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Abstract. In this paper, we introduce background cut, a high quality and real-
time foreground layer extraction algorithm. From a single video sequence with a
moving foreground object and stationary background, our algorithm combines
background subtraction, color and contrast cues to extract a foreground layer
accurately and efficiently. The key idea in background cut is background con-
trast attenuation, which adaptively attenuates the contrasts in the background
while preserving the contrasts across foreground/background boundaries. Our
algorithm builds upon a key observation that the contrast (or more precisely,
color image gradient) in the background is dissimilar to the contrast across fore-
ground/background boundaries in most cases. Using background cut, the layer
extraction errors caused by background clutter can be substantially reduced.
Moreover, we present an adaptive mixture model of global and per-pixel back-
ground colors to improve the robustness of our system under various background
changes. Experimental results of high quality composite video demonstrate the
effectiveness of our background cut algorithm.

1 Introduction

Layer extraction [2, 20] has long been a topic of research in computer vision. In recent
work [8], Kolmogorov et al. showed that the foreground layer can be very accurately and
efficiently (near real time) extracted from a binocular stereo video in a teleconferencing
scenario. One application of foreground layer extraction is high quality live background
substitution. The success of their approach arises from a probabilistic fusion of multiple
cues, i.e, stereo, color, and contrast.

In real visual communication scenario, e.g., teleconferencing or instant messaging,
however, most users have only a single web camera. So, can we achieve a similar quality
foreground layer extraction using a single web camera? For an arbitrary scene (e.g.
non-static background), automatically foreground layer extraction is still a monumental
challenge to the current state of the art [21, 23]. To facilitate progress in this area, we
address a somewhat constrained but widely useful real world problem in this paper —
high quality, real-time foreground extraction (or background removal) from a single
camera with a known, stationary background.

To address this problem, the most efficient approach is background subtraction.
Background subtraction detects foreground objects as the difference between the cur-
rent image and the background image. Nevertheless, there are two issues in back-
ground subtraction: 1) the threshold in background subtraction is very sensitive to
noise and background illuminance changes. A larger threshold detects fewer fore-
ground pixels and vice versa. 2) foreground color and background color might be
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very similar, resulting in holes in detected foreground object. More sophisticated
techniques [7, 22, 1, 6, 17, 16, 14, 11, 12, 18] have been proposed to overcome these
problems. But the results are still error-prone and not accurate enough for high quality
foreground extraction required in our application because most of these methods make
local decisions. Figure 2 (b) shows a background subtraction result. Postprocessing
(e.g, morphological operations) may help but cannot produce an accurate and coherent
foreground.

Recent interactive image and video segmentation techniques [15, 10, 19, 9] have
shown the powerful effectiveness of the color/contrast based model proposed by
Boykov et al. [3]. The color/contrast based model considers both color similarity to
manually obtained foreground/background color models and contrast (or edge) strength
along the segmentation boundary. The final foreground layer is globally determined us-
ing the min-cut algorithm. But, as demonstrated in [8], using only color and contrast
cues is insufficient.

Therefore, a straightforward solution is to combine the above two techniques - build-
ing foreground and background color models from background subtraction and then
applying the color/contrast based model. Because the background image is known and
stationary, the background color model can be modeled as a mixture of a global color
model and a more accurate per-pixel color model, as done in [8] and [19]. This com-
bination can produce a more accurate segmentation result. We refer to this as the basic
model.

However, there are still problems in the basic model. Since the basic model considers
both color and contrast simultaneously, the final segmentation boundary will inevitably
be snapped or attracted to high contrast edges in a cluttered background, more or less
as shown in Figure 2 (c). Though this kind of error may be small around the boundary

a) b) c)

d) e) f)

Fig. 1. Background Cut. (a) an image I in a video sequence. (b) contrast map of I . (c) attenuated
contrast map by our approach. (d) the background image IB . (e) contrast map of IB . (f) our final
foreground extraction result using attenuated contrast map.
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(a) (b) (c) (d)

Fig. 2. Foreground layer extraction by different approaches. (a) an image in a video sequence. (b)
background subtraction result. Threshold is set to a conservative value to avoid classifying more
pixels to foreground. (c) color/contrast-based segmentation result. Red circles indicate notable
segmentation errors. (d) our result.

or only occur in partial frames, the flickering artifact in the video due to this error can
be very distractive and unpleasant in the final composite video.

In this paper, we propose an new approach, “background cut”, to address the above
issue in the basic model. The novel component in background cut is “background con-
trast attenuation” which can substantially reduce the segmentation errors caused by
high contrast edges in the clutter background. Background contrast attenuation is based
on an key observation that the contrast from background is dissimilar to the contrast
caused by foreground/background boundaries in most cases. Figure 1 (b) and (e) show
contrast maps of current image and background image respectively. Notice that most
contrasts caused by foreground/background boundaries in (b) is not consistent with the
contrasts in (e). Based on this observation, background contrast attenuation adaptively
modified the contrast map in (b) to produce an attenuated contrast map in (c). Most con-
trasts from background are removed while contrasts caused by foreground/background
boundaries are well preserved. Using this attenuated contrast map, background cut can
extract high quality foreground layer from clutter background as shown in (f). Figure 2
(d) also shows that segmentation errors can be significantly reduced in comparison to
the basic model.

Another challenge in real scenarios is background maintenance. Many tech-
niques [7, 22, 1, 6, 17, 16, 14, 11, 12, 18] have been proposed to handle various changes
in the background, e.g, gradual and sudden illuminance change (light switch in office),
small moving objects in the background (e.g, moving curtain), casual camera shaking
(e.g, webcame on laptop), sleeping object (an object moves into the background and
then becomes motionless), waking object (an object that moves away from the back-
ground and reveals new parts of the background), and cast shadows by foreground.
To make our system more practical and robust to background changes, we propose a
background maintenance scheme based on modeling an adaptive mixture of global and
per-pixel background color model.

The paper is organized as follows. In Section 2, we give notations and introduce
the basic model. In Section 3, we present our approach - background cut. Background
maintenance is described in Section 4 and experimental results are shown in Section 5.
Finally, we discuss the limitations of our current approach and give conclusions in
Section 6.
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2 Notation and Basic Model

Let IB be the known background image and I be the image at the current timestep
that is to be processed. IB

r and Ir are color values of pixel r in IB and I respec-
tively. Let V be the set of all pixels in I and E be the set of all adjacent pixel pairs
(4 neighbors or 8 neighbors) in I . Foreground/background segmentation can be posed
as a binary labeling problem — to assign a unique label xr to each pixel r ∈ V , i.e.
xr ∈ {foreground(= 1), background(= 0)}. The labeling variables X = {xr} can be
obtained by minimizing a Gibbs energy E(X) [3]:

E(X) =
∑

r∈V
E1(xr) + λ

∑

(r,s)∈E
E2(xr, xs), (1)

where E1(xi) is the color term, encoding the cost when the label of pixel r is xr, and
E2(xr , xs) is the contrast term, denoting the cost when the labels of adjacent nodes r and
s are xr and xs respectively. The parameter λ balances the influences of the two terms.

2.1 Basic Model

Color term. To model the likelihood of each pixel r belonging to foreground or
background, a foreground color model p(Ir|x = 1) and a background color model
p(Ir|x = 0) are learned from samples. Both models are represented by spatially global
Gaussian mixture models (GMMs).

The global background color model p(Ir |x = 0) can be directly learned from the
known background image IB:

p(Ir |x = 0) =
Kb∑

k=1

wb
kN(Ir |µb

k, Σb
k), (2)

where N(·) is a Gaussian distribution and (wb
k, µb

k, Σb
k) represents the weight, the mean

color, and the covariance matrix of the kth component of the background GMMs. The
typical value of Kb is 10-15 for the background. For stationary background, a per-pixel
single isotopic Gaussian distribution pB(Ir) is also used to model the background color
more precisely:

pB(Ir) = N(Ir |µB
r , ΣB

r ), (3)

where µB
r = IB

r and ΣB
r = σ2

rI . The per-pixel variance σ2
r is learned from a back-

ground initialization phase. The per-pixel color model is more precise than the global
color model but is sensitive to noise, illuminance change, and small movement of back-
ground. The global background color model is less precise but more robust. Therefore,
an improved approach is to mix the two models:

pmix(Ir) = α · p(Ir|x = 0) + (1 − α) · pB(xr) (4)

where α is a mixing factor for the global and per-pixel background color models.
The global foreground color model is learned from background subtraction. With

a per-pixel background color model, we can mark the pixel that has a very low
background probability as “definitely foreground”. Let B, F, U represent “definitely
background”, “definitely foreground” and “uncertainty region” respectively, we have:
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Ir =

⎧
⎨

⎩

B pB(Ir) > tb
F pB(Ir) < tf
U otherwises ,

(5)

where tb and tf are two thresholds. Then, the global foreground color model
p(Ir|xr = 1) is learned from the pixels in F . In order to enforce temporal coherence,
we also sample the pixels from the intersection of F and the labeled foreground region
(after segmentation) in the frame at the previous timestep. The component number in
the global foreground color model is set to 5 in our experiments because foreground
colors are usually simpler than background colors.

Finally, the color term is defined as:

E1(xr) =
{

− log pmix(Ir) xr = 0
− log p(Ir|xr = 1) xr = 1 .

(6)

Contrast term. For two adjacent pixels r and s, the contrast term E2(xr, xs) between
them is defined as:

E2(xr , xs) = |xr − xs| · exp(−βdrs), (7)

where drs = ||Ir − Is||2 is the L2 norm of the color difference, which we call contrast
in this paper. β is a robust parameter that weights the color contrast, and can be set
to β =

(
2〈‖Ir − Is‖2〉

)−1
[15], where 〈·〉 is the expectation operator. Note that the

factor |xr − xs| allows this term to capture the contrast information only along the
segmentation boundary. In other words, the contrast term E2 is the penalty term when
adjacent pixels are assigned with different labels. The more similar the colors of the
two adjacent pixels are, the larger contrast term E2 is, and thus the less likely the edge
is on the object boundary.

To minimize the energy E(X) in Equation (1), we use the implementation of the
min-cut algorithm in [4].

3 Background Cut

The basic model usually produces good results in most frames. However, when the
scene contains background clutter, notable segmentation errors around the boundary
often occur. This generates flickering artifacts in video. The top row of Figure 3 shows
several frames in a video and the third row shows segmentation results by the basic
model. Notable segmentation errors are marked by red circles. Why does this happen?
The reason is that the basic model contains two terms for both color and contrast. In-
evitably, high contrasts (strong edges) from the background will bias the final segmen-
tation result. The second row in Figure 3 shows the corresponding contrast maps1 of
input frames. Notice that most incorrect segmentation boundaries pass strong edges in
background. These errors are mainly caused by the contrast term in the basic model:

E2(xr , xs) = |xr − xs| · exp(−β · drs). (8)

How to fix this bias? More specifically, can we remove or attenuate the contrasts in the
background to obtain more accurate segmentation results?

1 For display, the contrast for each pixel r is computed as
�

dr,rx + dr,ry , where rx and ry are
two adjacent pixels on the left and above pixel r.
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Fig. 3. Background contrast attenuation. Top row: several frames from a video. Second row: con-
trast maps. Third row: segmentation results by the basic model. Red circles indicate notable
segmentation errors. Fourth row: attenuated contrast maps. Last row: segmentation result using
attenuated contrast map.

3.1 Background Contrast Attenuation

Because the background is known, a straightforward idea is to subtract the contrast
of the background image IB from the contrast of the current image I . To avoid hard
thresholding and motivated by anisotropic diffusion [13], we attenuate the contrast be-
tween two adjacent pixels (r, s) in image I from drs = ||Ir −Is||2 to d′rs by the contrast
||IB

r − IB
s ||2 in the background image:

d′rs = ||Ir − Is||2 · 1

1 +
(

||IB
r − IB

s ||
K

)2 , (9)

where K is a constant to control the strength of attenuation. The larger the contrast
||IB

r − IB
s ||2 is in the background, the more attenuation is applied on the contrast ||Ir −

Is||2 in image I . Figure 4 (a) and (c) show the contrast maps before and after this soft
contrast subtraction. Unfortunately, the contrast caused by the foreground/background
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a) c) e)

b) d) f)

Fig. 4. Adaptive contrast attenuation. (a) contrast map of image I . (b) an image I in a video
sequence. (c) and (d) attenuated contrast map and segmentation result using Equation (9). (e) and
(f) adaptively attenuated contrast map and segmentation result using Equation (10).

boundary is also attenuated. Figure 4 (d) shows the unsatisfactory segmentation result
using this simple subtraction.

In this paper, we propose an adaptive background contrast attenuation method. An
ideal attenuation method should attenuate most contrasts in the background and pre-
serve contrasts along the foreground/background boundary simultaneously. To achieve
this goal, we define the following method to adaptively preform background contrast
attenuation:

d′′rs = ||Ir − Is||2 · 1

1 +
(

||IB
r − IB

s ||
K

)2

exp(−z2
rs

σz
)

, (10)

where zrs measures the dissimilarity between pixel pair (Ir , Is) in image I and
(IB

r , IB
s ) in background image IB . A Hausdorff distance-like definition for zrs is:

zrs = max{||Ir − IB
r ||, ||Is − IB

s ||}. (11)

If zrs is small, the pixel pair (Ir, Is) has a high probability of belonging to the back-
ground, and the attenuation strength should be large (exp(−z2

rs/σz) → 1). Otherwise,
it probably belongs to the contrast caused by the foreground/background boundary, and
the attenuation strength should be small (exp(−z2

rs/σz) → 0). Figure 4 (e) shows the
contrast map after adaptive background contrast attenuation by Equation (10). Clearly,
most contrasts in the background are greatly attenuated and most contrasts along the
foreground object boundary are well preserved. Figure 4 (f) shows the corresponding
segmentation result. The last two rows of Figure 3 also show the attenuated contrast
maps and good segmentation results.

Figure 5 shows attenuation results using different values for parameters K and zrs.
Figure 5 (b) shows that a large K will decrease the attenuation strength. A small
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(a) (b) (c) (d)

Fig. 5. Parameter settings. (a) K = 5, σz = 10. (b) K = 500, σz = 10. (c) K = 5, σz = 1. (d)
K = 5, σz = 50.

zrs will leave more contrasts in the image (Figure 5 (c)) and vise versa (Figure 5 (d)).
In all our experiments, we set the default values of K and zrs to 5 and 10 respectively
to obtain good segmentation results on average, as shown in Figure 5 (a). These values
are quite stable — there is no notable change in segmentation results when we change
K and zrs within the ranges (2.5, 10) and (5, 20) respectively.

This adaptive attenuation method works very well in most cases if there is no large
illuminance change in the background image. In order to make our background contrast
attenuation more robust, we also propose a measure zrs which is not sensitive to large
illuminance change:

zrs =
∣∣|−→v (Ir , Is) − −→v (IB

r , IB
s )|

∣∣ , (12)

where −→v (a, b) is a vector from point a to point b in RGB color space. zrs is illuminance-
invariant if we assume the color changes of two adjacent pixels to be the same.

4 Background Maintenance

4.1 Adaptive Mixture of Global and Per-pixel Background Color Model

As mentioned in section 2.1, for the color term, there is a tradeoff between the global
background color model (more robust to background change) and the per-pixel back-
ground color model (more accurate). In previous works [8] and [19], the mixing factor
α in Equation (4) is a fixed value. To maximize robustness, an ideal system should
adaptively adjust the mixing factor: if the foreground colors and background colors can
be well separated, it should rely more on the global color model such that the whole
system is robust to various changes of background; otherwise, it should rely on both the
global and per-pixel color models. To achieve this goal, we adaptively mix two mod-
els based on the discriminative capabilities of the global foreground and background
color models. In this paper, we adopt an approximation of the Kullback-Liebler (KL)
divergence between two GMMs models [5]:

KLfb =
K∑

k=0

wf
k min

i
(KL(Nf

k ||N b
i ) + log

wf
k

wb
i

), (13)

where Nf
k and N b

i are the kth component of foreground GMMs and the ith component
of background GMMs respectively. The KL-divergence between Nf

k and N b
i can be

computed analytically. Our adaptive mixture for the background color model is:
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p′mix(Ir) = α′p(Ir|x = 0) + (1 − α′)pB(Ir) (14)

α′ = 1 − 1
2

exp(−KLfb/σKL), (15)

where σKL is a parameter to control the influence of KLfb. If the foreground and
background color can be well separated, i.e., KLfb is large, the mixing factor α′ is
set to be large to rely more on the global background color model. Otherwise, α′ is
small (minimum value is 0.5) to use both the global and per-pixel background color
models.

4.2 Background Maintenance Scheme

Because visual communication (e.g., video chat) usually last a short period, sudden illu-
minance change is the main issue to be considered due to auto gain/white-balance con-
trol of the camera, illumination by fluorescent lamps (asynchronous with frame capture
in the camera), and light switching. In addition, we also consider several background
change events, i.e., small movement in background, casual camera shaking, sleeping
and waking object. The following is our background maintenance scheme based on the
above adaptive mixture of global and per-pixel background color model.

Sudden illuminance change. Illuminance change caused by auto gain/white-balance
control of a camera or illumination by a fluorescent lamp is usually a small global
change. We adopted histogram specification to adjust the background image globally.
After segmentation at each timestep, we compute a histogram transformation function
between two histograms from the labeled background regions in I and IB . Then we ap-
ply this transformation to update the whole background image IB . This simple method
works well for small global illuminance or color changes. The large sudden illuminance
change is detected by using frame differences. If the difference is above a predefined
threshold, we trigger the following process:

Before segmentation: the background image IB is updated by histogram specifi-
cation and the global background color model is rebuilt. The foreground threshold tf
is increased to 3tf to avoid introducing incorrect samples. A background uncertainty
map UB = {uB

r = 1} is initialized. The mixture for the background color model is
modified as:

p′mix(Ir|x = 0) = α′p(Ir|x = 0) + (1 − uB
r ) · (1 − α′)pB(Ir). (16)

After segmentation: the color, variance, and uncertainty of each pixel in the labeled
background region is updated as follows:

IB
r,t = (1 − ρ)IB

r,t + ρIr,t (17)

σ2
r,t = (1 − ρ)σ2

r,t + ρ(Ir,t − IB
r,t)

T (Ir,t − IB
r,t) (18)

uB
r = (1 − ρ)uB

r + ρ(1 − exp(−||Ir,t − IB
r,t||/2σ−2

r,t )), (19)
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where ρ = βN(Ir,t|IB
r,t, σ

2
r,t) and β (typically 0.2) is the learning rate. Note that the

uncertainty of the hidden pixel behind the foreground will never be decreased because
we have no information about it.

Movement in background. We handle moving backgrounds using two mechanisms:
1) if the foreground colors and background colors can be well separated, our model will
automatically self adjust to rely on the global background color model which is robust to
small movements or dynamic motions (e.g., moving curtain) in background. 2) if there
is no intersection between a moving object and the foreground, we can keep the biggest
connected component in the segmentation result as foreground object. Otherwise, our
system will treat the moving object as foreground if there is no higher-level sematic
information available.

Sleeping and waking object. Both cases are essentially the same - a sleeping object
is a new static object in the background and a waking object reveals new background
areas. We should absorb these new pixels into background when they do not intersect
with the foreground. After segmentation, the small connected components far from the
foreground (largest connected component) are identified as new pixels. If these pixels
and their neighboring pixels are labeled as background for a sufficient time period, we
trigger background maintenance processing (Equation (17-19)) to absorb these pixels
into the background.

Casual camera shaking. Camera shaking often occurs for a laptop user. We detect
camera translation between the current and previous frames. If the translation is small
(<4 pixels), a Gaussian blurred (standard variance 2.0) background image is applied
and the weight of the per-pixel color model is decreased because global background
color model is insensitive to camera shaking. If the translation is large, we disable the
per-pixel color model. We will investigate motion compensation in the next step.

We show our background maintenance and segmentation results on the above men-
tioned background changing cases in the next section.

5 Experimental Results

All videos in our experiments are captured by consumer level web cameras (Logitech
QuickCam@ Pro 5000 and Logitech QuickCam@ for Notebooks Deluxe) and we leave
all parameters in the web cameras at the default settings (auto gain control and auto
white balance). The frame rate is about 12-15 frames/seconds for a 320x240 video on a
3.2GHz desktop PC, with our 2-level multi-scale implementation (the result at the fine
level is computed in a narrow band (20 pixels width) around the result at the coarse
level). The opacity around the object boundary is obtained by a feathering operation.

Comparison with “Bi-layer segmentation”. We quantitatively evaluate the accuracy
of our approach on “AC” video which is a stereo video sequence for the evaluation of
“Bi-layer segmentation” [8]. The ground truth foreground/background segmentation is
provided every 5 frames. The segmentation error is measured as the percentage of bad
pixels with respect to the whole image. We only use the video of the left view to test our
approach (static background image is obtained by image mosaicing). Figure 6 (a) shows
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Fig. 6. Comparison with “Bi-layer segmentation” on “AC” video. (a) Background cut results (at-
tenuated contrast map and final segmentations). (b) Error statistics. The solid blue line and two
green dash lines are error curve and 1 standard error bar of background cut. Two red dotted lines is
1 standard variance error bar of “Bi-layer segmentation”. The original video and ground truth seg-
mentation are obtained from (http://research.microsoft.com/vision/cambridge/i2i/DSWeb.htm).

Fig. 7. Comparison with the basic model. Top row: a frame in a video sequence. Second row:
result by the basic model. Red circles indicate notable segmentation errors. Last row: result by
background cut.
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two attenuated contrast maps and segmented foreground layers in the video. Figure 6
(b) plots an error curve (blue solid line) and 1 std error bar (two green dash lines) for
our approach, and 1 std error bar (two red dotted lines) for “Bi-layer segmentation”.
Without using stereo information, the accuracy of our approach is still comparable.

Comparison with “basic model”. We compare our approach with the basic model.
Figure 7 shows the results produced by the basic model (2nd row) and background
cut (last row), respectively. Using the attenuated contrast map, our approach can

Fig. 8. “Light1”, “Curtain”, and “Sleeping” examples (from top to bottom). In each example, the
upper row shows input images and the lower row shows our segmentation results.
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substantially reduce the errors caused by background contrast. Notice that the error of
the basic model often results in temporal flickering artifacts around the boundary. For
side-by-side comparisons, we highly recommend the reader to view our videos online
(http://research.microsoft.com/∼ jiansun/).

Background maintenance. Figure 8 shows partial examples to demonstrate our back-
ground maintenance scheme. In the “Light1” example, there are two sudden illumi-
nance changes in the 20th frame (first light off) and 181th frame (second light off).
The system detected these changes and triggered the background maintenance process.
The segmentation results in the 2nd row of Figure 8 shows that good segmentation re-
sults can still be obtained during maintenance process. The updated background image
sequence is shown in the accompanying video. The “Curtain” example shows a mov-
ing curtain in the background. The system adaptively adjusted the mixture of global
and per-pixel background color models to handle movements in the background. In the
“Sleeping” example, a cloth is put into the background in the 50th frame. Then, it be-
comes motionless from the 100th frame. The system identified this event and gradually
absorbed the cloth into the background. The right most image in the last row of Figure 8
shows correct segmentation when the foreground is interacting with this “sleeping” ob-
ject. More examples containing sudden illuminance change, casual camera shaking and
waking object are shown in our accompanying videos.

6 Discussion and Conclusion

In this paper, we have proposed a high quality, real-time foreground/background layer
extraction approach called background cut, which combines background subtraction,
color and contrast cues. In background cut, background subtraction is not only done on
image color but also on image contrast — background contrast attenuation which re-
duces segmentation errors significantly. Our system is also robust to various background
changes in real applications.

The current system still has some limitations. First, when the foreground and back-
ground colors are very similar or the foreground object contains very thin structures
with respect to image size, high quality segmentation usually is hard to be obtain with
our current algorithm. Enforcing more temporal coherence of the foreground boundary
may improve the result to a certain extent. Second, in the current system, we assume a
static background is obtained in an initialization phase. Automatically initialization of
the background image is also important in real applications. Last, we misclassified the
moving object which is interacting with the foreground. To solve this ambiguity, high
level priors should be integrated into the system.
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