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Abstract

Face annotation technology is important for a photo
management system. In this paper, we propose a novel
interactive face annotation framework combining unsuper-
vised and interactive learning. There are two main con-
tributions in our framework. In the unsupervised stage, a
partial clustering algorithm is proposed to find the most ev-
ident clusters instead of grouping all instances into clusters,
which leads to a good initial labeling for later user interac-
tion. In the interactive stage, an efficient labeling procedure
based on minimization of both global system uncertainty
and estimated number of user operations is proposed to re-
duce user interaction as much as possible. Experimental
results show that the proposed annotation framework can
significantly reduce the face annotation workload and is su-
perior to existing solutions in the literature.

1. Introduction

Digital photo albums are growing explosively in both
number and size due to the rapid popularization of digi-
tal cameras and mobile phone cameras in the last decade.
These large collections require the annotation of some se-
mantic information to facilitate browsing, manipulation and
sharing of photos. In a typical family photo, besides the in-
formation of when and where, who is in the photo is essen-
tial. Therefore, face annotation is becoming an indispens-
able part of the management of photos depicting people.

In most commercial systems, such as Adobe Photoshop
Elements, iView Media Pro, and ACDSee Photo Manager,
face annotation is mainly based on elaborate user-driven UI
designs. Although some efforts have been made to simplify
photo labeling with a drag-and-drop interface, automatic
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face recognition technology has not been used in any of
these systems, except for the face detection technique. In-
tensive operations are required to label/group faces. Label-
ing each photo by hand remains a tedious task. Hence, it is
important to develop an automatic/semi-automatic method
to enable rapid face annotation.

A straightforward idea for automatic/semi-automatic
face annotation is to integrate face recognition algorithms
which have been well studied in the last decade [2, 3, 9,
13, 15, 16, 17]. Girgensohn et al. used face recognition
technology to sort faces by their similarity to a chosen face
or trained face model, reducing user workload to searching
faces that belong to the same person [7]. However, despite
progress made in recent years, face recognition continues to
be a challenging topic in computer vision research. Most
algorithms perform well under a controlled environment,
while in the scenario of family photo management, the per-
formance of face recognition algorithms becomes unaccept-
able due to difficult lighting/illumination conditions and
large head pose variations[21].

In [20], social context information and body information
is used to do automatic person annotation. Davis et al. also
used contextual metadata to help face recognition [6]. Al-
though face recognition performance was significantly im-
proved after integrating contextual information, the recog-
nition rate is still far from the requirement of an automatic
face annotation system.

In [18], Lei et al. proposed a semi-automatic approach
to do face annotation. In their method, they proposed a
Bayesian framework to automatically calculate a candidate
list of names for the face to be annotated. The major disad-
vantage of this work is that it requires users to annotate pho-
tos one by one. In their later approach [19], they proposed
a new approach to do name propagation while annotating
multiple photos. In their scenario, they assume that multiple
selected photos contain the same person. The name prop-
agation problem is to find the optimal solution to annotate
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this person in these photos automatically. However, their
scenario is quite limited, since people still need to browse
the whole album to select the photos to be annotated.

A common problem of above semi-automatic frame-
works is that users have to manually select photos one by
one. Suh et al. proposed a framework to allow cluster anno-
tation [12]. The faces were clustered according to time and
torso information firstly, and then the user can label a cluster
in one operation. However, in this work, once the clusters
were determined, the remaining work becomes all manual.
All the errors in the clustering need to corrected one by one
by the user. In addition, the clustering performance using
only time and torso information is very limited. Therefore,
the remaining manual work is still intensive.

Recently, Riya [1] developed an iterative framework for
face annotation. In every iteration, the user was asked to
manually label some faces, then the system used these la-
beled information to recognize faces that belong to the same
person, and proposed them for user confirmation. Few tech-
nical details are available about Riya’s algorithm, but from
experiments we can see that it still requires a lot of manual
labeling to obtain final annotation results.

Inspired by above approaches, we propose a novel in-
teractive framework to further reduce the face annotation
workload. This is critical for performance improvement of
interactive photo annotation system [5]. Due to current sta-
tus in face recognition, it is not practical to expect a frame-
work that eliminates all user interaction. Our goal is to:

1) achieve relatively high performance without user inter-
action;

2) when user interaction is included, reduce it to an ac-
ceptable level.

We implement these two criteria in two stages, an unsuper-
vised stage and an interactive stage, as illustrated in Figure
1.

There are two main contributions of our framework. The
first contribution is the formulation of a partial clustering
algorithm. This algorithm aims at reduction of user labor
rather than overall clustering performance. It is designed to
deliberately bias toward evident clusters, so that a user can
quickly label them to offer the framework a large amount of
labeled information with very little effort.

The second contribution is the interactive labeling proce-
dure in the interactive stage. In this procedure, both global
system uncertainty and estimated number of user operations
are modeled via entropy notation. In each iteration step, a
particular group of unlabeled faces that most likely belong
to one person and are most informative to decrease global
entropy is pop up for the user to label. Therefore, the user’s
workload in the interactive stage will be reduced as much
as possible.

2. Partial Clustering for Face Annotation

As discussed above, the current situation in face recogni-
tion limits the maximum performance that an unsupervised
algorithm can achieve. So we are not expecting overall good
performance for a clustering algorithm, which is, however,
the ultimate goal for most machine learning methods, but
aim at finding initial good clusters for a user to label easily.

To achieve this goal, we try to properly bias the cluster
results so that only “evident” clusters are kept, while other
faces, that are not grouped tightly enough, remain in the
litter bin. These evident clusters usually contain only one
identity, hence a user can do batch labeling with only one
click. Then with this easily obtained labeled information
at hand, an interactive labeling procedure follows to reduce
user interaction.

In the following, we first discuss how features are ex-
tracted and combined to form similarity. Then describe the
detail of the partial clustering algorithm.

2.1. Spectral Embedding Using Face similarity
measure

In a photo album, a set of faces X = {xi}, i = 1 . . . N is
extracted for each individual. For each face x ∈ X , f(x) is
its representation in a facial feature space. We also extract
contextual features for each face, including texture features
c(x) which are extracted on clothes areas, and time feature
t(x) which is the time when the photo was taken.

For any two faces xi and xj , we define the following
distances: dF

i,j ≡ d(f(xi), f(xj)) is the distance in facial
feature space, dC

i,j ≡ d(c(xi), c(xj)) is the distance of cloth
feature, dT

i,j ≡ d(t(xi), t(xj)) is the time distance.
Using the Bayesian rule, face similarity can be formu-

lated as:

P (ΩI |d
F , dC , dT ) =

P (dF , dC |ΩI , d
T )P (ΩI |dT )

P (dF , dC |dT )
, (1)

where ΩI indicates patches xi and xj are from the photos
of the same individual.

Using the assumption of a Time Prior that a person of the
same identity tends to wear the same clothes during a short
period of time, the dependence between dF and dC only
comes from the knowledge of the time prior. Therefore we
have

P (dF , dC |ΩI , d
T ) = P (dF |ΩI , d

T )P (dC |ΩI , d
T ). (2)

Given ΩI , dF is independent of dT , and ΩI is indepen-
dent of dT , we have

P (dF |ΩI , d
T ) = P (dF |ΩI), (3)

P (ΩI |d
T ) = P (ΩI). (4)
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Figure 1. The workflow for face annotation framework

Using Eq. 2 - Eq. 4, Eq. 1 can be rewritten as

P (ΩI |d
F , dC , dT ) =

P (dF |ΩI)P (dC |ΩI , d
T )P (ΩI)

P (dF |dT )P (dC |dT )
.

(5)
We use a similarity matrix A to store all pair-wise similari-
ties, with aij = P (ΩI |dF

ij , d
C
ij , d

T
ij).

The probabilities P (dF |ΩI), P (dC |ΩI , d
T ), P (ΩI),

P (dF |dT ), and P (dC |dT ) can be estimated in a training
set using a similar method described in [18].

In addition to the time prior, we also propose another
prior, called Cannot Link Prior to further improve the dis-
criminant power of face similarity. The Cannot Link Prior
comes from the fact that two faces appearing in the same
photo belong to different people. This prior is simply mod-
eled as a hard constraint on face similarity.

2.2. Partial Clustering algorithm

Once pair-wise similarity is defined, many meth-
ods can be used for unsupervised clustering. Spectral
clustering[11], is one of the algorithms that has been proven
to be effective and stable.

Spectral clustering procedure can be decomposed into
two parts, spectral embedding and clustering. Spec-
tral embedding finds representations {φi}i=1...N for faces
{xi}i=1...N in a metric-equipped compact manifold C for
graph-structured data, where data are much more easily
clustered. This compact manifold C is actually the sur-
face of a d-dimensional unit hyper-sphere. Then classic K-
means is used to cluster them in C.

However, for our specific problem, due to difficulties
encountered in face recognition, pair-wise similarity does
not work very well even if contextual information is added.
In this situation, after spectral embedding, many faces are
mapped into messy data points and simple K-Means only
produces very noisy results.

In this section, we proposed a partial clustering algo-

rithm to address this problem. Different from traditional
clustering algorithms, the partial clustering algorithm will
not group all samples into clusters. The basic assumption
made in this algorithm is that the noisy samples which are
difficult for clustering will be distributed uniformly after the
spectral embedding.

Therefore, as shown in Eq. 6, we modified the traditional
Gaussian Mixture Model by adding a uniform background
noise distribution. We also propose to use an exponential
prior to control the variances of component Gaussian distri-
butions:

σ2
j ∼ Exp(θ) j = 1 . . .K

Y ∼ P (Y = j) = αj j = 0 . . .K
Φ ∼ P (φ|y = j, σj) = N(φ; μj , σ

2
j ) j = 1 . . .K

∼ P (φ|y = 0) = pb,
(6)

where αj is the cluster prior, μj is the mean of the cluster,
σj is the variance of the cluster, pb is the density of the
background distribution, yi is the label of face xi, and φi is
the spectral representation of face xi.

The uniform probability density pb is thus evaluated to
be the inverse of a finite “area” Sd(1) of C, with

Sd(1) =
2πd/2

Γ(d/2)
(7)

where Γ(·) is the gamma function Γ(s) =
∫ ∞

0 xs−1e−xdx.
Then our goal is to find the MAP estimation of the fol-

lowing posterior likelihood function:

P (φ, σ|μ, α) =
∑

y

P (φ, y, σ|μ, α), (8)

which can be solved by the Expectation-Maximization
(EM) algorithm.

Compared with the traditional K-Means algorithm, the
partial clustering algorithm only focuses on finding “ev-
ident” clusters which contain samples with high intra-



cluster similarity. Samples in a disperse distribution will
be grouped into a litter-bin cluster.

3. Interactive Labeling for Face Annotation

The partial clustering algorithm automatically groups
similar faces into several evident clusters, and groups dis-
similar faces into a background cluster, called the litter-bin.
After the partial clustering stage, we use an “Initial label-
ing” procedure to annotate these evident clusters. Since
faces in an evident cluster most likely belong to a single in-
dividual, user annotation interactions on these clusters can
be significantly reduced. However, the workload of face an-
notation in the litter-bin is still huge.

In this section, we propose a parameter-free, iterative la-
beling procedure to address this problem. In each step, the
system uses the information from the labeled faces to auto-
matically infer an optimal subset of unlabeled faces for user
annotation. This annotation step will be iteratively used un-
til all faces are labeled. Using this strategy, the overall user
interactions can be reduced by finding an optimal subset of
unlabeled faces in each annotation step.

Suppose there are K labeled groups of identities G =
{G1, . . . , GK}, with Gj = {xi|yi = j} for j = 1 . . .K ,
and an unlabeled face set G0, which define the beginning
state s0 = {G0,G}. Each time we choose to label a subset
Q ⊆ G0, and then go to the next state s′ = {G0\Q,G+Q}
with

G + Q ≡
⋃
j

⎛
⎝Gj +

⋃
xk∈Q,yk=j

{xk}

⎞
⎠ . (9)

The transition weight between two states is defined as the
information efficiency, the ratio r of expected information
gain to estimated user operations in labeling Q:

r ≡
EG [Gain(Q;G)]

Operations(Q)
. (10)

We thus search for a path P ≡ {Q1, . . . , Qm} from s0

to the common final state sF = {∅,GF } that maximizes the
sum of weights over transitions as the following:

max
P

m∑
k=1

rk, (11)

and rk is defined as:

rk =
EGk

[Gain(Qk;Gk)]

Operations(Qk)
, (12)

with Gk ≡ G +
⋃k−1

j=1 Qj .
To solve this problem, one has to enumerate all the possi-

bilities to find the optimal solution, which results in an NP-
hard problem. So we resort to a greedy approach. In each

iteration, we find an optimal set of unlabeled faces Q ⊆ G0

that maximizes the ratio r,

Q = argmax
Q

EG [Gain(Q;G)]

Operations(Q)
. (13)

In the following subsections, we model Gain(Q;G) as
the decrement of global entropy of the system conditioned
on G, and Operations(Q) as subset-saliency entropy (SSE),
which represents estimated number of user operations.

3.1. Information Gain

For xi ∈ G0, we assume that its label yi has a probability
distribution conditioned on G:

P (yi = j|G) ∝ max
xk∈Gj

aik. (14)

aij is the similarity measure between face i and j. We
use the most similar criterion instead of average. Since
the face distribution in the feature space is well known on
a high dimensional manifold, using the similarity between
the nearest-neighbor is more robust than using the average
of similarities over all relevant samples.

The total uncertainty of all unlabeled faces in G0 can be
measured by entropy. Assuming that G0 is an independent
random variables set, its global (pseudo-)entropy is simply
the addition of each independent part xi:

H(G0|G) =
∑

xi∈G0

H(xi|G), (15)

with each part H(xi|G) defined on the probability measure
of Eq. 14.

Suppose the subset Q ⊆ G0 is manually labeled, then
the information gain can be defined as the decrement of
H(G0|G):

Gain(Q;G) ≡ −ΔH(Q|G) = H(G0|G)−H(G0\Q|G+Q)
(16)

In general, Gain(Q;G) is not accessible since the true
labels of Q are unknown. But we can instead evaluate the
expectation of Gain(Q;G), conditioned on Eq. 14:

EG(Gain(Q;G)) =
∑

lQ∈LQ

Gain(lQ;G)P (lQ|G), (17)

where lQ is a label assignment of the set Q, and LQ is the
set of all possible label assignments. By the independence
assumption of G0, we can then actually evaluate it.

3.2. Subset-Saliency Entropy

Given subset Q ⊆ G0, we can estimate the number of
user operations via Subset-Saliency Entropy H(Q):

H(Q) = −
∑

lQ∈LQ

P (lQ) log P (lQ), (18)
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Figure 2. The graphical model for H(Q)

with P (lQ) evaluated by the following equation:

P (lQ) =
∑

lG\Q∈LG\Q

P (lQ|lG\Q)P (lG\Q), (19)

where G = {xi}i=1...N is set of all faces.
This entropy actually models a competition between

Q itself and G\Q, hence the name. As in Eq. 19, if
P (lQ|lG\Q) stays nearly constant when lG\Q changes, then
lQ appears highly correlated and cohesive, which makes
H(Q) small. In short, Q are expected to share the same
label; if P (lQ|lG\Q) changes rapidly with lG\Q, then Q
is heavily influenced by the external node from Q, which
tends to make Q an independent set. In such a situation,
intensive user operations are unavoidable to label Q.

3.3. The Algorithm to Solve H(Q)

In general, directly computing H(Q) is NP-hard. Addi-
tionally, even optimizing Eq. 13 instead of Eq. 11 is in-
tractable. We again adopt a greedy approach that solves
both.

Indeed, we first pick one unlabeled face xd as the seed of
Q, and then do a local search over its neighbors, each time
searching for xi = arg max

xi∈G0\Q
aid, and put it into Q, until

Eq. 13 start to decrease.
The greedy procedure also yields a plausible and

efficient way of computing H(Q). Letting Q =
{xd, x1, . . . , xp}, we assume a graphical model as in Fig.
2. The loopy structure in Eq. 19 is then substantially sim-
plified into tree-structure.

In this simplified model, let subset Y ⊆ G\Q hold com-
petitors. Y can be any subset. Typically we choose two
cases, Y = G0\Q and Y =

⋃
G, which correspond to pure

unsupervised and pure supervised versions. Of course, any
mixture version is allowed. Here we use an unsupervised
version in the experiments.

For each xi ∈ Q\{xd}, we choose xN(i) from Y via the
most similar criterion:

xN(i) = arg max
xk∈Y

aik, (20)

and then define conditional probability in Fig. 2 as the fol-
lowing:

P (yi|yd, yN(i)) ∝

⎧⎨
⎩

ai,N(i) yi = yN(i)

aid yi = yd

0 otherwise.
(21)

For P (yN(i)), if xN(i) is labeled, then it is a delta function
peaked at yN(i), otherwise we assign a uniform probability
over K possible labels. This is because in the unsupervised
version, we want H(Q) to truly reflect the saliency struc-
ture of Q in G0, without any bias on labeled data. But the
supervised version is equally reasonable.

Then for each xi, by marginalization over xN (i), we get

P (yi|yd) =
∑
yN(i)

P (yi|yd, yN(i))P (yN(i)). (22)

And H(Q) is thus evaluated as the following:

H(Q) = H(yd)+H(Q\{yd}|yd) = H(yd)+
∑

i

H(yi|yd).

(23)
In essence, in the extreme case with strong intra-connection
and weak interconnection of Q, H(Q) will be exactly
H(yd) ≈ log K , which indicates only one operation is
needed; whereas in the other extreme case, all yi are mu-
tual independent no matter whether yd is given, which re-
sults in H(yd) + p log K ≈ (p + 1) log K , and indicates
p + 1 operations is needed. This verifies the effectiveness
of approximated H(Q).

4. Experimental Results

We present three comparative experiments here to
demonstrate the performance of our framework.

In the unsupervised stage, experimental comparisons are
made between the prior-equipped partial clustering algo-
rithm and the classic spectral clustering algorithm.

In the interactive stage, two related works are compared.
One is interactive annotation based on (second-time) spec-
tral clustering which labels one by one the newly-generated
clusters from unlabeled faces. The cluster with lowest sim-
ilarity variation will be annotated first. Another is the face
annotation system developed by Riya.

Since the performance of K-mean and partial clustering
will change with cluster initialization, we thus averaged ex-
perimental results on 200 runs of randomized initialization
for all experiments so as to give a more convincing compar-
ison.

4.1. Data preparation and experimental protocol

Four disjoint datasets are used in our experiment, all of
which are extracted from typical photos in cluttered scenes.



Figure 3. Some example faces cropped from four datasets.
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Figure 4. Identities histogram for three datasets

Table 1. The configuration of four datasets used for experiments.

Data Set A B C D
#Face 202 477 980 1147

#Individual 15 6 27 34

Some face samples cropped from these data sets are shown
in Fig. 3.

We show the identity histogram in Fig. 4. Dataset A,
C and D are regular family albums. All their distributions
coincide with the fact that in typical albums, several core
members comprise most samples, while other insignificant
identities have only a small portion of the samples. Dataset
B comes from an album taken within 5 days, travel snap-
shots.

For each image, face regions are aligned and cropped
using a Haar-based Face Detector [14] and an eye de-
tector [10]. Then for each face regions, Local Binary
Pattern(LBP) features are extracted, and contextual Color
Corregram[4] features are extracted on clothes areas. For
distance measure, we choose chi-square for facial features
and L1-distance for contextual features.

As in [8], we use accuracy (AC) to measure cluster per-
formance as follows:

AC =

∑N
i=1 δ (yi, map(ri))

N
(24)

where N is the number of faces, δ(u, v) is the delta func-
tion that equals one if u = v and otherwise equals zero, yi

and ri are the groundtruth label and obtained cluster label
respectively, and map(ri) is a function to map the cluster
label to the ground truth label. Different from [8], in this
paper, the map function is chosen to map the cluster label to
the majority groundtruth label of the each estimated cluster.

To evaluate interactive and overall performance of our
framework, a user interaction model is included to count
user operations and efficiency.

User operations only occur at the interactive stage. In
initial labeling, we assume that typically a user will only la-
bel those clusters with more than 70% accuracy. For each
cluster, whether skipped or not, we count one browse oper-
ation. For each cluster to be annotated, we count one tag
operation for each misplaced face.

During the interactive labeling procedure, the user is
asked to label Q in each annotation step. The user inter-
action count can be estimated by using

N(Q) = min
j

[1 +
∑

xi∈Q

1(yi 	= yj)], (25)

where Q is a suggested subset of unlabel faces for user an-
notation, function 1(x) is the indicator function, and yj is
any possible label.

Labeling efficiency is thus defined as the ratio of the
number of faces labeled to the number of user operations.

4.2. Evaluation on unsupervised stage

In this part, we compare the partial clustering algorithm
with classic spectral clustering algorithm (K-Means in em-
bedding space), as proposed in [11]. Since we claimed
that this algorithm does not aim at overall performance, but
on the leading clusters for subsequent initial labeling, the
performance measure is then made on the first 80%, 85%,
90% and 95% clusters, with N in Eq. 24 modified accord-
ingly. Fig. 5 shows the result, with both curves using prior-
equipped similarity, defined in Eq. 5.

Obviously, in all datasets, partial clustering algorithm
outperformed classical spectral clustering in the leading
clusters. When more and more clusters are involved in cal-
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Figure 5. Performance comparison between partial clustering and
spectral clustering on the first 80%, 85%, 90% and 95% clusters.
This result is averaged over K ∈ [20, 100).

culation, the result of two algorithms come closer. This
shows that our algorithm does not help to produce overall
better clusters, but aims to make clusters better, as we ex-
pect.

4.3. Evaluation on interactive stage

We also conduct experiments on interactive labeling
procedure. This procedure is compared with labeling on
(second-time) spectral clustering. After initial labeling by
partial clustering, we use the proposed interactive labeling
algorithm and spectral clustering respectively to label the
rest of the faces. For the latter, we first re-cluster unlabeled
faces, then simply label the cluster, whose similarity varia-
tion is the lowest.

Results in Fig. 6 show that our proposed labeling algo-
rithm achieves higher efficiency at the beginning of label-
ing, which results in labeling more faces in fewer steps than
labeling on spectral clustering.

4.4. Overall performance evaluation

Since there are few related works in the literature, we
compared our framework with two approaches: the face
annotation based on pure spectral clustering, and the one-
by-one annotation, which is similar to the strategy used by
many commercial systems like Photoshop Elements.

The experimental results in Fig. 7 illustrate that our
framework outperforms other approaches in four data sets.
An obvious turning point in each figure shows the two-stage
nature of proposed framework.

We also compare our result with Riya’s [1] on data set
A. In every iteration, the user was asked to manually label
some faces, then the system used this labeled information
to recognize faces that belong to the same person, and pro-
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Figure 6. Performance comparison on interactive stage in four
datasets.

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Number of user operations

%
 o

f 
la

b
el

ed
 f

ac
es

Labeling sequence on Dataset A (202)

Simple Spectral

Proposed

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of user operations

%
 o

f 
la

b
el

ed
 f

ac
es

Labeling sequence on Dataset B (477)

Simple Spectral

Proposed

50 100 150
0

0.2

0.4

0.6

0.8

1

Number of user operations

%
 o

f 
la

b
el

ed
 f

ac
es

Labeling sequence on Dataset C (980)

Simple Spectral

Proposed

100 200 300 400
0

0.2

0.4

0.6

0.8

1

Number of user operations

%
 o

f 
la

b
el

ed
 f

ac
es

Labeling sequence on Dataset D (1147)

Simple Spectral

Proposed

One-by-one

One-by-one

One-by-one One-by-one

Figure 7. Overall performance comparsion in four datasets.

posed them for user confirmation. We thus count one la-
beling as one user operation. As shown in Fig. 8, in 200
repeated experiments, our system needed 42.3 user interac-
tions to annotate the whole data set on average. Compared
with 80 user interactions used by Riya, our system outper-
forms Riya by about 46%.

5. Conclusion and Future Work

In this paper, we propose a novel face annotation frame-
work based on the partial clustering algorithm and the inter-
active labeling procedure.

There are two main contributions. The first contribution
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is the formulation of the partial clustering algorithm, which
aims to reduce user labor rather than improve overall ac-
curacy. The second contribution is the interactive labeling
strategy, which maximizes the information gain of each user
interaction.

The experimental results show that: 1) using the un-
supervised clustering algorithm can significantly reduce
the face annotation workload; 2) the partial clustering can
group most similar faces into evident clusters to improve
the performance of initial labeling; 3) the interactive label-
ing procedure provides an efficient way to carry out face
annotation in the interactive stage. Results compared with
Riya also show that the proposed framework is superior for
the face annotation task.

There is still much work to further improve the frame-
work. First, pairwise face similarity is important for over-
all performance improvement. This depends on discrimi-
native facial features and stronger inferring from contextual
information. Second, our system adopts a two-stage frame-
work including a clustering stage and an interactive stage. It
would be better to integrate the whole system in a compact
way, thus eliminating user operations as much as possible.
Finally, we plan to integrate the new algorithms here into
the EasyAlbum, a photo annotation system we recently de-
veloped [5].
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