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Binary Plankton Image Classification
Xiaoou Tang, Senior Member, IEEE, Feng Lin, Scott Samson, and Andrew Remsen

Abstract—In marine biology study, it is important to inves-
tigate the distribution of plankton organisms. Because of the
overwhelming data size, automatic processing of the large amount
of image data collected by underwater image recorders becomes
inevitable. However, due to the fragmentation and the large
within-class variations of binary plankton images, it is difficult to
extract reliable shape features. In this paper, we propose several
new shape descriptors and use a normalized multilevel dominant
eigenvector estimation method to select a best feature set for
binary plankton image classification. We achieve more than 91%
classification accuracy in experiments on more than 3000 images.

Index Terms—Binary plankton images, feature extraction,
principal component analysis (PCA), two-dimensional (2-D) shape
recognition.

I. INTRODUCTION

PLANKTON form probably the most important component
of the ocean food web. It includes both the phytoplankton

(all kinds of drifting plants and bacteria) and the zooplankton
(animal plankton). Because of their ability to rapidly respond
to environmental changes such as eutrophication or pollution,
plankton are often regarded as indicators of aquatic health.
Therefore, it is important for oceanographic researchers to study
the temporal variation and spatial variability in plankton abun-
dance and distribution. In the past, investigators were limited
to collecting plankton samples using methods such as towed
nets, pumps, and Niskin bottles, and then manually counting
and identifying the organisms in each sample. Given the large
number of samples that are collected during a cruise, this can
be prohibitively expensive and time consuming. To improve
sampling efficiency, some underwater imaging sensors such as
the video plankton recorder [1], the HOLOMAR underwater
holographic camera system [2], [3], and the shadowed image
particle profiling and evaluation recorder (SIPPER) [4] have
been developed to continuously capture magnified plankton
images in situ. By applying the computer vision technique to
rapidly recognize plankton images, the real-time analysis of
plankton population dynamics becomes possible [5], [20].

In this paper, we develop several new features for binary
plankton classification. To effectively combine the new features
with traditional shape features and produce a compact feature
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vector for classification, we need an effective feature selection
algorithm. Although different features may be successful at
different aspects because of the different techniques, they are all
based on the same object shape. Therefore, it is inevitable for
these features to contain overlapping information. The principal
component analysis (PCA) is a powerful feature reduction and
selection tool. Its decorrelation ability serves to decorrelate
redundant features, and its energy packing property serves to
compact useful information into a few dominant features.

However, simply using the PCA on a large feature vector
combining all the individual feature vectors may not work. In
addition to the expensive computational requirement, many
small feature vectors of small dimensions and scales will be
overwhelmed by other large feature vectors even though the
small features may contain discriminating information. In this
paper we propose a normalized multilevel dominant eigenvector
estimation (NMDEE) method based on the multilevel domi-
nant eigenvector estimation (MDEE) method we developed in
[14] to combine feature vectors for plankton recognition. The
method reduces computational complexity by several orders
of magnitude over a standard PCA and achieves a much better
feature extraction performance.

The plankton classification system was tested on seven
classes of more than 3000 plankton images. The experimental
results demonstrate that the features extracted by the normal-
ized MDEE performed significantly better than those by the
conventional PCA and a classification accuracy of 91.70%
was achieved, making it comparable to the accuracy by the
laborious manual classification method [15].

II. METHODOLOGY

A. Fourier Descriptor

Fourier descriptors (FDs) have been used as shape features
in a number of applications [6]–[10]. For a closed boundary de-
fined by a closed sequence of successive boundary pixel coor-
dinates, the centroidal radius function is the distance from the
boundary points to the centroid of the object. The FD is de-
fined as a normalized discrete Fourier transform of the radius
boundary function. Since the FD features are computed around
the centroid of the object, they are translation invariant. The ro-
tation and scale invariance of the feature vector can be derived
from the shift invariant and linear properties of the DFT magni-
tudes.

B. Moment Invariants

The moment invariants are computed from algebraic invari-
ants of rigid objects [11]–[13]. Their generating function is
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Fig. 1. Sample plankton images in seven classes. (a) Class 1: Acantharia. (b) Class 2: Chaetognath. (c) Class 3: Doliolid. (d) Class 4: Radiolaria.

Based on methods of algebraic invariants, invariant moments are
computed using nonlinear combinations of the second and third
normalized central moments. These invariant moments possess
the translation, rotation, and scale invariant properties. How-
ever, since our study objects are the images of nonrigid plankton
organism, moment invariants may not perform well.

C. Granulometry

Granulometry is defined to extract size distributions in bi-
nary images [16]–[18]. By performing a series of morphological
openings of increasing kernel sizes, we can obtain the granu-
lometry function that maps each kernel size to the number of
image pixels removed during the opening operation with the
corresponding kernel.

Consider two subsets in two-dimensional (2-D) Euclidean
space, and . The opening of by is defined by [19]

(2)

where is the translation of at . Then, the granulometric
size distribution of is given by

(3)

where denotes the area and . can be any
convex and compact set including the origin, and is a family
of structuring elements of increasing size. Thus the multiscale
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Fig. 1. (Continued.) Sample plankton images in seven classes. (e) Class 5: Larvaceans. (f) Class 6: Calanoid. (g) Class 7: Trichodesmium.

shape feature of a binary image can be described by the granu-
lometry.

D. Circular Projection

To characterize the linear shapes in plankton objects, we
propose a circular projection feature vector. We first project
the binary object in the horizontal direction, and then find the
maximum value of the projection. This value should reflect the
longest linear structure in the vertical direction of the object.
For example, if we only have a vertical line in the object, then
only one large nonzero value exists in the projection in the
horizontal direction.

If we project the object in all directions and select the largest
value in each projection, we get a feature vector

(4)

where is the number of directions we conduct the projection.
If , the most significant linear
feature of object will appear at direction . Obviously, is
translation invariant. To achieve the scale and rotation invari-
ance, is normalized and circularly shifted with respect to
the to get

(5)
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Fig. 2. Shape examples and their CMS.

where is the area of the object. Some example objects and their
are depicted in Fig. 2, which are the simplified prototypes

of class Radiolaria, Chaetognath, and Acantharia, respectively.
The data in this paper come from the SIPPER system devel-
oped by University of South Florida, which is equipped with a
laser imaging source and a fast high-resolution line-scan camera
to continuously take binary pictures of a 10 cm 10 cm area
when moving though the water. Some examples are shown in
Fig. 1. The objects are fairly noisy, fragmental, and nonrigid
in shape, thus features derived from the boundary descriptors
[6]–[10] and invariance moments [11]–[13] may not work well.
Especially, the features we used for gray-scale plankton image
recognition [5] are no longer sufficient for the binary plankton
images. New shape features are needed to distinguish the dif-
ferent plankton categories.

To describe the shape in more detail, the entire projection
vector in the direction and its orthogonal direction are also
used as feature vectors. They are called the feature vector
and , respectively.

E. Smoothness of Kernel Boundary

Plankton such as Larvaceans, tend to have a smooth kernel
portion with a long tail. It is difficult to use FD to measure the
smoothness of the whole object since the smooth portion and the
tail portion will be averaged together. We propose a smoothness
measure that only works on the body kernel.

We first developed an algorithm to extract the kernel section
from its narrow neck portion by the morphological operations,
as illustrated in Fig. 3. We apply a flood fill operation to fill
all the internal holes of the binary object. Then a sequence of
opening operations are only applied to the side with the tail at-
tached, to remove the tail without affecting the smoothness of
the kernel much.

To evaluate the smoothness of the extracted kernel boundary,
we use the following measure:

(6)

Fig. 3. Boundary of a Larvacean image, where the centroid of its kernel section
is denoted by “x,” and the dotted circle is the opening kernel.

Fig. 4. Two results (marked by dotted lines in their original object boundaries)
with their smoothness values, where the left one is a Larvacean and the right is
the typical shape of a Trichodesmium.

Fig. 5. Computation of the dominant object pixel-width. (a) Simple binary ob-
ject. (b) Object pixel-width histogram of (a). (c) Area distribution of the object
pixel-width, where S(w) = L(w)�w. Thew corresponding to the max S(w)
is the dominant object pixel-width, which is marked by “o” at w = 26.

where and are the perimeter and area of the object,
is the ratio of the length and width of the object’s

bonding box. If the boundary is a smooth close curve, we have
1. If and only if the boundary is an ellipse curve, we

have 1. Two examples of the extracted kernel boundary
are shown in Fig. 4. The smoothness values of the two objects
are significantly different.

F. Object Width and Density

Because of the diverse shapes of plankton, it is difficult to
have a stable measure of the width of the plankton. We devel-
oped a novel dominant width measure that uniquely reflects the
width of the dominant portion of the object.

We use a simple example in Fig. 5 to illustrate the com-
putation of the dominant object pixel-width. The principle ob-
ject direction is first rotated to the horizontal direction. The ob-
ject pixel-width histogram is then computed, as shown in
Fig. 5(b), where the horizontal axis represents the pixel width

, and the vertical axis shows the length of all segments along
the body principle axis that have the same width. The width
of the three peaks of in Fig. 5(b) reflects the width of the
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Fig. 6. Example of the dominant object pixel-width. (a) Binary rotated object
with the horizontal axis corresponding to its principle direction. (b) Histogram
of object pixel-width. (c) Area distribution of object pixel-width, whereS(w) =
L(w)�w. The dominant object pixel-width is marked by “o” at w = 19.

Fig. 7. Example of the dominant object body-width. (a) Binary rotated object,
and the calculation of the body-width values is illustrated by the arrows. (b) His-
togram of object body-width. (c) Area distribution of object body-width, where
S(w) = L(w)�w. The dominant object body-width is marked by “o” at w =
34.

three object parts. can be regarded as the length of all seg-
ments consisting of the object profiles with width , therefore,
the area curve, in Fig. 5(c) represents the area
of these segments. The maximum point in is the second
point at 26, as shown in Fig. 5(c). It represents the area of
the center portion of the object, which is the largest part in the
object. We use the width of this dominant portion of the object
as the dominant object pixel-width measure .

Fig. 6 shows an example of the computation of for a Tri-
chodesmium. For the pixel-width measure, we only consider the
number of black pixels in the object. We can also compute the
object body-width that describes the boundary width of the ob-
ject, as depicted in Fig. 7(a) where a specimen of class Do-
liolid is used. An example for computing the dominant object
body-width is shown in Fig. 7(b) and (c).

The ratio of the two kinds of object width measures

(7)

Fig. 8. Feature vector combination scheme, where LV represents the long fea-
ture vector, SV stands for the short feature vector, and TLV denotes the truncated
vector selected by PCA.

reflects the density of the binary object, which is also a useful
measure for the plankton objects. For example, the density of
class Trichodesmium is dense, whereas that of class Doliolid is
sparse, therefore, their measurements as depicted in Figs. 6(a)
and 7(a) are very different.

G. Feature Combination and Normalization

The features we extracted contain some long feature vectors
(LV) such as FD, , , and , and some short simple
feature vectors (SV) such as Granulometry, moment invariants,
boundary smoothness, object density, and some other simple
shape features. There exists much redundant and correlative in-
formation if we simply combine all the features into a single
large feature vector.

PCA has often been used for feature length reduction to re-
move redundant information. However, simply using the PCA
on a large feature vector combining all the individual feature
vectors may not work here. In addition to the expensive compu-
tational requirement, the short feature vectors of small dimen-
sions and scales will be overwhelmed by other long feature vec-
tors even if the small features may contain discriminating infor-
mation. To avoid this problem, we use an NMDEE for plankton
feature combination and extraction.

The MDEE [14] cuts a long feature vector into sections of
small vectors, and then performs a PCA on each small vector
separately. The selected top features with large eigenvalues in
each section are then combined to form a new feature vector
with a second PCA applied again. Several orders of computation
complexity reduction from the conventional PCA are achieved
by this method. As illustrated in Fig. 8, the first step PCA is only
applied to the LVs. Then a truncated LV (TLV) is computed by
selecting only the top few eigenfeatures with the largest eigen-
values. The TLVs and SVs are then combined to form a new
feature vector for the second step PCA.

The difference between the PCA and MDEE is the informa-
tion that is thrown away in the second step, where only the dom-
inant eigenfeatures in each group are kept. The discarded infor-
mation is contained in three groups of covariance matrices [14].
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TABLE I
COMPARISON OF THE ORIGINAL AND THE TRUNCATE LENGTH

OF EACH FEATURE VECTOR

They are the covariance matrices of the removed small eigen-
features within each group, the cross-covariance matrices be-
tween the removed small eigenfeatures of each group, and the
cross-covariance matrices between the small eigenfeatures in
one group and the dominant eigenfeatures in another group. Be-
cause of the energy packing property of PCA, the information
in the first two types of matrices should be negligible.

We can also argue that the information in the third type of ma-
trices cannot be large either. If two feature groups are fairly un-
correlated with each other, then any cross-covariance matrices
between the two groups will be very small. On the other hand, if
the two groups are strongly correlated with each other, the domi-
nant eigenfeatures of the two groups will be very similar. There-
fore the cross-covariance matrix between the dominant features
in one group and the small features in another group will be sim-
ilar to the cross-covariance matrix between the dominant fea-
tures and the small features within the same group, which is zero
due to the decorrelation property of the first step PCA transform.
Since all three types of matrices are small, we conclude that the
information that is discarded in the second step of MDEE is in-
significant.

Because the original vector length and scale are different, the
scale in the TLVs and SVs can also be very different. One may
overwhelm the other. We add a normalization step to all features
in the new combined feature vector to remove the effect of dif-
ferent scales. Notice that after the first step PCA, the scales of
the TLVs not only reflect the scales of the original features but
also reflect the length of the original feature vectors. Therefore,
adding a normalization step here will normalize both scale and
length of each of the original feature vectors. In later experi-
ments, we will see the significance of this normalization step.

III. EXPERIMENT AND DISCUSSION

We used 3147 binary images of seven plankton classes for
the experiments. Seven types of LV are extracted, including FD,
filled FD (FD extracted from the boundary of the flood-filled
image, the following “filled” are the same meaning), , ,
filled , filled and . Their original feature lengths
are shown in Table I. Four types of SV are extracted, including
Granulometry, moment invariants, boundary smoothness, and
object width density. The final algorithm combines all the LVs
and SVs using the NMDEE. The Gaussian minimum error clas-
sifier is adopted to classify the plankton images.

We first compute PCA on the seven LVs. Their energy distri-
butions represented by the eigenvalues are shown in Fig. 9. We

Fig. 9. Distributions of the top ten normalized eigenvalues parsed from the
PCA of the seven kinds of LVs.

Fig. 10. Classification rates using increasing number of principal components
for the seven feature vectors.

can see that most of the energy concentrates in the top 2–4 eigen-
vectors. Classification results using different number of eigen-
features are shown in Fig. 10. Again, using only a small number
of features the highest recognition rate is reached for the fea-
ture vector. Further increasing of feature length seems to add
more noise than discriminating information, thus decreasing the
recognition accuracy. Therefore, we only keep a small number
of principle features in each vector as shown in Table I.

Results in Fig. 10 show that each individual feature vector is
not effective to classify plankton. All classification accuracies
are below 65% because of the large variations of within-class
plankton images. Since each feature vector characterizes the
shape from different aspect, the combined vector should per-
form better.

To illustrate the performance of NMDEE, we compare it with
two traditional methods. One is traditional PCA, which extracts
the principal components directly from the combination of
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Fig. 11. Classification accuracies using combined feature vectors. The circle
on the NMDEE curve marks the best accuracy of 91.7%.

TABLE II
CLASSIFICATION RESULT (CONFUSION MATRIX) OF NORMALIZED MDEE

AT FEATURE NUMBER 25 (CIRCLED IN THE FIG. 11)

all original feature vectors. The other is the standard MDEE
without the normalization process.

We combine all the long and short feature vectors using the
NMDEE algorithm. Results are shown in Fig. 11. We can see a
remarkable improvement of the accuracy over individual fea-
tures. Over 91% accuracy is achieved. We also compare the
NMDEE with standard PCA and MDEE methods. Results in
Fig. 11 show that the latter two methods are very similar to each
other. This is not surprising, since MDEE is a close approxima-
tion of PCA, with a significant computational complexity reduc-
tion. Both methods are much worse than the NMDEE method,
since all features, large or small, can contribute to the classifi-
cation using the NMDEE method. Table II shows the confusion
matrix of the best performing NMDEE at feature length 25 with
average accuracy 91.70%.

IV. CONCLUSION

In this paper, several new shape features are proposed to clas-
sify binary plankton images. The traditional PCA is not efficient

in extracting discriminant information from a combined feature
vector of different scales. A normalized MDEE is proposed to
solve this problem. Experimental results on a large data set show
that the new algorithm can effectively classify plankton images
with high accuracy acceptable for automatic plankton survey
systems.
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