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Abstract

In this paper, we address a novel problem of automat-
ically creating a picture collage from a group of images.
Picture collage is a kind of visual image summary — to
arrange all input images on a given canvas, allowing over-
lay, to maximize visible visual information. We formulate
the picture collage creation problem in a Bayesian frame-
work. The salient regions of each image are firstly extracted
and represented as a set of weighted rectangles. Then, the
image arrangement is formulated as a Maximum a Poste-
rior (MAP) problem such that the output picture collage
shows as many visible salient regions (without being over-
laid by others) from all images as possible. Moreover, a very
efficient Markov chain Monte Carlo (MCMC) method is de-
signed for the optimization. Applications to desktop image
browsing and image search result summarization demon-
strate the effectiveness of our approach.

1 Introduction
With the rapid growth of digital image content, it be-

comes more and more of a challenge to browse through a
huge amount of images, such as hundreds of vacation pho-
tos in a home directory or thousands of images returned for
a query on the internet. To make browsing process more
efficient, image summarization is often needed to address
this problem. Most previous image summarization works
mainly focus on content based techniques such as image
clustering [3] and categorization [4] to provide a high-level
description of a set of images. In this paper, we propose
a visual image summarization approach — picture collage.
Figure 1(c) shows an example of picture collage.

The top row of Figure 1 shows a group of images. A
common summarization method is to select a smaller num-
ber of representative images and create an image mosaic as
shown in Figure 1(a). However, the disadvantage of this ap-
proach is that the image mosaic will contain lots of uninfor-
mative regions (such as sky and grass in this case). An ideal
image summary should contain as many informative regions
as possible on a given space. Figure 1(b) shows a col-
lage produced by a commercial image browsing software.

Images are randomly placed on a canvas allowing overlay.
Although all images are displayed, more than half of the
images are occluded. Additionally, each image is down-
sampled, and cropped without considering image content.
Figure 1(c) is a picture collage generated by the proposed
approach in this paper. Compared with the previous two re-
sults, picture collage shows the most informative regions of
all images on a single canvas without down-sampling and
cropping. In another word, picture collage creates a visual
image summarization of a group of images while maximiz-
ing visible visual information.

1.1 Related work

To create an ideal image summarization, the first step is
to determine which regions of each image are informative or
salient. One discriminative approach is the saliency-based
visual attention model [6]. This model combines multi-
scale image features (color, texture, orientation) into a sin-
gle topographical saliency map. A dynamical neural net-
work detects attended regions from the saliency map.

A simple technique for image arrangement is page lay-
out [2][5]. It mainly aims to maximize page coverage with-
out image overlap. However, page layout techniques share
a common drawback of image mosaics — paying homoge-
nous attention over the entire image.

An interactive approach to combine multiple images is
interactive digital photomontage [1]. The user manually
specifies salient regions on each image and the system cre-
ates a single composite image. This technique works well
only when all input images are roughly aligned. But in our
application, i.e. picture collage, input images are usually
considerably different.

One generative approach for selecting salient regions and
generating a summary image is epitomic analysis [7]. The
epitome of an input image is a condensed version of the
image that contains all constitutive textural and shape prim-
itives necessary for reconstructing the image. But the epit-
ome image is originally designed for the purpose of recon-
struction not viewing. Semantic structures and objects in
the input images can not be preserved in the epitome image.

The most similar work to ours is digital tapestry [12].
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(a) Mosaic Collage (b) Google’s Picasa Collage (c) Picture Collage

Figure 1. Collage Comparison. Top: eight images from a consumer photo collection. Bottom: three different ways to create a
collage: (a) mosaic collage of representative images; (b) picture collage created by Google Picasa; (c) picture collage created by the
proposed approach.

Digital tapestry formulates the selection of salient regions
and their placement together as a Markov Random Field
(MRF) problem. However, artifacts are also introduced
along the boundaries of two neighboring salient regions
coming from two different images in digital tapestry. Al-
though some artifact removal methods can be used, there
still exists obvious artifacts, which makes the final tapestry
unnatural or unrealistic as pointed out in [12]. Contrarily,
picture collage is different from digital tapestry in three as-
pects: 1) picture collage introduces an overlay style to avoid
artifacts caused by digital tapestry. This collage style is
more common in real life and can often be found in the
album designed by artist; 2) the oriented placement and the
layer ordering of the image are two unique features in pic-
ture collage. They substantially improve the visual impres-
sion of the results. It is not trivial to apply digital tapestry
on our picture collage generation; 3) both formulation and
optimization of picture collage are different from those in
digital tapestry.

1.2 Our approach

We argue that a nice picture collage should have the fol-
lowing properties: 1) salience maximization. A picture col-
lage should show as many visible salient regions (without
being overlaid by others) as possible. 2) blank space mini-
mization. A picture collage should make the best use of the
canvas. 3) salience ratio balance. Each image in the collage
has a similar salience ratio (the percentage of visible salient
region). 4) orientation diversity. The orientations of the im-
ages are diverse. This property is used to imitate the collage
style created by humans. After salient regions of each im-
age are extracted by an image saliency analysis algorithm,
we present a Bayesian formulation of the picture collage by
incorporating the above properties.

The picture collage is also related to the rectangle pack-
ing problem, which is known to be NP-complete [9][10].

The picture collage is a more challenging problem because
of the placement order. Therefore, we design a Markov
chain Monte Carlo (MCMC) sampling algorithm for the op-
timization. To effectively and efficiently explore the pos-
terior, we construct a mixture of three well-designed pro-
posals: local proposal, pairwise proposal, and global pro-
posal. Moreover, a parallel sampling method is proposed
for a large number of images. Experimental results show
that the proposed optimization approach is very efficient.

The remainder of this paper is organized as follows. Sec-
tion 2 formulates picture collage as a Bayesian problem. In
Section 3, an efficient MCMC scheme is presented. Sec-
tion 4 gives the experimental results. The conclusion is
given in Section 5.

2 Problem Formulation
Given N input images {Ii}

N
i=1 and their saliency maps

{ai}
N
i=1 (saliency map representation will be discussed in

subsection 2.1), picture collage arranges all images on a
canvas C. We denote all these inputs as observation z =
{{Ii}

N
i=1, {ai}

N
i=1, C}. In a picture collage, each image Ii

has a set of state variables xi = {si, oi, li}, where si is
the 2D spatial coordinate of the center of image Ii in C,
and oi is the orientation angle. Each image has a unique
layer index li ∈ {1, 2, ..., N} such that we can determine
the placement order of all the images.

To incorporate several desired properties, such as
salience maximization, blank space minimization, salience
ratio balance, and orientation diversity as mentioned be-
fore, we formulate the picture collage creation in a Bayesian
framework, i.e. infer the Maximum a Posteriori (MAP) so-
lution of the state variables x = {xi}

N
i=1 given the observa-

tion z:
x∗ = argmax

x
p(z|x)p(x), (1)

where p(z|x) is the likelihood model and p(x) is the prior
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Figure 2. Saliency Representation. In the left column
images, the attracted salient area is inside the rectangle. The
right column shows the approximated saliency region by
two rectangles.

model.

2.1 Saliency Representation

Before creating photo collage, it is necessary to extract
salient regions from the input images. In digital tapestry, a
high contrast image block is assumed to be salient. In our
approach, we extract the biggest salient region for each in-
put image by adopting a visual attention model [6] which
combines multi-scale image features (color, texture, orien-
tation) in a discriminative framework.

Then the salient map is approximated by several
weighted rectangles. An example is shown in Figure 2.
The concentric rectangles in the right column are used to
approximate the salient region in the left column. The in-
nermost rectangle has the largest saliency density, where
the saliency map is represented using a combination of
several (particularly two in Figure 2) rectangles, and each
one has a homogeneous saliency density. With this ap-
proximated representation, the likelihood evaluation can
be efficiently performed by very simple polygon boolean
operations. A fast implementation can be obtained from
http://www.cs.man.ac.uk/ ˜toby/alan/software/gpc.html.

2.2 Likelihood

The likelihood measures the quality of a picture collage
given the state variables x. It is modeled as an exponential
distribution:

p(z|x) =
1

Z
exp(−(Aocc + λBB + λV V )). (2)

where Z is a normalization constant, Aocc is the normalized
sum of occluded saliency regions, B is the normalized sum
of uncovered regions on the canvas, and V is the variance of
saliency ratios. Three terms encode salience maximization,
blank space minimization, and salience ratio balance of a
picture collage.
Salience Maximization This property aims to maximize
the total amount of visible saliency Avis =

∑
i avis

i , where

(a) (b)

Figure 3. Saliency Ratio Balance. Without saliency ratio
balance, some images may be heavily occluded. In (a) most
of image 4 is invisible. With saliency ratio balance, (b) is a
better balanced collage for the same input images.

avis
i is the visible part of the saliency region ai. It is equiv-

alent to minimizing the sum of occluded saliency regions
Aocc = Amax − Avis, where Amax =

∑
i ai. We further

normalize this measure into the range [0, 1]:

Aocc = Aocc/Amax. (3)

Blank Space Minimization The blank space is the space in
the canvas which is not covered by any image. The blank
space is the difference of the canvas bounding rectangle RC

from the union of all the images: B = RC −
⋃N

i=1
Ri,

where Ri is the bounding rectangle of image Ii. B should
be minimized to make the best use of canvas space. We also
compute the normalized term

B = Area(B)/Area(RC ). (4)

Saliency Ratio Balance Due to the canvas size limitation,
the visible part of a saliency region may be very small as
image I4 in Figure 3(a). To avoid such a result, a vis-
ible saliency ratio balance can be introduced to obtain a
well-balanced collage as shown in Figure 3(b). The visible
saliency ratio of one image is calculated as ri = avis

i /ai.
The variance of all saliency ratios

V =
1

N

∑N

i=1
(ri − r̄)2 (5)

is used to evaluate the balance, where r̄ =

∑
N

i=1
ri

N
. A better

balanced picture collage should have a smaller variance V .
To balance the relative importance of the above three fac-

tors, we set the weights λB and λV in Equation (2) as 0.1
and 0.2.

2.3 Prior

We factorize the prior p(x) in Equation (1) as:

p(x) = p(xs)p(xo)p(xl), (6)

where xs = {si}
N
i=1, xo = {oi}

N
i=1, and xl = {li}

N
i=1. To

avoid introducing any bias, it is natural to model the posi-
tion prior p(xs) as a uniform distribution over the canvas.
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To globally measure the orientation diversity of all im-
ages, we compute the average of the absolute orientation
differences between any two images Ii and Ij :

og =

√∑N

i=1,j=1
|oi − oj |2

N(N − 1)
. (7)

To encourage orientation diversity, we model p(xo) as

p(xo) ∝ N(og; mg, σ
2
g)

∏
i

N(oi; 0, σ2
o), (8)

where {mg, σg} controls the global diversity of orienta-
tions. The second term N(oi; 0, σo) encourages each im-
age to be placed upright, where the variance σo controls the
individual diversity.

In order to assign a unique layer index to each image, we
model p(xl) as

p(xl = l1, ..., lN ) =

∏
i

∏
j �=i δ(li, lj)

n!
, (9)

where δ(li, lj) = 1 if li �= lj , 0 otherwise.

3 Optimization
Our objective function is the combination of Equation

(2) and (6). It is a high dimensional, non-convex combi-
natorial optimization problem which is difficult to be effec-
tively solved. Therefore, we adopt the MCMC algorithm
for the optimization since the posterior (1) can be evaluated
at a very cheap computational cost, using our approximated
saliency representation.

3.1 Markov chain Monte Carlo

Given a distribution π(x) of variables x, in our case
π(x) = p(x|z) , MCMC is a strategy for generating sam-
ples {xk}K

k=1 of π(x) by exploring the state space of x us-
ing a Markov chain mechanism. This mechanism constructs
a chain which spends more time in the regions with higher
probability density. The stationary distribution of the chain
will be the target distribution π(x). In this paper, we pick
the sample

xk∗

= arg max
xk

p(xk|z)

as the MAP solution.
Most MCMC methods are based on the Metropolis-

Hastings (MH) algorithm. In MH sampling, the proposal
function q(x∗|xk) (also called transition kernel) can be an
arbitrary distribution which is used to sample a candidate
sample x∗ given the current state x. As pointed in [8], it
is the key factor that affects sampling efficiency. In other
words, whether or not an MCMC approach can effectively
sample the target distribution π(x) completely depends on
how well the proposal function q(x∗|xk) is designed.

3.2 Proposal Design

There must be many local optimums in our high dimen-
sional, non-convex combinatorial optimization problem. To
avoid sticking at local minima, we design a mixture of pro-
posals to deal with this difficulty: 1) a local proposal ql that
discovers finer details of the target distribution, 2) a global
proposal qg that can explore vast regions of the state space
of x, 3) a pairwise proposal qp that has the inbetween be-
havior. The mixture of proposal q(x∗|xk) is defined as:

q(x∗|xk) = vlql(x
∗|xk) + vgqg(x

∗|xk) + vpqp(x
∗|xk),

(10)
where vl, vg and vp are three weights with vl + vg + vp =
1, and they will be dynamically adjusted. Both global and
pairwise proposals are critical to make the algorithm jump
out from a local minimum.

For clarity, let π(xi, ∗) ≡ π(xi, x \ xi) when only
the state xi is involved for update. Similarly, π(si, ∗) ≡
π(si, x\xi) when only the position of image Ii is involved.

3.2.1 Local Proposal

Local proposal only changes the state of one image once.
The proposal ql(x

∗|xk) should determine which image to
be selected for update and how to propose a good state for
the selected image, in a probabilistic manner.

For the first issue, we compute a weight wi for each im-
age. This weight is inversely proportional to the visible
saliency ratio ri = avis

i /ai:

wi =
(ri + ε)−1∑
i(ri + ε)−1

, (11)

where ε = 0.2 is a constant to dilute the influence of this
weighting. We select the image Ii with the probability wi.

For the second issue, the most frequently seen method
is Random walk sampling. i.e. adding a random distur-
bance to the current state configuration. However, in Ran-
dom walk sampling, it is often the case that a small step-size
in the proposal will result in exceedingly slow movement of
the corresponding Markov chain, whereas a large step-size
will result in a very low acceptance rate. To avoid such
“blind” sampling, we propose the following sampling algo-
rithm to make large step-sizes without lowering the accep-
tance ratio based on Multipoint Metropolis method [11].

To update the state xi = {si, oi, li}, we randomly select
one of following proposals: position proposal, orientation
proposal, and layer proposal.

Position Proposal Our position proposal is based on the
Random-Grid Sampling [8] (RGS):

• Randomly generate a direction e and a gird size r.

• Construct the candidate set as

ym = sk

i + m · r · e, m = 1, ..., M
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Figure 4. Position Proposal. The direction e3 is com-
puted for image 3 in blank space driven RGS. The direc-
tions e4 and e5 are computed for image 4 and image 5 in
moveable space driven RGS.

• Draw y from {ym}M

m=1 with probability π(ym)

• Construct the reference set {yr

m = y − m · r · e}M

m=1

• Let sk+1

i
= y with probability

min{1,

M∑
m=1

π(ym)/

M∑
m=1

π(yr

m)}

or reject otherwise.

Conceptually, RGS performs a 1D probabilistic search
on a random direction such that it can make a large step-size
jump from the current state. However, the random sampling
of the direction in RGS is still blind. Therefore, we should
propose more effective direction e using either blank space
driven RGS or moveable direction driven RGS.
Blank space driven RGS Given a current state configura-
tion, there may be a number of blank regions. In the case
there is at least one adjacent blank region Bi for the image
Ii (we randomly select one if there are more than one adja-
cent blank region), we obtain a direction eB

i from the center
of bounding rectangle Ri to the center of the union region
Ri

⋃
Bi. One such direction e3 of image 3 is shown in Fig-

ure 4. Then we sample e and r for RGS from two gaussian
distributions N(e; eB

i , σ2
e) and N(r; mr , σ

2
r) respectively.

This proposal is in particular useful in the early phase of
the sampling when there are many blank regions. We set
M = 10 in RGS.
Moveable direction driven RGS In the case there is no ad-
jacent blank region for the image Ii, we consider directions
{ej}

n
j=1 from its center to the centers of its n adjacent im-

ages {Ij}
n
j=1. First, we denote Ra

i as the bounding rectan-
gle of the saliency region in image Ii. Second, we define
a “moveable” distance dij between images Ii to its neigh-
bor Ij . If the image Ii is above image Ij , the “moveable”
distance dij is the minimal distance between the bounding
rectangle Ri of the image Ii and the saliency bounding rec-
tangle Ra

j of the image Ij (e.g., from image 4 to image 5 in

Figure 4 ); Otherwise, dij is the minimal distance between
Ra

i and Rj (e.g., from image 5 to image 4 in Figure 4). Last,
we sample a direction eM

i from the direction set {ej}
n
j=1

with the probability that is proportional to {dij}
n
j=1. The

final direction e for RGS is again sampled from a gaussian
direction N(e; eM

i , σ2
e). In the case all the distances dij are

0, a random direction is sampled. This proposal is quite
useful in the whole phase of the sampling.

Orientation Proposal The RGS method can be directly
applied on orientation proposal because the orientation
oi is a 1D variable. Direction sampling is not neces-
sary. We sample a grid size r from a gaussian distribution
N(r; mo, σ

2
o). M is also set as 10.

Layer Proposal To sample layer index lk+1, we do not
consider the previous layer index lk because the layer
change will often cause large change of the likelihood.
Therefore, we generate the layer index using Multiple-Try
Metropolised Independence Sampling (MTMIS) [8]. The
basic process is:

• Uniformly draw a trail set of layer index samples {ym}M

m=1

for the set [1, 2, ..., N ]. Compute W =
∑

M

m=1
π(ym, ∗)

• Draw a layer index y from the trail set {ym}M

m=1 with prob-
ability proportional to π(ym, ∗)

• Let lk+1 = y with probability

min{1,
W

W − π(y, ∗) + π(lk, ∗)
}

and let lk+1 = lk otherwise.

We set the number M = 2N so that we have a
good chance to search a better layer index in a probabilis-
tic manner. Another big advantage of using multiple-try
sampling is that we can incrementally compute {π(li =
1, ∗), ..., π(li = N, ∗)} in a top-down way such that the
computation cost of multiple-try sampling is just twice the
cost of a Random walk sampling.

3.2.2 Global Proposal

In global proposal, we also have three proposals for the po-
sition, orientation, and layer index xs, xo, and xl.

Position Proposal To make the new sample xk+1
s jump

far way from the local minimum, we sample the positions
for all images independent of current state xk

s .
Roughly speaking, all images in a good picture collage

should be well separated on the canvas, as shown in Fig-
ure 1(c). Therefore, we firstly divide the canvas C into a
number of N∗ > N squares and randomly select a num-
ber of N centers sc

i of squares without drawback. Then, we
sample xs from the distribution

∏
i N(si; s

c
i , σ

2
sc

i

), where
σsc

i
is 1/6 width of the square.
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Oriental Proposal The orientation xo is sampled based
on the prior of orientation:

q(xo) ∝
∏

i

N(oi; 0, σ2
o), (12)

Layer Proposal The layer index is sampled from its
prior distribution as shown in Equation (9). Based
on the conditional probability property p(l1, · · · , lN) =
p(l1)p(l2, . . . , lN |l1), the whole layer index can be sampled
by sequentially sample l1 and l2, . . . , lN . p(l1) is easily
proved to be a uniform distribution and hence can be di-
rectly sampled. In a similar way l2, · · · , lN with the condi-
tion of l1 are sequently sampled.

3.2.3 Pairwise Proposal

The acceptance rate of global proposal usually is low com-
pared with local proposal. In order to make the Markov
chain have the ability to partially jump away from the local
minimum, a pairwise proposal is designed for this goal. It
can be viewed as a compromise of local proposal and global
proposal. In each iteration, it swaps the positions, orienta-
tions, or layer indexes of uniformly selected two different
images. This proposal is in particular useful in the early
and intermediate phases of the sampling.

3.2.4 Dynamic Weighting

The three weights vl, vg and vp in Equation (10) represent
our expectation on the frequencies of the local, global, and
pairwise proposals being utilized. On the one hand, when
the local proposal can not improve the result in a longer
time, the global and pairwise proposals should have larger
probabilities to be utilized. So we set vl = exp (− t2

2σ2

t

),
where t is the iteration number that the local proposal does
not improve the result continuously, σt controls the prob-
ability that the local proposal is utilized, and is set as 6N
so that three types of local proposals have a good chance to
be utilized. On the other hand, the pairwise proposal has
the potential to partially jump away from local minimum
and find local details. So it is desirable to encourage the
pairwise proposal to have a higher probability to be utilized
than the global proposal. Therefore, we set vp = 3vg.

3.3 Parallel Sampling

If a large number of images (N > 32) are to be placed,
the canvas is firstly partitioned into several sub-canvases.
Then we perform collage inference in parallel on each sub-
canvas. Afterwards, those sub-canvases are packed into the
original large canvas. Then, two steps are sequentially per-
formed to refine the collage: 1) view each sub-canvas as a
single image and run the local sampling, 2) run the local

and pairwise samplings for the all images on the canvas.
An example is shown in Figure 7, in which Figure 7(a) is
the packed collage and Figure 7(b) is the refined collage.

4 Experimental Result
We test our approach on visual image summarization for

photo collections and image search results. The following
experimental results are all obtained with a fixed set of pa-
rameters as mentioned before. The canvas is square and its
size is set so that its area is about half of the total area of all
input images.

To show the efficiency, we present an example to show
the changing curve of the energy (minus log of posterior)
and the collage evolution process. An example as shown
in Figure 5 is performed on 10 images. Parallel sampling
is not used for this example. In the curve of Figure 5(d),
the x-axis represents the iteration number, and the y-axis
is the lowest energy up to the current iteration. From this
curve, we can see that the lowest energy decreases quite
fast around iteration 10, 600, and 1200. This phenomenon
demonstrates that our sampling algorithm can jump away
from the local minimum and hence can effectively explore
the vast state space. The whole sampling process only takes
8 seconds for this collage on a 2.8GHz desktop PC.
Image search result summarization As an interesting ap-
plication, the picture collage can be used to summarize im-
age search results. Google’s and Yahoo’s image search en-
gines using keywords usually return some undesired images
(e.g., figure, cartoon). So in our experiment, we just discard
such improper images. Two picture collages from Yahoo’s
image search are shown in Figure 6(a) and Figure 6(b). Pic-
ture collages from Google’s image search are shown in Fig-
ure 5(c) and Figure 6(c). The former two are obtained using
the parallel scheme and the latter are not. The above four
results are all obtained in 10 - 20 seconds.
Photograph collections summarization Figure 1(c) shows
a collage from 8 images obtained within several seconds. A
collage from a larger number of images is a more challeng-
ing problem. Figure 7(b), Figure 8(a) and Figure 8(b) are
picture collages respectively from 32 images, 32 images,
and 35 images. All the results are obtained using parallel
sampling with four sub-canvases, in 1-2 minutes.

5 Conclusion
In this paper, a Bayesian picture collage framework is

proposed to automatically create a visual image summariza-
tion for a set of images. Moreover, a very efficient MCMC
optimization method is designed to infer the collage.

The future work will include: 1) a better saliency analy-
sis technique, e.g., incorporating face detection and object
recognition; 2) collage creation for hundreds or thousands
of input images; 3) allowing scale change of input images.
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Figure 5. Optimization Process. (a) shows the initial collage where the shaded area is blank space. (b) is the collage after 1000
iterations. (c) is the final collage after 1800 iterations. (d) shows the changing curve of the minus log of posterior. The fast decreasing
around iteration 10, 600 and 1200 demonstrates that our algorithm can jump away from the local minimum.

(a) (b) (c)

Figure 6. Image Search Results Summarization. (a) the collage of 14 images selected among the first five pages returned by
Yahoo’s image searching using the keyword ”cycling mountain”. (b) the collage of 16 ”Panda” images from Yahoo’s image search.
(c) the collage formed by 12 ”horse” images from Google’s image search.

Furthermore, we will investigate a quantitative methodol-
ogy to evaluate collage results by conducting a user study.
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(a) (b)

Figure 7. Parallel Collage Sampling. (a) shows a large collage packed from 4 parallel collages. The shaded area is blank space. (b)
the refined collage by local and pairwise sampling. The blank space is eliminated and the picture collage is much more appealing.

(a) (b)

Figure 8. Collage Results for Photograph Collections. The collages in (a) and (b) are constructed respectively from 32 and 35
images selected from two different photograph collections. They are obtained using the parallel sampling within 1-2 minutes.
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