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Abstract

In supervised dimensionality reduction, tensor represen-
tations of images have recently been employed to enhance
classification of high-dimensional data with small train-
ing sets. To handle tensor data, this approach has been
formulated with tight restrictions on projection directions
that, along with convergence issues and the assumption of
Gaussian distributed class data, limits its face recognition
performance. To overcome these problems, we propose
a method of rank-one projections with adaptive margins
(RPAM) that gives a provably convergent solution for ten-
sor data over a more general class of projections, while ac-
counting for margins between samples of different classes.
In contrast to previous margin based works which deter-
mine margin sample pairs within the original high dimen-
sional space, RPAM instead aims to maximize the margins
defined in the expected lower dimensional feature subspace
by progressive margin refinement after each rank-one pro-
jection. In addition to handling tensor data, vector-based
variants of RPAM are presented for linear mappings and
for nonlinear mappings using kernel tricks. Comprehensive
experimental results demonstrate that RPAM brings signif-
icant improvement in face recognition over previous sub-
space learning techniques.

1. Introduction

Computer vision and pattern recognition has witnessed
growing interest in dimensionality reduction techniques for
classification. Among them, supervised methods such as
Linear Discriminant Analysis (LDA) [1] and its variants [5]
[11] have been particularly popular owing to their simplic-

∗This work was performed when Dong Xu was a visiting student at
Microsoft Research Asia

ity in computation and effectiveness in classification. In
LDA, projections of high dimensional image data to a lower
dimensional feature space are computed in a manner that
seeks to maximize inter-class scatter while minimizing the
scatter within each class. Despite the success of LDA in
many applications, it often suffers from the small sample
size problem when dealing with high dimensional face data
[11]. This problem is exacerbated in LDA by rasterization
of 2D image data into 1D vectors prior to processing, which
may conceal higher order structure in images, e.g., concate-
nation of rows can effectively obscure correlations along
columns.

Previous supervised techniques [14] [17], as well as
some unsupervised methods [8] [16] [12] [13], address this
problem by processing data as higher order tensors. Repre-
sentation of data as tensors not only preserves image struc-
ture, but can significantly reduce the number of projection
parameters to be learned [14] [17]. With fewer parameters
to determine from small training sets, we say that tensor-
based techniques offer greater learnability in dimensional-
ity reduction. In gaining this learnability, DATER [14] and
2DLDA [17] compute projection matrices that must be in
the form of Kronecker products of matrices, but this restric-
tion of the solution space consequently limits the potential
discriminability of the learned projection matrix, particu-
larly in cases where greater training data is available.

In this paper, we present a supervised method called
rank-one projections with adaptive margins (RPAM) that
provides greater potential discriminability with the high
learnability of tensor-based techniques. For higher discrim-
inability, the projection matrix is computed as a series of
rank-one projection vectors that are in the form of Kro-
necker products of vectors, rather than Kronecker products
of matrices, such that a broader range of solutions becomes
possible with the use of tensor data. By using rank-one pro-
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jections, a further benefit is that the solution is provably
convergent, in contrast to the previous supervised tensor-
based techniques [14] [17].

An additional advantage of employing a rank-one strat-
egy in supervised learning is that it provides a platform
for better handling of class margins. It is commonly be-
lieved that data samples that lie along class margins play
an important role in pattern classification. For example,
Support Vector Machines (SVMs) [10] utilize margin sam-
ples, referred to as support vectors, for constructing hy-
perplanes that partition a space into different classes. In
dimensionality reduction, Non-parametric Linear Discrim-
inant Analysis (NPLDA) [2] and a variant called Marginal
Fisher Analysis (MFA) [15] were proposed to break the as-
sumption of Gaussian distributed data in traditional LDA by
placing larger weights on pairs of margin points between
different classes in the computation of inter-class scatter.
In NPLDA and MFA, the margins are defined by the clos-
est pairs of points between different classes in the original
feature space, as exemplified by the red lines in Fig. 1(a).
But for dimensionality reduction as in NPLDA or MFA, al-
though the defined pairs of margin samples may be well
separated in the eventual dimensionality reduced space, the
classes themselves may not be adequately partitioned be-
cause pairs of non-margin points in the original feature
space may not be well separated after projection. This will
lead to significant degradation in the classification ability of
supervised subspace learning algorithms.

Ideally, the margin pairs of the optimal dimensionality
reduced space, as shown in Fig. 1(b), should be used to
guide the computation of projections. Since this informa-
tion is generally indeterminable from examination of the
original feature space, we take advantage of the iterative
rank-one procedure in RPAM for adaptive refinement of
margins. Specifically, our method initially utilizes the mar-
gins computed in the original feature space, and then it-
eratively adapts the margins to those that exist after each
rank-one projection, which should provide a better estimate
of the margins in the dimensionality-reduced feature space.
With the incorporation of this rank-one adaptive margin
technique, significant improvements can be gained in face
recognition performance.

2. Motivations

Before formally describing RPAM, we discuss in greater
detail the two motivations of this work in the context of su-
pervised dimensionality reduction with tensor data. To fa-
cilitate this discussion, we first review some fundamental
definitions on tensors [3] [4] and describe a property of ten-
sor vectorization.

2.1. Tensor definitions

Definition-1:(tensor inner product, norm and distance).
The inner product of two tensors X ∈ R

m1×m2×...×mn

and Y ∈ R
m1×m2×...×mn is defined as 〈X,Y〉 =∑m1,...,mn

i1=1,...,in=1 Xi1,...,in
Yi1,...,in

. The norm of tensor X
is therefore defined to be ‖X‖ =

√〈X,X〉, and the ten-
sor distance between tensors X and Y is computed as
D(X,Y) = ‖X − Y‖.

Definition-2:(k-mode product). The k-mode prod-
uct of tensor X with matrix U ∈ R

mk×m′
k , i.e.,

Y = X ×k U , is defined as Yi1,...,ik−1,i,ik+1,...,in
=∑mk

j=1 Xi1,...,ik−1,j,ik+1,...,in
× Uj,i, i = 1, ...,m′

k.
Definition-3:(k-mode unfolding). The k-mode unfold-

ing of an n-th order tensor X ∈ R
m1×m2×...×mn into a

matrix Xk ∈ R
mk× i�=k mi , i.e., Xk ⇐=k X, is de-

fined as Xk
ik,j = Xi1,...,in

, j = 1 +
∑n

l=1,l �=k(il −
1)

∏n
o=l+1,o �=k mo.

Lemma-1: Take arbitrary tensors X ∈ R
m1×m2×...×mn

Y ∈ R
m′

1×m′
2×...×m′

n and projection matrices Uk ∈
R

mk×m′
k , k = 1, . . . , n. Suppose X and Y are unfolded

into matrices and then vectorized, where x and y are the
unfolded vectors of X and Y respectively. We then have

Y = X ×1 U1 × . . . ×n Un ⇐⇒ y = PT x with

P = Un ⊗ Un−1 . . . ⊗ U1 ∈ R
n
k=1 mk× n

k=1 m′
k , (1)

where ⊗ is the Kronecker product for which A ⊗ B =
[AijB].

2.2. Learnability and potential discrim-
inability

The basic objective of supervised dimensionality reduc-
tion is to learn a projection matrix that transforms the
original high dimensional data to a lower dimension in
which accurate classification can be achieved. For a pro-
jection matrix P ∈ R

m×m′
where m =

∏n
k=1 mk and

m′ =
∏n

k=1 m′
k, the distance between two data sam-

ples x, y ∈ R
m after dimensionality reduction becomes

‖PT x − PT y‖2 = (x − y)T PPT (x − y). We define the
similarity measure matrix S as

S = PPT , (2)

such that ‖PT x − PT y‖2 = (x − y)T S(x − y).
In solving for S, two factors influence its classification

performance. One is its learnability, which is a problem in
real applications such as face recognition that typically have
small training sets and a large feature set. In such cases,
finding optimal parameter values is more difficult for pro-
jection matrices with a larger number of parameters. The
other factor is potential discriminability, which describes
the ability to obtain the optimal measure matrix. When
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Figure 1. Utility of adaptive margins. (a) margin pairs, indicated by red lines, of the original feature space; (b) margin pairs of the optimal
dimensionality reduced space; (c) projection directions of LDA (magenta), MFA (cyan) and RPAM/L (red).

the examinable solution space of projection matrices is re-
stricted, the potential discriminability becomes limited.

In vector-based algorithms [1], the discriminability is at
its full potential since the entire possible solution space is
examined. However, as mentioned previously, the small
sample size problem degrades the learnability of these al-
gorithms significantly.

While tensor-based algorithms [17] [14] have greater
learnability because of a smaller number of parameters to
estimate, their projection matrices are constrained to be a
Kronecker product of smaller sized matrices as in Eq.(1),
i.e., P = Un ⊗ Un−1 . . . ⊗ U1, Uk ∈ R

mk×m′
k , k =

1, . . . , n. Consequently, the similarity measure matrix is
constrained to be of the form

S = Sn ⊗ Sn−1 . . . ⊗ S1, Sk = UkUkT ∀ k, (3)

which greatly limits the potential discriminability of the de-
rived projection matrix. This restriction is particularly lim-
iting for large training sets, since the additional data may
not be fully exploited.

To increase potential discriminability while maintaining
the high learnability associated with tensor representations,
we utilize a series of rank-one projections, which has been
used previously in unsupervised dimensionality reduction
[8]. With this approach, each column of the projection ma-
trix P = [p1, p2, ..., pd] has the form of a Kronecker product
of unitary vectors:

pj = un
j ⊗un−1

j . . .⊗u1
j , uk

j ∈ R
mk , ‖uk

j ‖ = 1 ∀ j, k. (4)

The resulting similarity measure matrix can then be ex-
pressed as

S =
d∑

j=1

un
j un

j
T ⊗ un−1

j un−1
j

T
. . . ⊗ u1

ju
1
j
T
. (5)

This more general form of projection matrix allows for
greater potential discriminability with tensor data.

2.3. Effective margin analysis

For non-parametric separability of classes, a maximal
distance between margin samples of different classes is

targetted. Consider a sample set X = [x1, x2, . . . , xN ],
xi ∈ R

m, where N is the total number of samples, and the
class label of xi is l(xi). Marginal Fisher Analysis (MFA)
[15] solves for the projection matrix with the following op-
timization problem:

P ∗ = arg max
P

∑
c

∑
(i,j)∈N−

k2
(c) ‖PT xi − PT xj‖2

∑
i

∑
j∈N+

k1(i)
‖PT xi − PT xj‖2

(6)

where N+
k1

(i) indicates the k1 nearest neighbors of sam-
ple xi within the same class, and N−

k2
(c) denotes a set of

margin pairs that is computed as follows: for each class c,
distances between its samples and samples in other classes
are computed in the original feature space, then for the
k2 smallest distances, the corresponding pairs of points
{(i, j), l(xi) = c, l(xj) 
= c} are chosen.

These margin pairs are used in measuring separability
among different classes, but as previously noted, margin
pairs defined in the original feature space may not ade-
quately represent the margins in the dimensionality reduced
space. The margin pairs should ideally be computed in the
optimal dimensionality reduced space according to distance
||PT xi−PT xj ||, where P is the optimal projection matrix.
Our method attempts to approximate the set of optimal pairs
N−

k2
(c, P ) throughout the course of the algorithm.

3. Rank-one Projections with Adaptive Mar-
gins

With the goals of high learnability, large potential dis-
criminability, and effective margin analysis, we present the
following criterion for training samples represented as n-
th order tensors Xi ∈ R

m1×m2×...×mn with corresponding
unfolded vectors xi ∈ R

n
k=1 mk , i = 1, ..., N :

P ∗ = arg max
P

∑
c

∑
(i,j)∈N−

k2
(c,P ) ‖PT xi − PT xj‖2

∑
i

∑
j∈N+

k1
(i) ‖PT xi − PT xj‖2

with P = [p1, p2, . . . , pd] and pj = un
j ⊗ un−1

j ⊗ . . . u1
j . (7)

N+
k1

(i) is defined as in Eq. (6); N−
k2

(c, P ) represents the k2

inter-class pairs of shortest distances in the expected lower
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dimensional feature space projected by P ; and each projec-
tion direction pj is constrained to be the Kronecker product
of n unitary vectors un

j , un−1
j , . . . , u1

j .
It can be seen that this criterion poses a chicken-and-

egg problem, since P needs to be known to determine
N−

k2
(c, P ), and vice versa. No closed form solution ex-

ists, and in previous methods the margin set N−
k2

(c, P ) is
assumed to be that of the original high-dimensional feature
space. To address this problem, we present a method to
compute the solution in an iterative manner.

In solving for both the projection matrix P and the mar-
gin set N−

k2
(c, P ), we adopt a greedy approach. Given the

first (l-1) rank-one projections, the l-th projection vector pl

is computed using the matrix P l−1 = [p1, p2, ..., pl−1] as
an approximation of P in calculating the margin pairs:

p∗l = arg max
pl

∑
c

∑
(i,j)∈N−

k2
(c,P l−1) ‖P lT (xi − xj)‖2

∑
i

∑
j∈N+

k1
(i) ‖P lT (xi − xj)‖2

s.t. pl = un
l ⊗ un−1

l ⊗ . . . u1
l . (8)

To avoid redundancy among the rank-one projections, a
projection vector pl is computed in the complement space
of the previous projections, yielding an objective function

∑
c

∑
(i,j)∈N−

k2
(c,P l−1) ‖pl

T xl
i − pl

T xl
j‖2 + a

∑
i

∑
j∈N+

k1
(i) ‖pl

T xl
i − pl

T xl
j‖2 + b

, (9)

where

xl
i = xl−1

i − pl−1p
T
l−1x

l−1
i , with x1

i = xi, (10)

a =
∑

c

∑

(i,j)∈N−
k2

(c,P l−1)

l−1∑

o=1

‖pT
o xi − pT

o xj‖2, (11)

b =
∑

i

∑

j∈N+
k1

(i)

l−1∑

o=1

‖pT
o xi − pT

o xj‖2. (12)

From Lemma-1, Eq. (9) can be rewritten in tensor form:

∑
c

∑
(i,j)∈N−

k2
(c,P l−1) ‖(Xl

i − Xl
j) ×k uk

l |nk=1‖2 + a
∑

i

∑
j∈N+

k1
(i) ‖(Xl

i − Xl
j) ×k uk

l |nk=1‖2 + b
, (13)

where Xl
i is the corresponding tensor representation of xl

i

and ×kuk
l |nk=1 is equivalent to ×1u

1
l ×2 u2

l ... ×n un
l .

To our knowledge, there exists no closed form solution
for Eq. (13), so we propose an iterative algorithm for deter-
mining a local minimum. If (u1

l , . . . , u
k−1
l , uk+1

l , . . . , un
l )

are given and we define yk
i = Xl

i×1u1
l . . .×k−1uk−1

l ×k+1

uk+1
l . . . ×n un

l , then the above objective function can be

Given the sample set Xi ∈ R
m1×m2×...×mn , i = 1, . . . , N ,

their class labels ci ∈ {1, 2, . . . , Nc}, the expected sub-
space dimension d, and the maximum iteration number
Tmax:

1. Initialize P 0 = I , x1
i = xi ∀ i;

2. For l = 1, . . . , d Do

a) Compute N−
k2

(c, P l−1) from P l−1;

b) For t = 1, 2, . . . , Tmax Do

• If t=1, initialize uk
l (0) ∀ k as arbitrary column

orthogonal matrices;

• For k = 1, 2, . . . , n, Do

yk
i = Xl

i ×o uo
l (t)|k−1

o=1 ×o uo
l (t-1)|no=k+1;

Sk
b uk

l (t) = λk
0Sk

wuk
l (t);

End

End

c) pl = un
l (t) ⊗ un−1

l (t) ⊗ . . . u1
l (t);

d) xl+1
i = xl

i − plp
T
l xl

i ∀ i;

End

3. Output projection matrix P = [p1, ..., pd].

Figure 2. Procedure for rank-one projections with adaptive mar-
gins (RPAM).

simplified to

uk
l

∗
= arg max

uk
l

c (i,j)∈N
−
k2

(c,P l−1)
‖uk

l
T

(yk
i −yk

j )‖2+a

i j∈N
+
k1

(i)
‖uk

l
T (yk

i −yk
j )‖2+b

= arg max
uk

l

uk
l

T
Sk

b uk
l

uk
l

T Sk
wuk

l

, (14)

where Sk
b =

∑
c

∑
(i,j)∈N−

k2
(c,P l−1)(y

k
i −yk

j )(yk
i −yk

j )T +

aI and Sk
w =

∑
i

∑
j∈N+

k1
(i)(y

k
i − yk

j )(yk
i − yk

j )T + bI .

This objective function can be solved by the generalized
eigenvalue decomposition [15] method. Therefore, we can
obtain a local optimum of Eq. (9) by iteratively optimizing
one projection vector while fixing the other projection vec-
tors.

The detailed procedure of rank-one projections with
adaptive margins (RPAM) is given in Fig. 2.

Convergence Analysis: Unlike the iterative algorithms
of 2DLDA and DATER, the iterative algorithm of RPAM
can be proven to converge to a local optimum as follows:
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Proof. Each step of 2DLDA [17] and DATER [14] in-

volves an optimization problem arg maxU
Tr(UkT

Sk
b Uk)

Tr(UkT Sk
wUk)

,

which is similar to Eq. (14) but where Uk is a projec-
tion matrix. Since this function is difficult to optimize,
these two algorithms alter the objective function to a more
tractable form arg maxU Tr((UkT

Sk
wUk)−1(UkT

Sk
b Uk))

for which generalized eigenvalue decomposition can be ap-
plied. This alteration of the objective function, however, re-
sults in a convergence problem that is demonstrated in Sec-
tion 5.

In contrast, optimization of Eq. (14) involves the so-
lution of only a projection vector. Since ukT

Sk
wuk and

ukT

Sk
b uk are scalar values and do not involve the Trace

operation as needed for matrices, the objective function
arg maxu(ukT

Sk
wuk)−1(ukT

Sk
b uk) can be optimized di-

rectly with generalized eigenvalue decomposition, without
changing the objective function.

We define f(u1
l (t), u

2
l (t), . . . , u

n
l (t)) as

∑
i

∑
j∈N+

k1
(i) ‖(Xl

i − Xl
j) ×k uk

l (t)|nk=1‖2 + b
∑

c

∑
(i,j)∈N−

k2
(c,P l−1) ‖(Xl

i − Xl
j) ×k uk

l (t)|nk=1‖2 + a
.

In each step of RPAM, f does not increase:

f(u1
l (t), u

2
l (t), . . . , u

n
l (t)) ≥ f(u1

l (t + 1), u2
l (t), . . . , u

n
l (t)),

. . . ,≥ f(u1
l (t + 1), u2

l (t + 1), . . . , un
l (t + 1)). (15)

Furthermore, f(u1
l (t), u

2
l (t), . . . , u

n
l (t)) has a lower bound

of zero. So the iterative algorithm for RPAM converges to a
local optimum in computing each projection vector. �

4. Vector-based variants

Most previous algorithms for dimensionality reduction
address linear mappings of vector data. Since a vector is
simply a first-order tensor, RPAM can also process vectors.
For clarity, we denote the special case of RPAM for linear
mappings of vector data as RPAM/L, and the tensor-based
version as RPAM/T.

The kernel trick [7] has been widely applied to extend
linear dimensionality reduction algorithms into nonlinear
ones. The intuition of the kernel trick is to map data from
the original feature space to a higher dimensional Hilbert
space φ : x → F in which the data may be linearly separa-
ble. In this new feature space, linear dimensionality reduc-
tion algorithms can then be applied.

We denote the data set after transformation as φ(X) =
[φ(x1), φ(x2), . . . , φ(xN )] and the Gram matrix as K =
φ(X)T φ(X) with elements computed as inner products
Kij = s(xi, xj) = φ(xi) · φ(xj). In kernel analy-
sis, the non-linear projection directions P are of the form
P = φ(X)A where A = [α1, . . . , αd] represents a matrix

Given the sample set xi ∈ R
m, i = 1, . . . , N , their class

labels ci ∈ {1, 2, . . . , Nc}, the final lower dimension d and
the iteration number Tmax:

1. Initialize P 0 = I , K1
i = Ki ∀ i;

2. For l = 1, . . . , d Do

a) For t = 1, 2, . . . , Tmax Do

• If t > 1, compute N−
k2

(c, P l−1) from P l(t-1),
else compute N−

k2
(c, P l−1) from P l−1;

• Compute the optimal αl(t) from Eq.(18);

End

b) Output αl = αl(t) and set P l = P l(t);

c) Kl+1
i = (I − Kαlα

T
l )Kl

i ∀ i;

End

3. Output A = [α1, α2, . . . , αd]

Figure 3. Procedure for vector-based Kernel RPAM.

of linear combinations. From this, the objective function of
Eq.(7) can be reformulated for vectors as

A∗ = arg max
A

∑
c

∑
(i,j)∈N−

k2
(c,P ) ‖AT Ki − AT Kj‖2

∑
i

∑
j∈N+

k1
(i) ‖AT Ki − AT Kj‖2

s.t. αT
j Kαj = 1 ∀ j, (16)

where Ki is the i-th column vector of K.
From the first (l-1) projection directions P l−1 =

[φ(X)α1, . . . , φ(X)αl−1], the l-th projection pl is con-
strained to lie in the complement space of the space spanned
by the previous projection vectors. The term pT

l xl
i in Eq. (9)

is changed to pT
l φl(xi), which can be computed as follows:

pT
l φl(xi)

= pT
l (I − pl−1p

T
l−1)φ

l−1(xi)

= (φ(X)αl)
T (I − φ(X)αl−1α

T
l−1φ(X)T )φl−1(xi)

= αT
l (Kl−1

i − Kαl−1α
T
l−1K

l−1
i )

= αT
l (I − Kαl−1α

T
l−1)K

l−1
i . (17)

This is equivalent to resetting Kl
i = (I −

Kαl−1α
T
l−1)K

l−1
i with K1

i = Ki. Similar to Eq. (9), αl

can be learned by maximizing the objective function

max
αl

∑
c

∑
(i,j)∈N−

k2
(c,P l−1) ‖αT

l Kl
i − αT

l Kl
j‖2 + a

∑
i

∑
j∈N+

k1
(i) ‖αT

l Kl
i − αT

l Kl
j‖2 + b

, (18)
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where

a =
∑

c

∑

(i,j)∈N−
k2

(c,P l−1)

l−1∑

o=1

‖αT
o Ki − αT

o Kj‖2,

b =
∑

i

∑

j∈N+
k1

(i)

l−1∑

o=1

‖αT
o Ki − αT

o Kj‖2.

As with Eq. (14), this objective function can be solved by
the generalized eigenvalue decomposition method. The en-
tire procedure, referred to as RPAM/K, is listed in Fig. 3.

In Fig. 3, we note a minor difference in RPAM/L and
RPAM/K from RPAM/T in the computation of margin sam-
ples. In RPAM/L and RPAM/K, when t > 1, we use
the most recently computed projection matrix P l(t − 1) =
[p1, ..., pl−1, pl(t-1)] to replace P l−1 in approximating the
optimal margin samples. Note for RPAM/K, pl(t − 1) =
φ(X)αl(t − 1). For RPAM/T, only P l−1 is used to com-
pute N−

k2
(c, P l−1), since changing the margin in iterations

of t will effectively change the objective function, and the
iterative algorithm would not be provably convergent. An-
other difference of RPAM/K is that for the first projection
direction α1, N+

k1
(i) and N−

k2
(c, P 0) are determined from

data points in the high-dimensional Hilbert space, where
the distance between samples xi and xj is computed as
D(xi, xj) = s(xi, xi) + s(xj , xj) − 2s(xi, xj).

5. Results

In our results, we first demonstrate the effects of margin
adaption. Then, two benchmark face databases, XM2VTS
[6] and CMU PIE [9], are used to evaluate the effectiveness
of RPAM in comparison to LDA, MFA and their variants.

For the face recognition experiments, preprocessing of
images includes alignment by fixing the locations of the two
eyes, size normalization to 64x64 resolution, and histogram
equalization. In all the experiments, the gallery and probe
data are transformed into 1D vectors, 2D matrices of size
64x64, and 3D tensors of size 16x16x24. In the 3D tensor
representation, we utilize downsampled images and include
a dimension that consists of 24 Gabor features at six orien-
tations and four scales. The dimensionality reduced vectors,
matrices and tensors are acquired via the learned subspaces,
and the nearest neighbor criterion is used for final classifi-
cation.

5.1. Artificial Data

To clearly illustrate the effects of adaptive margins, we
examine the artificial two-class problem of Fig. 1. In
Fig. 1(c), the solid lines represent the projection directions
computed by LDA, MFA, and RPAM/L. Since the samples
in Class 1 do not form a Gaussian distribution, LDA fails to

Algorithm Recognition Rate (%)

LDA/L [1] 90.9
MFA/L [15] 91.5

RPAM/L 97.3
LDA/2D [17] 88.8

RPAM/2D 97.6
LDA/3D [14] 89.2

RPAM/3D 98.3

Table 1. Recognition rates on the XM2VTS database.

find the optimal projection direction. Although MFA con-
siders margin samples, the results are also not correct be-
cause the margin pairs in the original feature space, indi-
cated by red lines in Fig. 1(a), do not adequately represent
the margins of the optimal dimensionality reduced space, as
illustrated in Fig. 1(b). By iteratively adapting the margin
samples (Tmax = 8 in this experiment), RPAM/L identifies
the optimal solution.

5.2. Face recognition on XM2VTS database

The XM2VTS database [6] contains 295 people, and for
each person there are four frontal face images taken during
four separate sessions. In our experiments, we select the
295x3 images of the first three sessions as training data, the
295 images of the first session as the gallery set, and the
295 images from the fourth session as the probe set. Recog-
nition rates are listed in Table 1. The results demonstrate
that RPAM and its variants outperform LDA, MFA and their
corresponding variants.

An important difference of RPAM/T from 2DLDA
[17] and DATER [14] is the convergence characteristics,
which are shown for a second-order matrix representa-
tion in Fig. 4. The horizontal axis indicates the num-
ber of iterations, and the vertical axis is the similarity
of two successively estimated projection matrices or vec-
tors, i.e., Tr[Abs(UkT

(t)Uk(t − 1))]/m′
k for 2DLDA and

Abs(ukT

10 (t)uk
10(t− 1)), k = 1, 2, for RPAM/2D. The rank-

one approach of RPAM/2D does not exhibit the conver-
gence problems that are evident with 2DLDA.

5.3. Face recognition on CMU PIE database

The CMU PIE (Pose, Illumination, and Expression)
database [9] contains more than 40,000 facial images of 68
people. The images were acquired over different poses, un-
der variable illumination conditions and with different facial
expressions. In this experiment, five near-frontal poses and
four illumination conditions are used, such that each per-
son has twenty images. We randomly choose four images
per person for training and use the remaining sixteen im-
ages for testing. The results are given in Table 2. Again the

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
0-7695-2597-0/06 $20.00 © 2006 IEEE 



0 20 40 60
0

0.5

1

Iteration Number

S
im

ila
rit

y

0 20 40 60
0

0.5

1

Iteration Number

S
im

ila
rit

y

U1 of 2DLDA U2 of 2DLDA

0 20 40 60
0

0.5

1

Iteration Number

S
im

ila
rit

y

0 20 40 60
0

0.5

1

Iteration Number

S
im

ila
rit

y

u1
10 of RPAM/2D u2

10 of RPAM/2D

Figure 4. Convergence characteristics of 2DLDA and RPAM/2D.
The vertical axis indicates the similarity of two successive projec-
tion matrices or vectors, and the horizontal axis gives the number
of iterations.

Algorithm Recognition Rate (%)

LDA/L [1] 76.2
MFA/L [15] 77.0

RPAM/L 83.0
LDA/K [7] 76.5

MFA/K [15] 78.2
RPAM/K 82.8

LDA/2D [17] 81.7
RPAM/2D 88.0

LDA/3D [14] 78.2
RPAM/3D 95.5

Table 2. Recognition rates on the CMU PIE database.

results demonstrate that RPAM and its variants outperform
LDA, MFA and their corresponding variants.

6. Conclusion

In this paper, we have proposed a supervised sub-
space learning algorithm called Rank-one Projections with
Adaptive Margins that overcomes previous shortcomings in
tensor-based classification. The effectiveness of this ap-
proach is evidenced in experimental comparisons on bench-
mark databases with other dimensionality reduction meth-
ods. The presented greedy approach to margin adaptation
provides only an approximate solution to the margin prob-
lem, and further investigation of this issue presents an inter-
esting direction for future work.
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