for the super resolution
of a 600*360 size image to 1200*720 on a P-IV 2.8G com-
puter. The speed is relatively slow because 70% of the total
processing time is spent on the similarity search of about
34,000 patches (in the test image) for their 100 neighbors in
the training data which is stored on disk.

From Fig. 4, we can see that our algorithm achieves the
best result. The IBP algorithm even with the ground truth
PSF parameters is slightly worse with some small ”ringing”
artifacts. More SR results can be found in Fig. 5. Note
that there is no face in the training images. Fig. 7(a) shows
the estimated PSF parameters compared to the ground truth.
Note that the estimated PSF blur is the difference of blur-
ring between the LR and the HR images. It shows that our
estimation of the PSF parameter is quite accurate.

In experiments of previous researches, LR images are
all down-sampled ones of HR images using the same down

Figure 5. The SR result of face. From left to right,
the top row is up-sampled LR, bi-cubic interpolation,
MRF-LBP results; the bottom row is IBP with ground
truth PSF 2.5, our result and the original HR image.

sample algorithm as the one used in the training data. In the
next experiment, we test our algorithm on real LR images
(NOT from down-sampling) captured by a 0.3 Mega-pixel
low quality mobile phone camera. This task is much more
challenging because the LR images are different from the
training data (where LR image is from down-sampling) in
both image appearance and geometric lens distortion. The
result is shown in Fig. 6. We can see that our result can
still improve the readability of the characters. It shows that
the combination framework makes the proposed algorithm
much more robust to the learning model errors.

In fact, our approach is not only limited to the SR of busi-
ness card image. In addition, the performance of the algo-
rithm can still be improved if we use more specific training
data geared towards a specific class of LR images [5] [12].

6.2. SR from image sequence

In this experiment we create a sequence of LR images
from each test HR image. First we blur the HR image with a
PSF function of standard deviation 2.5 and the correspond-
ing convolution window size is set to 13*13. Then we down
sample it by a factor of 2 and generate 8 LR images by shift-
ing the image according to a uniformly distributed motion
vector in the range of [0, 1] pixel along both the X and Y
axis. Finally, we add Gaussian noise to the resulted LR im-
ages, where the standard deviation of the noise is set to 5
(the range of gray scale is [0, 255]). The SR results from
the eight LR images are shown in Fig. 8. The parameters of
the proposed algorithm remain unchanged from that in the
first experiment. To apply the image co-occurrence model
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in Sec. 4.1, we use the median filtered image of the se-
quence as the LR image input. The PSF parameter for the
IBP algorithm is set to the ground truth value of 2.5. From
Fig. 8 we can see that the proposed algorithm achieves a
visually better result. Note that due to space limitations, the
resulting image is shown in reduced size (less than half of
the original size). Fig. 7(b) shows the estimated PSF pa-
rameters compared to the ground truth. The estimated PSF
parameters are stable for all the test sequences despite sig-
nificant image noise.

Figure 7. Comparison of the estimated PSF parame-
ter with the ground truth on Left(a): eight test images
(Sec. 6.1) Right(b): eight test sequences with noise
(Sec. 6.2).

Figure 8. The SR results from eight LR images. From
left to right, the top row is direct up-sampling, bi-
cubic interpolation and the IBP result with PSF 1.5.
The bottom row is the IBP result with ground truth
PSF 2.5, our result and the original HR image.

7. Conclusions

A method of learning based image super resolution is
presented. It combines both the SR reconstruction con-
straint and the patch based image co-occurrence constraint

in a consistent probabilistic framework. The main strength
of the proposed method is its ability to estimate the PSF pa-
rameter in the SR process and the SR result is better than
existing methods. The proposed probabilistic framework is
in fact a combination of the global parametric model and
the learned local non-parametric model, and we believe that
it has the potential to solve other type of low level vision
problems.
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Figure 4. The SR result of text and logo. From left to right, top row is direct up-sampling and bi-cubic interpolation
result, second row is IBP result with PSF 1.0 and 2.0, third row is IBP result with ground truth PSF 2.5 and MRF-LBP
result, bottom row is our result and the original HR image.

Figure 6. The SR result of a real LR image captured by a mobile phone camera. From left to right, top row is up-
sampling and bi-cubic interpolation result, second row is IBP result with PSF 1 and 2, third row is MRF-LBP and our
result.
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