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Using Support Vector Machines to Enhance the
Performance of Bayesian Face Recognition
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Abstract—In this paper, we first develop a direct Bayesian-based
support vector machine (SVM) by combining the Bayesian anal-
ysis with the SVM. Unlike traditional SVM-based face recognition
methods that require one to train a large number of SVMs, the
direct Bayesian SVM needs only one SVM trained to classify the
face difference between intrapersonal variation and extrapersonal
variation. However, the additional simplicity means that the
method has to separate two complex subspaces by one hyperplane
thus affecting the recognition accuracy. In order to improve the
recognition performance, we develop three more Bayesian-based
SVMs, including the one-versus-all method, the hierarchical ag-
glomerative clustering-based method, and the adaptive clustering
method. Finally, we combine the adaptive clustering method with
multilevel subspace analysis to further improve the recognition
performance. We show the improvement of the new algorithms
over traditional subspace methods through experiments on two
face databases—the FERET database and the XM2VTS database.

Index Terms—Bayesian analysis, face recognition, support
vector machine (SVM).

I. INTRODUCTION

FACE recognition has been one of the most challenging
computer vision research topics over the past three

decades. A number of face recognition algorithms have been
developed in recent years [1], [2]. Among the existing face
recognition techniques, subspace methods are widely used in
order to reduce the high dimensionality of the raw face image.
The Eigenface method [3]–[6] was a first breakthrough for the
subspace techniques. The method uses the Karhunen–Loeve
Transform (KLT) to produce the most expressive subspace
for face representation and recognition. Linear discriminant
analysis (LDA) or Fisherface [7]–[12] is an example of the
most discriminating subspace methods. It seeks a set of features
that best separates face classes. Another important subspace
method is the Bayesian algorithm using probabilistic subspace
[13], [35]. Different from other subspace techniques, which
classify the test face image into classes of individuals,
the Bayesian algorithm casts the face recognition problem
into a binary pattern classification problem with each of the
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two classes—intrapersonal variation and extrapersonal varia-
tion—modeled by Gaussian distribution. In addition to directly
processing the original image, subspace methods can also be
applied to other features, such as shape and wavelet features.
Cootes and Taylor developed the active appearance model
(AAM) [28] to explicitly model both shape and texture. Liu
and Wechsler applied the Enhanced Fisher Classifier on face
recognition based on integrated shape and texture [29] and on
Gabor features [30].

After subspace features are computed, most methods use the
simple Euclidian distance of the subspace features to classify
the face images. Recently, more sophisticated classifiers, such as
support vector machines (SVM), have been shown to further im-
prove the classification performance of the PCA and LDA sub-
space features [14]–[17], [34]. The SVM method is based on the
principal of maximal margin bound. Intuitively, given any two
classes of vectors, the aim of SVMs is to find one hyperplane to
separate the two classes of vectors so that the distance from the
hyperplane to the closest vectors of both classes is maximized.
The hyperplane is known as the optimal separating hyperplane.
SVMs excel at two-class recognition problems and outperform
many other linear and nonlinear classifiers.

Since SVM is basically a binary classifier, to apply it to face
recognition, which is a typical multiclass recognition problem,
we have to reduce the multiclass classification to a combination
of SVMs. There are several strategies to solve this problem,
among which one-versus-all strategy and pairwise strategy
are often used [15], [18]–[20]. Although both approaches can
achieve high recognition accuracy, the latter is much simpler
than the former. Studies have shown similar face-classification
performance for the two approaches [15].

Since the number of classes in face recognition is often very
large, for both the one-versus-all strategy and the pairwise
strategy, a large number of SVMs have to be trained. In order
to alleviate this problem, besides a one-versus-all Bayesian
SVM algorithm, we also develop a direct Bayesian SVM
by combining the Bayesian analysis method with the SVM
directly [32]. The Bayesian method effectively converts the
multiclass face recognition problem into a two-class classifi-
cation problem, which is suitable for using the SVM directly.
Therefore, the Bayesian SVM needs only one SVM trained
to classify the face difference between within-class variation
and between-class variation. Phillips [34] suggested such
a combined framework for face recognition. However, it is
accomplished in a heuristic manner.

Using only one hyperplane may not be enough to separate
the entire within-class space and between-class space given the
large number of samples. From experimental comparison, we
see that the simplicity of the direct Bayesian SVM comes at a
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cost of accuracy. We can see that the two methods are at two
extremes—one needs too many classifiers and the other has too
few classifiers. In order to balance the two extremes, we further
develop a two-stage Bayesian SVM. In the first stage, we es-
timate a similarity matrix to measure the degree of similarity
between each pair of faces using the direct Bayesian SVM.
Then using the similarity matrix and the hierarchical agglom-
erative clustering (HAC) algorithm [21]–[25], we group all face
classes into clusters of similar faces. In the second stage, we per-
form the one-versus-all SVMs on the small number of classes
within each cluster. During testing, we first use the original
Bayesian method to classify the probe face to a cluster, and
then the final classification is obtained within this cluster by the
second-stage SVM. The method is shown to be as effective as
the one-versus-all approach but is more efficient in computa-
tion. Notice that the clustering is based on the training data and,
thus, stays the same in the testing stage. In order to cluster the
data adaptively for each test face, we finally develop an adap-
tive clustering Bayesian SVM algorithm. We first use a simple
Bayesian algorithm to find a cluster of faces that are most sim-
ilar to the test face, then use a one-versus-all algorithm to re-
classify the face in this cluster to find the final result. We use
experiments on two face databases—the FERET face database
[26] and the XM2VTS face database [27] to compare the four
new algorithms with traditional subspace methods.

II. BAYESIAN SVM

In this section, we first provide a brief review of the SVM and
Bayesian face recognition. We then develop the direct Bayesian
SVM and the one-versus-all Bayesian SVM.

A. SVMs

In this section, we give a brief description of the basic idea of
SVM. Systematic analysis and discussion on SVM can be found
in [14].

Consider points that belong to two different classes

and (1)

where is an -dimension vector and is the label of the
class that the vector belongs to. SVM separates the two classes
of points by a hyperplane

(2)

where is an input vector, is an adaptive weight vector, and
is a bias. The goal of SVM is to find the optimal separating hy-
perplane, to maximize the margin (i.e., the distance between the
hyperplane and the closest point of both classes). By Lagrangian
formulation, the prediction of the SVM is given by

(3)

where is the number of support vectors, each representing
a support vector and is the corresponding Lagrange multi-
plier. Each test vector is then classified by the sign of .

The solution can be extended to the case of nonlinear sepa-
rating hyperplanes by a mapping of the input space into a high
dimensional space . The key property of this map-
ping is that the function is subject to the condition that the dot
product of the two functions can be rewritten as
a kernel function . The decision function in (3) then
becomes

(4)

We use the popular Gaussian kernel in our study.

B. Bayesian Analysis

The Bayesian face recognition method converts the multi-
class face recognition problem into a two-class classification
problem by classifying the face difference as intrapersonal vari-
ations for the same person and interpersonal variations for dif-
ferent persons [12]. Letting represent the intrapersonal vari-
ations and represent the extra-personal variations, the ML
similarity between any two images can be defined as

(5)

where is the difference between the two images.
To estimate , we perform PCA on the face differ-

ence set to decompose the image difference space
into two orthogonal and complementary subspaces: the prin-
ciple subspace , called intrapersonal eigenspace with eigen-
vectors, and its complementary space with eigenvec-
tors. The likelihood can be estimated as

(6)

where is the so-called distance-in-feature-space (DIFS)

(7)

In (6) and (7), is the principle component of the principle
subspace , is the corresponding eigenvalue, is the
PCA residual error in , also called the “distance-from-feature-
space” (DFFS), and is the average of all the eigenvalues of

(8)

From (6), we can see that the estimation of is equiv-
alent to computing the distance measure in the intrapersonal
subspace

(9)

For simplicity, we only use the DIFS in our study, since DFFS
and MAP are costlier to compute. Our purpose is not to improve
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the Bayesian method itself but to show how SVM can be com-
bined with Bayesian to achieve better performance.

C. Bayesian SVM

As discussed before, SVM is a binary classifier. For the face
recognition problem, we need to extend it to a multiclass clas-
sifier. The pair-wise strategy and the one-versus-all strategy are
the two most popular methods. For the pair-wise strategy, one
SVM is trained to separate each pair of classes. So the method
needs SVMs trained, where is the number of
classes. During testing, each SVM votes for one class, and the
winning class is the one that has the largest number of votes.
For the one-versus-all strategy, each SVM is trained to separate
a single class from the remaining classes. In other words, each
class is associated with one hyperplane. So it needs SVMs
trained. Each test vector is assigned to the class whose hyper-
plane is farthest from it. Since the one-versus-all method is sim-
pler and is as effective as the pair-wise method, we first adopt it
to implement a straightforward one-versus-all Bayesian SVM.

However, for face recognition, the number of classes is often
very large. The one-versus-all method needs to train a large
number of SVMs. In order to alleviate this problem, we develop
a simple Bayesian SVM for face classification. The method is
straightforward since the traditional Bayesian algorithm already
converts the face recognition problem into a two-class problem
for the intrapersonal and the extrapersonal variation. We there-
fore only need to train one SVM for the two-class features.

For the training data, we first compute the image difference
between images of the same person to construct the intraper-
sonal variation set . We then compute the image
difference between images of different persons to construct the
extrapersonal variation set . The eigenvalue
matrix and eigenvector matrix of the intrapersonal
subspace are then computed from the intrapersonal variation
set . Finally, all of the image difference vectors
are projected and whitened in the intrapersonal subspace

(10)

(11)

These two sets of image difference vectors are used to train
the SVM to generate the decision function . For the testing
process, we again compute the face difference vector be-
tween the probe vector and each gallery vector , and then
project and whiten the difference vector in the intrapersonal sub-
space

(12)

The final classification decision is made by

(13)

where is the number of people in the gallery. The larger the
value of is, the more reliable the result is.

The direct Bayesian SVM is simpler than the one-versus-all
Bayesian SVM since it only needs one SVM trained. However,

this new method may have oversimplified the problem since it
uses one hyperplane to separate the intrapersonal variation and
the extrapersonal variation. To balance the tradeoff between the
two methods, we develop a two-stage SVM method in the next
section.

III. TWO-STAGE CLUSTERING-BASED CLASSIFICATION

The problem with the one-versus-all approach is that too
many SVMs need to be trained. On the contrary, the problem
with the direct Bayesian SVM is too many samples for just one
SVM. In this section, we try to find a solution that balances the
two extremes.

When we train an SVM, the most important region in the
training data space is around the decision hyperplane, since that
is where mistakes often occur. Samples that are further away
from the hyperplane play less significant roles in the training
process. Therefore, it is reasonable to train an SVM for samples
that are near the hyperplane. Toward this, we first partition the
gallery data into clusters, with each cluster containing only sim-
ilar images.

We first use the Bayesian SVM to quickly estimate the simi-
larity matrix of the gallery set, and then use the HAC technique
[21]–[25] to group the similar face clusters in order to reduce
the number of binary SVMs in the second stage.

A. Hierarchical Agglomerative Clustering (HAC)

In the HAC process, clusters are constructed by combining
existing clusters based on their proximity. The basic process of
the HAC can be summarized by the following steps.

1) Initialize a set of clusters.

2) Find the nearest pair of clusters that have the largest
similarity measure, and then merge them into a new cluster.
Estimate the similarity measure between the new cluster
and all the other clusters.

3) Repeat step 2 until the stopping rule is satisfied.

In each of the three steps of the basic algorithm, different
strategies can be used to lead to different designs of the HAC al-
gorithm. For example, in the first step, we can either assign each
data point as a distinct cluster or form some initial small clus-
ters for seeding. For face recognition, we can simply assign each
image in the gallery as a cluster (assuming only one image per
person in the gallery). In the third step, the stopping rule could
either be that clustering has reached its root, or the clustering
has reached the number of clusters specified by the user, or the
similarity measure between the two nearest clusters is above a
preset threshold. In our study, we will use the cluster number as
stopping criteria. One key design issue for the HAC algorithm
is the similarity measure between clusters in the second step.
In the new algorithm described in the following section, we use
the direct Bayesian SVM to estimate the similarity measure be-
tween face clusters. The output of the HAC will be a dendro-
gram, in which the similarity measure between any two clusters
is the mean values of all the similarity values of image pairs
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Fig. 1. Dendrogram example.

across the two clusters. An example is shown in Fig. 1, where
ten classes are merged into three clusters.

B. Two-Stage SVM

In order to use HAC to partition the gallery face data into
clusters, we first need to compute the similarity among the face
images. For a pair of face images and in the gallery, we first
compute the image difference , then project and whiten it in
the intrapersonal subspace

(14)

The similarity measure between the two images is then defined
as

(15)

where is the SVM decision function in (3). The further away
the image difference is from the decision hyperplane, the closer
the image difference is to the intrapersonal variation. This means
the two images are more similar to each other. The similarity
values for all of the image pairs form the similarity matrix for
the image gallery set. Using the similarity matrix, we then group
the gallery dataset into clusters of similar images through the
HAC.

After the similar images are clustered, in the second stage, we
perform the one-versus-all Bayesian SVM within each cluster.
Since the image number is much smaller in each cluster, the
training complexity is significantly reduced. In addition, the
SVM needs to only focus on a small number of similar images
within each cluster. These data points are closer to the decision
surface; thus, they are more likely to become support vectors.

During testing, we first compute the whitened face difference
vector between the probe vector and each gallery vector,
and then simply find the face class that gives the smallest .
This is equivalent to the original Bayesian method. If the output
is probe class , we find the face cluster that contains class

. A second stage one-versus-all SVM is then performed on the
cluster to obtain the final classification result. Since the
original Bayesian method only requires computation between
two short feature vectors, it is much faster and is used in the first
stage to rank all of the data. Then, the more costly one-versus-all
Bayesian SVM is only needed to process one small cluster. So
the complexity of the HAC clustering-based algorithm is much
less than the one-versus-all approach.

However, since the clustering is based on the training data
only, the face clusters will stay the same in the testing stage.
They are tuned to the training data without any adaptation to
the test data. In order to cluster the data adaptively for each

Fig. 2. Illustration of the adaptive clustering multilevel subspace SVM algo-
rithm.

test face, we further develop an adaptive clustering Bayesian
SVM algorithm. We first use the original Bayesian algorithm
to find a cluster of faces that are the most similar to the test
face. We then use a one-versus-all algorithm to reclassify the
face in this cluster to find the final result. Unlike the HAC clus-
tering approach that only needs to train SVM classifiers in the
training stage, if we have to retrain the one-versus-all classifier
for each new cluster in the testing stage, the cost of computa-
tion will be simply too high. Instead, we train the one-versus-all
Bayesian SVM in the training stage for all of the training data
just like the original one-versus-all Bayesian SVM. We then use
this one-versus-all Bayesian SVM to reclassify only the faces in
the new cluster. So for training the complexity, it is the same as
the one-versus-all, but for testing, the new cluster method will
be much faster since it only needs to focus on a small cluster and
the first-step original Bayesian algorithm is much faster. In ex-
periments, we will see that this algorithm improves the recogni-
tion accuracy over all other methods. We will explain the reason
in the experiment section.

IV. ADAPTIVE CLUSTERING MULTILEVEL

SUBSPACE SVM ALGORITHM

As discussed before, our proposed adaptive clustering SVM
algorithm is indeed a two-stage algorithm. The classifier in the
first stage helps to select a small subset of gallery classes used
for the following SVM-based classification in the second stage.
One thing to note is that the classier in the first stage can be
any other classifier. This is another advantage of our adaptive
clustering algorithm. The users can freely select the appropriate
classifier in the first stage for convenience.

In order to achieve better recognition performance, we further
develop an adaptive clustering multilevel subspace SVM algo-
rithm by integrating the multilevel subspace analysis [31] in the
first stage with the adaptive clustering algorithm in the second
stage, as illustrated in Fig. 2.

The detailed algorithm is as follows.
In the first stage:

1) Divide the original face vector into feature slices.
Project each feature slice to its PCA subspace computed
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from the training set of the slice and adjust the PCA
dimension to reduce the most noise.

2) Compute the intrapersonal subspace using the within-class
scatter matrix in the reduced PCA subspace and adjust the
dimension of intrapersonal subspace to reduce the intrap-
ersonal variation.

3) For the individuals in the gallery, compute their training
data class centers. Project all of the class centers onto the
intrapersonal subspace, and then normalize the projections
by intrapersonal eigenvalues to compute the whitened fea-
ture vectors.

4) Apply PCA on the whitened feature vector centers to com-
pute the final discriminant feature vector.

5) Combine the extracted discriminant feature vectors from
each slice into a new feature vector.

6) Apply PCA on the new feature vector to remove redun-
dant information in multiple slices. The features with large
eigenvalues are selected to form the final feature vector for
recognition.

Steps 1 to 4 are the first level of the multilevel subspace anal-
ysis and steps 5 to 6 are the second level of the multilevel sub-
space analysis. That is why we call this algorithm multilevel
subspace analysis [31]. The second stage of the adaptive clus-
tering multilevel subspace analysis SVM algorithm is similar to
that of the adaptive clustering Bayesian SVM.

The adaptive clustering multilevel subspace analysis SVM al-
gorithm takes full advantage of the multilevel subspace analysis
and adaptive clustering SVM and, thus, further improves the
recognition performance. Furthermore, when the adaptive clus-
tering multilevel subspace analysis SVM algorithm is applied
to local features, such as elastic graph gabor features [33], we
achieve the best recognition results in the experiment.

V. EXPERIMENTS

In this section, we conduct experiments on two face
databases—the FERET face database [26] and the XM2VTS
face database [27]. To better evaluate the recognition perfor-
mance, we preprocess the face images through the following
steps: 1) rotate the face images to align the vertical face orienta-
tion; 2) scale the face images so that the distances between the
two eyes are the same for all images; 3) crop the face images
to remove the background and the hair region; and 4) apply
histogram equalization to the face images for photometric
normalization.

We compare all the four new algorithms with the three tra-
ditional subspace methods—PCA, LDA, Bayesian method and
the conventional One-Versus-All LDA-based SVM algorithm.

A. Experiment on the FERET Face Database

For the FERET face database ( ) [26], we use 495*2 im-
ages of 495 people as training data, and use images of the other
700 people as test data. Therefore, the gallery set is composed
of 700 images of 700 people. The probe set is composed of 700
images of the same 700 people.

When we train the SVM with one-versus-all strategy, the
training samples are unbalanced (i.e., the number of samples
for the positive (the same class) is often very small while the
number of samples for the negative (the different classes) on

TABLE I
RECOGNITION ERROR RATE ON THE FERET

DATABASE AND THE XM2VTS DATABASE

the other hand is very large). Hence, it is crucial to balance
between them. Considering that not all samples contribute to
the discriminative learning, it is reasonable to select a portion
of negative samples which contain the most discriminant in-
formation. As discussed before, the samples that are near the
boundary usually play a more significant role in the training
process and, thus, deserve emphasis. This mechanism is explic-
itly implemented in the training process of the one-versus-all
SVM, in which only a portion of selected negative samples
near the boundary together with the positive samples are used
to train the one-versus-all SVM.

The recognition results of all the tested methods are sum-
marized in Table I. From the results, we can see that the
Bayesian SVM is only slightly better than the original Bayesian
algorithm. On one hand, this lack of significant improvement
confirms that using only one hyperplane is not enough to
separate the intrapersonal and extrapersonal subspaces. On the
other hand, the result the Bayesian SVM achieves is still very
encouraging with a 3.9% error rate achieved even though only
one simple hyperplane is used. This clearly shows the power
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Fig. 3. Comparison of the recognition results for adaptive clustering using
a different number of samples in the first step cluster. (a) FERET data-
base. (b) XM2VTS database.

of the Bayesian framework. For the HAC clustering SVM, we
set the cluster number to six. Both the one-versus-all method
and the HAC-based method improve the recognition accuracy
significantly. Compared to the original Bayesian method, the
recognition error rate is reduced by 45%. One thing to note
is that even though the training data are unbalanced for each
individual SVM with each one having only one positive sample
while many negative samples, the accumulated effect of all
the classifiers can still perform very well. Finally, the adaptive
clustering method gives the best accuracy of 97.4% among
all Bayesian-based methods. This is very high accuracy for
the FERET database. Both the HAC clustering and adaptive
clustering methods are more efficient in computational cost
since they only need to compute a small number of SVMs in
the testing stage.

The good result for the adaptive clustering method is partic-
ularly interesting. Given that we use a regular one-versus-all
method to reclassify the cluster of images selected by the
original Bayesian method in the first step, instead of retraining
the SVM, the method is effectively the same as combining
the two classifier in a series operation. For the sake of com-
parison, we can also use the one-versus-all method first and
then use the original Bayesian method. Of course, this is not a
good approach since the former method is more expensive to
compute. We select a different number of samples in the first
step clustering for the two methods and compute the recog-
nition accuracy. Fig. 3(a) shows the results for both methods.
Clearly, using the first approach is much better. This can be ex-
plained by the complementary properties of the two classifiers.

The Bayesian method is more stable but less accurate. The
one-versus-all Bayesian, on the other hand, is more accurate
but less stable since it is possible that one or a few of the large
number of SVMs may produce a larger than normal distance
measure outlier that happens to overshadow the real face class.
When a stable Bayesian classifier is used first, it will help to
remove these outliers from the selected cluster of candidates to
help improve the performance of the one-versus-all Bayesian
classifier. In the experiment, the algorithm reaches the best
performance with only 20 images in the cluster. If we use the
less stable one-versus-all method first and then use the original
Bayesian, the performance is actually worse than using the
one-versus-all method alone, since the Bayesian method is less
accurate. As the number of images in the cluster increases, the
combined method actually gets closer to the second algorithm
with decreasing influence of the first.

Furthermore, when using the adaptive clustering method on
the multilevel subspace analysis method, the recognition error
rate is further reduced by 50%.

Finally, when this algorithm is applied to local features, such
as Gabor features, we achieve the best accuracy of 99.4% on
the FERET database. Compared with the results of using only
the Gabor features with the one-versus-all SVM, the error rate
is reduced by at least 80%.

B. Experiment on the XM2VTS Face Database

For the XM2VST database, we select all 295 people with four
face images from four different sessions for each person. For the
training data, we select 295*3 images of 295 people from the
first three sessions. The gallery set is composed of 295 images
of 295 people from the first session. The probe set is composed
of 295 images of 295 people from the fourth session.

We implement the comparative experiments similar to the
FERET face database experiment. Although the data size is
smaller than the FERET database, the fact that the probe set
and the gallery set in this experiment are from different sessions
makes the recognition task also very challenging. This can be
seen from the poor results of the PCA method, which is similar
to direct matching of face images. The recognition results of the
eight tested methods are summarized in Table I. The adaptive
clustering recognition results for a different number of images
are shown in Fig. 3(b). The results further confirm our observa-
tion in the FERET data experiments.

VI. CONCLUSION

In this paper, we first develop a direct Bayesian-based
SVM by combining the Bayesian analysis with the SVM. The
direct Bayesian SVM needs only one SVM to be trained to
classify the face difference between within-class variation and
between-class variation. However, with additional simplicity,
the new method also has an inherent drawback. It tries to sep-
arate two complex subspaces by just one hyperplane. In order
to improve the recognition performance, we further develop
three more Bayesian-based SVMs, including the one-versus-all
method, the HAC-based method, and the adaptive clustering
method. We compare the new algorithm with traditional sub-
space methods—PCA, LDA, and Bayesian method through
experiments on two face databases—the FERET face database
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and the XM2VTS face database. The results clearly demonstrate
the superiority of the new algorithm over traditional subspace
methods. In addition, the clustering strategy is also extended to
the multilevel subspace analysis [31] and elastic graph Gabor
features [33] to further improve recognition performance.
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