
Automatic 3D Face Modeling from Video

Le Xin1, Qiang Wang2, Jianhua Tao1, Xiaoou Tang2, Tieniu Tan1, and Harry Shum2

1National Laboratory of Pattern Recognition, Institute of Automation,
Chinese Academy of Sciences, Beijing 100080, P.R. China

2Microsoft Research Asia, Beijing 100080, P.R. China
1{xinle, jhtao, tnt}@nlpr.ia.ac.cn, 2{qiangwa, xitang, hshum}@microsoft.com

Abstract

In this paper, we develop an efficient technique for fully
automatic recovery of accurate 3D face shape from videos
captured by a low cost camera. The method is designed
to work with a short video containing a face rotating from
frontal view to profile view. The whole approach consists
of three components. First, automatic initialization is per-
formed in the first frame with approximately frontal face.
Then, to handle the case of low quality image captured by
low cost camera, the 2D feature matching, head poses and
underlying 3D face shape are estimated and refined itera-
tively in an efficient way based on image sequence segmen-
tation. Finally, to take advantage of the sparse structure
of the proposed algorithm, sparse bundle adjustment tech-
nique is further employed to speed up the computation. We
demonstrate the accuracy and robustness of the algorithm
using a set of experiments.

1. Introduction

Accurate face modeling has extensive applications in ar-
eas such as human computer interaction (HCI), multimedia,
and faces recognition [1, 3]. In recent years, a number of
approaches have been proposed for 3D face modeling from
images [2, 5, 8, 9, 12]. In [8], large angle multiple views are
used for accurately recovering shape information. But the
system with a manually intensive procedure is far from flex-
ible since the user needs to manually specify point match-
ing across multiple images and 2D-3D feature correspon-
dences.

Blanz and Vetter [2] proposed another impressive ap-
proach based on the morphable 3D face model. They can
get face model reconstruction from a single image, which
demonstrated the advantage of using these linear classes of
model. Because of the sensitivity of the texture descriptor
to illumination change [3, 5], the quality of shape recon-
struction will degrade in uncontrolled illumination. So the

texture descriptor was replaced by pair-wise point matching
to increase robustness to illumination change in [5].

Model-based bundle adjustment technique proposed by
Shan et al. [9] and the newly presented approach by Dim-
itrijevic et al. [5] inspired our work. In model-based bun-
dle adjustment, prior model knowledge is included into the
traditional bundle adjustment. For face modeling, the 3D
shape can be reliably recovered [9, 12]. But the approach
involves the use of 3D features points whose projection is
known and relies on a sparse face mesh structure which
is not a sufficient representation of the real face geome-
try. Dimitrijevic et al. [5] presented a similar bundle ad-
justment procedure based on the sophisticated PCA based
model learned from real 3D face data [2]. Given pair-wise
feature correspondences as input, the approach is robust to
uncontrolled lighting condition. Especially, they showed
that the precision of the reconstructed face model can be
predicted as a function of the number and quality of the
correspondences.

However, the computational complexity of the algorithm
in [5] grows cubically with the number of the frames being
processed, which makes it infeasible to process a relatively
long sequence. In addition, this approach depends on the
quality of point matching between adjacent frames which
we know is unreliable in low quality video.

In this paper, we develop an efficient technique for au-
tomatic recovery of accurate 3D face models from videos
captured by a low cost camera. Based on the segmentation
of the whole sequence into segments, 2D point matching,
head poses, and 3D face model are iteratively estimated and
refined in each segment. In this way, a moderate number
of accurate feature matching across images in one segment
can be established even under large illumination change.
So a final post-processing can be efficiently done over all
segments with the appropriate estimation of all the factors.
Sparse bundle adjustment technique is further employed to
speed up the computation. There are two key contributions
of this paper based on the proposed overall technique: 1)
a two-layer iterative optimization algorithm for the estima-
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tion and refinement of 2D point matching, head poses, and
3D model; 2) a system which provides feasible, efficient,
and automatic processing of input video frames to get an
accurate face model, even when noise perturbed real video
are used as an input.

2. System overview
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Figure 1. The block diagram of the proposed algo-
rithm.

Fig. 1 shows the block diagram of the proposed algo-
rithm. In the system, we use the 3D morphable face model
which was proposed in [2]. The input is a video sequence
containing a face rotating from frontal view to profile view
before a fixed camera. The main concern about face mod-
eling from video here is how to match the generic 3D mor-
phable face model to all frames accurately in an automatic
and efficient way. Due to the use of a lot of shape informa-
tion in the frames from frontal view and profile view, the 3D
face shape will be precisely reconstructed. Here, we take
the coordinate system of the 3D morphable model in the 3D
world to be fixed, which is convenient in our situation that
the camera is fixed and the head moves.

After dividing the whole sequence into segments, the
computation is processed in all segments recursively as

shown in Fig. 1. The computation in each segment consists
of two iterative estimation processes which are started after
the initialization in that segment. In the first layer iteration,
we first estimate and refine the motion parameters of each
input face image and the 3D face shape in the flow-based
model module (see Sec. 3) given the rough feature match-
ing results. The optimization in this module integrates batch
processing and model-based bundle adjustment, which re-
sults in robust 3D information recovery. Then, the feature
matching will be refined in the model-based flow module
(see Sec. 4) with known underlying 3D face model and
camera poses for each frame. By pre-warping image pairs
into small baseline image pairs and searching under geo-
metrical constraints, a better feature matching result can be
obtained. In this way, 2D point matching, head poses, and
3D face model are iteratively estimated and refined. As
a result, consistent correspondences across images in one
segment can be obtained accurately. In the second layer it-
eration, the 3D face geometry and the motion parameters
(head poses) for each frame are estimated efficiently in the
flow-based model module. Thus, when expanding to the
whole sequence, the feature matching can be efficiently es-
timated across all frames with the adaptive refinement of
face shape. The refined feature correspondences for each
segment are combined together in the last post-processing
step to further refine the 3D face model by using the same
two layers iterative estimation and refinement procedure as
the one used in each segment.

2.1. Video sequence segmentation

Because of self-occlusion and feature detection failure, a
surface point can only be observed and detected in a subset
of images. Thus, we should divide the whole sequence into
several segments. Note that there is one overlapped frame
between successive segments. The number of frames in one
segment depends on the speed of object movement and illu-
mination changes in order to get enough feature correspon-
dences to recover the 3D model and camera poses robustly.
With more than two frames tracked at one time in each seg-
ment, the recovered 3D information using batch processing
in the second layer iteration will be more reliable compar-
ing with that obtained from consecutive pairs. Furthermore,
accurate and reliable correspondences across images will
be established under our two layer iteration. Consequently,
the pose parameter computed from the previous segment in
the first frame of the current segment (the last frame of the
previous segment) is reliable to continue feature tracking,
which will be more efficient than the recursive processing
of the sequence with images added at both ends iteratively
as in [5].

2.2. Initialization

To make the algorithm fully automatic, we need to au-
tomatically get initial pose for the first frame of each seg-
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ment. For the first segment, the first frame contains an ap-
proximately frontal face. We automate the initialization by
detecting the face region using a face detector [11] and ex-
tracting the salient face features using the face alignment al-
gorithm [13]. The semantic 2D-3D feature correspondences
are then established and we use the POSIT algorithm [4] to
get an approximate initial face pose. For other segments, the
pose in the first frame is already known from the estimation
result of previous segment. Note that the face detector and
alignment is never used again in the following process.

In each segment, the good features are selected in the
first frame and then the KLT algorithm [10] is applied to
give an initial feature matching result.

3. Flow-based model

In this section, we will show that we can recover the 3D
face geometry and the motion parameters for each frame
under the perspective projection camera model in the flow-
based model module efficiently.

3.1. Problem formulation

First, a 3D morphable face model is constructed using
the USF Human ID 3-D database, which includes 100 laser-
scanned heads [2]. Each face model in the database has ap-
proximately 70,000 vertices. In our work, the number of the
vertices is reduced to about 9,000 for better performance,
which is still a fine approximation to the ground truth 3D
face surface. The triangulated mesh structure of a 3D face
is represented by a shape vector, S = (V T

1 , ..., V T
N ), where

Vi(i = 1, ..., N) are the vertices of the mesh, thus S is ob-
tained by concatenating the X,Y and Z coordinates of all
its vertices. Then a new face shape S can be expressed as:

S = S̄ +
r∑

k=1

αkSk, (1)

where S̄ represents an average face model, Sk are orthogo-
nal vectors, and αk are scalar per orthogonal-vector weights
that indicate the contributions of the shape deformation to
each shape. So a face is a surface defined by a set of r pa-
rameters, denoted by b = {αk|k = 1, ..., r}, called model
parameters. In our work, the number of model parameters
r is 50, so a small number of observation data are enough
to compute the model parameters of the eigenvectors, and
then the 3D face shape is created using those parameters.

As shown in the system overview in Sec. 2, features are
selected and tracked in n frames at one time in each seg-
ment. Here we will set n = 3 without lose of generality.
Thus, we have corresponding feature sets pj,0, pj,1, pj,2 for
the three frames, where in pj,i, j is an index over 3D points,
and i is an index over frames. We can compute a 3D point
Sj in the face surface by back-projecting pj,0 based on the
initial pose estimates M0 in the first frame. The 3D point

Sj is on the l-th planar facet in the triangulated mesh struc-
ture of 3D morphable face model. With the correct camera
poses M1,M2 in the last two frames, the pj,1, pj,2 can be
predicted based on the 3D point. Since the face shape is a
triangular mesh, any point on a triangle is a linear combi-
nation of the three triangle vertexes, which is functions of
model parameters, and any point on a triangle is also a func-
tion of model parameters. So the optimization function in
one tracking segment should be formulated as:

F1 = min
∑

j

Ψ(pj,0, pj,1, pj,2,M0,M1,M2, b)2, (2)

where Ψ is the essential optimization function for one fea-
ture matching result in this segment, which can be imple-
mented using the re-projection constraint. Here we assume
that the index of the planar facet is not changed when the
3D point Sj is refined with the model parameters b until
Sec. 3.2.3.

In practice, we use the re-projection error in the second
image

∑
j d(p̃j,i,Hp̃j,j+1)2 as our unit cost function which

may be minimized in order to estimate parameters for over-
determined solutions. Here

H = Ai+1(Ri,i+1 − ti,i+1 · n̄T /d)A−1
i , (3)

is the general expression for the homography [6] induced
by the plane for two views defined by their relative motion.
Ri,i+1, ti,i+1, Ai and Ai+1 are the camera intrinsic param-
eters; π = (n̄T , d)T is the parameter the plane has; p̃ is the
homogenous coordinates of p; ∝ denotes equality up to a
scale.

Because our simple way to perform the re-projection is
equivalent to assuming that the points in the first frame are
noise-free, the point matching of two image pairs in one
segment are allocated as pj,0 ↔ pj,1 and pj,0 ↔ pj,2 in-
stead of as correspondences in the consecutive pairs. The
location of pj,0, determined by the process of good fea-
ture selection, is more robust than that of pj,1 and pj,2. So
the optimization function in one tracking segment should be
formulated as

F1 =
∑

j

d(p̃j,0,Hj,1p̃j,1)2 + d(p̃j,0,Hj,2p̃j,2)2. (4)

In the prior shape model, not all possible values of model
coefficients are acceptable. Based on the PCA dimensional-
ity reduction algorithm, it is necessary to impose constraint
making parameters subject to bounds: |αk| < 3σk, where
σk is the k-th eigenvalue. In practice, we add the regulariza-
tion term σ′ instead of using some constrained optimization
techniques. The final function to be minimized in the IRLS
(iterative reweighed least square) way is

F1 + σ′2
r∑

k=1

α2
k

σ2
k

, (5)
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where σ′ is adaptively determined for better performance
(see Sec. 3.2.2).

In this way, the optimization function can be used in each
segment of the whole sequence recursively with the feature
matching refined in the following model-based flow mod-
ule.

3.2. Iterative parameters estimation

Here, the 3D face geometry and the six free degree
motions for each frame are estimated efficiently by the
iterative processing.

3.2.1. Camera poses estimation. It is well known
that the camera pose can be estimated reliably before an
accurate face model has been obtained. Moreover, the
face geometry will not have much discrepancy in the
proximate segment because of the recursive processing of
all segments. Thus, the optimal value of each camera pose
in each segment can be computed as:

(M̂0, M̂1, M̂2) = arg min
M0,M1,M2

F1. (6)

As demonstrated in [5], the accuracy of the 3D shape
estimation from homography constraints will increase with
the number of correspondences. But the computation re-
quirement of the nonlinear estimation problem increases
quickly at the same time. At last, in our post-processing
stage, the overall processing time will be long for a not very
long sequences.

The major computation cost of our implementation un-
der Levenberg-Marquardt optimization framework comes
from the computation relative to Jacobi matrix (J and
JT J). Fortunately, the computation of J relative to differ-
ent pose parameters is independent, so J is a matrix having
high sparse structure [7], such as:


J0

0,1 J1
0,1 0 0 0

J0
0,2 0 J2

0,2 0 0
0 0 J2

2,3 J3
2,3 0

0 0 J2
2,4 0 J4

2,4


 (7)

. In (7), we show the sparse structure of J when tracking 5
frames in two segments and 3 frames in one segment. This
will be done over all two segments for further face model
refinement in the post-processing. For one segment, the
sparse structure is similar. The simple using block indicator
under matrix multiplication for early exiting will speed up
the computation greatly. With this speeding up process, our
two layer iterative process can be carried through efficiently.

3.2.2. Model parameter estimation. Given the esti-
mated camera poses, the model parameter can be estimated
more reliably. For better smoothness in the surface re-
covery in the estimation of the face shape geometry, the

regularization term is also required. The optimal value of
model coefficients can be computed as:

b̂ = arg min
b

(F1 + σ′2
r∑

k=1

α2
k

σ2
k

), (8)

where the regularization term σ′ is determined adaptively as
follows:

σ2
k =

F1/m∑r
k=1

α2
k

σ2
k
/r

, (9)

where m is the total number of the feature matching in this
segment.

We can see clearly that the regularization term is used
to normalize the dimension size of the two terms when
minimizing the objective function. In practice, the adaptive
regularization term is applied after the objective function
is decreased in the first several optimization iterations.
And for keeping up the power of the regularization term in
smoothing face surface, we set the minimal value for it in
our experiment.

3.2.3. 2D-3D re-matching. With the change of 3D
face geometry, the relation about the 2D-3D correspon-
dences, the index of the corresponding planar facet, which
is assumed known in Sec. 3.1, should be changed accord-
ingly. In this way, the convergence of the approach can
be guaranteed. In practice, this stage is processed alterna-
tively with the first two stages for stable performance of
convergence.

4. Model-based flow

Ii

Ii+1

Ri,i+1, ti,i+1

,j iP

Oi Oi+1

Sj

iI

, 1j iP

, 1j iP

Figure 2. Model-based feature matching.

Since the image features are constrained by the geom-
etry of the underlying 3D face shape, so we can use such
constraints to handle the perspective distortion on the cor-
rection window when there is large degree of rotation in
referenced images. The matching between relatively wider
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baseline images reduces the total number of features and
thus improves the algorithm’s efficiency.

The geometrically constrained feature matching process
for refining feature correspondence in image Ii and Ii+1 is
shown in Fig. 2. After the optimization in flow-based model
step, we get a rough 3D face model and head poses for each
frame. With the dense mesh structure of our reconstructed
face model, the image Ii is first pre-warped to I ′i . Thus
small baseline feature matching can be processed in the new
image pair I ′i and Ii+1. The location of the feature image
window P̄j,j+1 in the frame Ii+1 can be predicted based
on transfer relation between Pj,i and Pj,i+1 under the same
back-projected 3D points Sj in the refined 3D model. Then
a block matching search is performed in its neighborhood in
Ii+1, denoted as confidence region, based on the new nar-
row baseline pair I ′i and Ii+1. Since the block matching can
be done approximately over integer image coordinates, no
image interpolation is required, and the resulted operation
is extremely efficient.

5. Experiments

To test the performance of our proposed algorithm, real
video sequences and noise perturbed real video sequences
were utilized. For real video sequences, we show the accu-
rate reconstruction of our algorithms. Perturbed real video
testing reflects the robustness of the algorithm to high noise
level.

5.1. Real videos captured using USB camera

Fig. 3 and Fig. 4 show the experimental results on the
real video sequences. The sequence used in Fig. 3 is the
shared sequence in [12], and that used in Fig. 4 is the se-
quence captured in uncontrolled lighting condition in nor-
mal office environment using a low cost USB camera, when
head movement is not restricted for the comfort of the sub-
ject. In all these real situation examples, the sequences are
obtained when a person turns his head in front of a static
camera. The typical sequence contains 22 to 23 images of
resolution 640*480. The first example shown in Fig. 3 has
22 frames, and the second shown in Fig. 4 has 23 frames.

In the experiment shown in Fig. 3, four images are pro-
cessed in one segment at one time. In each segment, 500
feature points are selected in the first frame and tracked
until the final frame of that segment is reached. Then the
corresponding features across all frames are used for the
shape model parameters and head motion parameters re-
covery. The known values of parameters computed in pre-
vious segment are used for setting the initialization values
of the non-linear optimization problem (Eq.(5)) in current
segment. In experiments shown in Fig. 4, the specification
is changed to selecting and tracking 300 feature points in
three images of one segment. In all these experiments, our
iteration incorporating flow-based model and model-based

flow for the refinement of point matching, head poses and
3D face model is started after all frames are processed, only
using the flow-based model step for better efficiency with-
out sacrificing accuracy.

In Fig. 3 and Fig. 4, left column contains three captured
images having different degree of head rotation, approxi-
mately 0◦, 45◦, and 90◦, respectively. The other images
show the experimental results: the projection of the recov-
ered face models on the face images based on the estimated
camera pose parameter for these images only after flow-
based model tracking step (second column), after three time
flow-based model and model-based flow iteration (third col-
umn), the shaded views of the reconstructed face model in
the same pose (fourth column) and the textured views of the
reconstructed face model in the same pose (right column).

We can see from the projection of the recovered model
overlaid on the images, especially the occluding contour,
that the accuracy of the models progressively increases with
the using of multiple images and the iterative process. And
the mouth region in profile view illustrate this more clearly.
For notability, we intentionally indicate the projection of the
37 salient points in each overlaid image.

In a non-optimized implementation, the total running
time of three time iteration of flow-based model and model-
based flow step and the estimation of rough feature corre-
spondences across all image pairs are efficiently estimated
by the flow-based model step is about 8 minutes on a
1.3GHz CPU and 256M Memory Pentium 4 machine for
the sequence in Fig. 3. For the sequence in Fig. 4, the total
running time is about 6 minutes on the same machine.

5.2. Noise Perturbed real videos

Because feature matching is included in our overall
framework, we use the noise perturbed real videos to
demonstrate the robustness of our algorithm for low qual-
ity image data. Here, the video sequence shared from [12]
is added with noise with the standard deviation 5%, 10%
and 15% of the range of gray value. Fig. 5 shows the exper-
imental results of perturbed video with different noise level.
The same parameter settings of Fig. 3 is used. The first row
shows the comparison between the reconstructed models in
noise-added sequences and the noise-free case in Fig. 3.
The horizontal axis is the standard deviation of the added
noise. The vertical axis is the difference between the recon-
structed model from noise-added video and reconstructed
model from noise-free video, which is normalized by the
3D size of the reference model. We plot the average value
of difference of all model points in Fig.5(a). Other figures
in Fig.5 show the projection of the final reconstruction re-
sults from perturbed video with noise level of 15% range
of gray value. It shows that our approach is robust to high
noise level in the low quality video data.
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(a)

(b) (c)

Figure 5. Experimental results from noisy sequence.
(a) the normalized difference between the reconstruc-
tion model from noise-added video and noise-free
video with increasing noise level. (b) Three images
of the same face in Fig. 3 perturbed with noise level
of 15% range of gray value in different head rotation.
(c) The projection of the recovered model overlaid on
the images.

6. Conclusions
In this paper we have developed an efficient technique

for automatic and accurate recovery of the 3D face shape
from videos captured by a low cost camera. Through seg-
mentation of the whole sequence into segments, 2D feature
matching, head poses, and 3D face model are iteratively es-
timated and refined in an efficient way. The method pro-

duces reliable and high quality feature matching under large
illumination change. Thus, a final post-processing can be
efficiently done over all segments. The whole process is ef-
ficient, automatic, and the result achieved is accurate even
for low quality video.

References
[1] C. Beumier and M. Acheroy. Automatic face authentication

from 3D surface. In Proc. British Machine Vision Confer-
ence, pp.449-458, 1998.

[2] V. Blanz and T. Vetter. A morphable model for the synthesis
of 3d faces. In Proc. SIGGRAPH, pp.187-194, 1999.

[3] V. Blanz and T. Vetter. Face recognition based on fitting a
3D morphable model. IEEE PAMI, 25(3):1505-1518, 2003.

[4] D. DeMenthon and L. S. Davis. Model-based Object Pose
in 25 Lines of Code. In Proc. ECCV, pages 335-343, 1992.

[5] M. Dimitrijevic, S. Ilic, and P. Fua. Accurate Face Mod-
els from Uncalibrated and Ill-Lit Video Sequence. In Proc.
IEEE CVPR, pages 188-202, 2004.

[6] R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2000.

[7] M. Lourakis and A. Argyros. The Design and Imple-
mentation of a Generic Sparse Bundle Adjustment Soft-
ware Package Based on the Levenberg-Marquardt Algo-
rithms. ICS/FORTH Technical Report TR-340, 2004. Avail-
able from http://www.ics.forth.gr/ lourakis/sba.

[8] F. Pighin, R. Szeliski, and D. Salesin. Modeling and ani-
mation realistic faces from images. IJCV, 50(2):143-169,
2002.

[9] Y. Shan, Z. Liu, and Z. Zhang. Model-based Bundle Adjust-
ment with Application to Face Modeling. In Proc. ICCV,
pages 644-651, 2001.

[10] J. Shi and C. Tomasi. Good Features to Track. In Proc. IEEE
CVPR, pages 593 - 600, 1994.

[11] R. Xiao, L. Zhu, and H.J. Zhang. Boosting Chain Learning
for Object Detection. In Proc. ICCV, pages 709-715, 2003.

[12] Z. Zhang, Z. Liu, D. Adler, M.F. Cohen, E. Hanson, and Y.
Shan. Robust and Rapid Generation of Animated Faces from
Video Images: A Model-Based Modeling Approach. Tech-
nical Report MSR-TR-01-101, Microsoft Research, 2001.

[13] Y. Zhou, G. Lie, and H.J. Zhang. Bayesian tangent shape
model: Estimating shape and pose parameters via Bayesian
inference. In Proc. IEEE CVPR, pages 16-22, 2003.

Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05) 

1550-5499/05 $20.00 © 2005 IEEE 



(a) (b) (c) (d) (e)

Figure 3. Experimental results of sequence 1 shared from [12]. From the left column to the right column: (a) Three
captured images having different head rotation from frontal view to profile view. (b) The projection of the recovered
face models on the face images based on the estimated camera pose parameters for these images after the flow-based
model step. (c) The projection of the face models after three time iteration of flow-based model and model-based flow
step. (d)The shaded views of the reconstructed face model in the same pose. (e) The textured views of the reconstructed
face model in the same pose.

(a) (b) (c) (d) (e)

Figure 4. Experimental results of sequence 2 captured from a USB camera. From the left column to the right col-
umn:(a) Three captured images having different head rotation from frontal view to profile view. (b) The projection of
the recovered face models on the face images based on the estimated camera pose parameters for these images after
the flow-based model step. (c) The projection of the face models after three time iteration of flow-based model and
model-based flow step. (d) The shaded views of the model in the same pose. (e) The textured views of the face model in
the same pose.
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