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Abstract
In this paper, we propose the Directed Graph Em-
bedding (DGE) method that embeds vertices on a 
directed graph into a vector space by considering 
the link structure of graphs. The basic idea is to 
preserve the locality property of vertices on a di-
rected graph in the embedded space. We use the 
transition probability together with the stationary 
distribution of Markov random walks to measure 
such locality property. It turns out that by exploring 
the directed links of the graph using random walks, 
we can get an optimal embedding on the vector 
space that preserves the local affinity which is in-
herent in the directed graph. Experiments on both 
synthetic data and real-world Web page data are 
considered. The application of our method to Web 
page classification problems gets a significant im-
provement comparing with state-of-art methods.  

1 Introduction 
We consider the problem that embeds nodes on directed 
graph into a Euclidean vector space while preserving locality 
which is inherent in the graph structure. There is a large 
amount of problems which can be naturally represented as a 
directed graph. Typical examples are web information re-
trieval based on hyperlink structure, document classification 
based on citation graphs [C. Lee Giles et al., 1998] and pro-
tein clustering based on the pairwise alignment scores [W. 
Pentney and M. Meila, 2005]. Some works have been done to 
deal with the ranking problem on link structure of the Web 
including the PageRank [S. Brin and L. Page, 1998] and 
HITS [J. Dean and M. Henzinger, 1999] algorithms, yet it is 
still a hard task to do general data analysis on directed graphs 
such as classification and clustering. In [D. Zhou et al., 2005] 
the authors proposed a semi-supervised learning algorithm 
for classification on directed graph, and also an algorithm to 
partition the directed graph. In [W. Pentney and M. Meila,
2005] the authors proposed algorithms to do clustering on 
protein data which was formulated into a directed graph 
based on asymmetric pairwise alignment scores. However, 
up to now, works are quite limited due to the difficulty in 
exploring the complex structure of directed graphs. On the 
other hand, there are a lot of data mining and machine 

learning techniques, such as Support Vector Machine (SVM), 
operating data on a vector space or an inner product space. 
Embedding the data of directed graphs to vector spaces be-
comes quite appealing for tasks of data analysis of directed 
graphs. The motivations are: 
1) Instead of designing new algorithms for each task in data 

mining on directed graphs that are directly applied to link 
structure data, we can first provides a unified framework 
to embed the link structure data into the vector space, and 
then utilize the mature algorithms that already exist for 
mining on the vector space. 

2) Directly analyzing data on directed graphs is quite hard, 
since some concepts such as distance, inner product, and 
margin, which are important for data analysis, are hard to 
define in directed graph. But for vector data, these con-
cepts are already well defined. Tools for analyzing data 
can be easily obtained. 

3) Given a huge directed graph with complex link structure, it 
is highly difficult to perceive the latent relations of the 
data.  Such information may be inherent in the topological 
structure and link weights. Embedding these data into 
vector spaces will help people to analyze these latent re-
lations visually.  

Some works have been done for embedding on the undirected 
graph. Manifold learning techniques [M. Belkin and P. Ni-
yogi , 2002] [S.T.Roweis and L.K.Saul, 2000] first connect 
data into an undirected graph in order to approximate the 
manifold structure where the data is assumed to be lying on. 
Then they embed the vertices of the graph into a low di-
mensional space. Edges of the graph reflect the local affinity 
of node pairs in the input space. In the next, an optimal em-
bedding is achieved by preserving such a local affinity. 
However, in the directed case, the edge weight between two 
graph nodes is not necessarily symmetric. It can not be di-
rectly used as a measure of affinity. Motivated by [D. Zhou et
al., 2005], we formulate the directed graph in a probabilistic 
framework. We use random walks to measure the local af-
finity of vertices on the directed graph. Based on that, we 
propose an algorithm embedding the nodes on the directed 
graph into a vector space by using random walk metric.  
The rest of the paper is organized as follows: In section 2, we 
give denotations used in our paper. In section 3, we introduce 
the details of our method. Implementation issues are ad-
dressed in section 4. The relation between our method and 
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previous works is considered in section 5. Experimental 
results are shown in section 6 and the last part is the conclu-
sion.  

2 Preliminary 

 
Figure 1. The World Wide Web can be modeled as a directed 

graph. Web pages and hyperlink can be represented as vertices 
and directed edge of the graph. 

An example of directed graph is the World Wide Web as 
shown in Fig.1. A directed graph consists of a 
finite vertex set V  which contains n vertices, together with 
an edge set E V . An edge of a directed graph is an 
ordered pair vertex ( ,  from  to . Each edge may 
associate a positive weight . An un-weighted directed 
graph can be simply viewed as all the weight of the edge is 
one. The out-degree of a vertex v  is defined as 

, where the in-degree of a ver-

tex  is defined as , u means u  

has a directed link pointing to v . On the directed graph, we 
can define a transition probability matrix of a 
Markov random walk through the graph. It satis-
fies . We also assume the stationary dis-

tribution for each vertex  is 

( , )G V E

V
)u v u v

w

( )Od v

,
( ) ( , )O u v u

d v w v u ( )Id v

v
,

( ) ( , )I u u v
d v w u v v

,[ ( , )]u vP p u v

( , ) 1,
v

p u v u

v v ( 1 ), which can be 
guaranteed if the chain is irreducible. For a connected di-
rected graph, a natural definition of the transition probability 
matrix can be p u  in which a random 
walker on a node jumps to its neighbors with a probability 
proportion to the edge weight. For a general directed graph, 
we can define a slightly different transition matrix. We will 
be back to this issue in the implementation section. 

vv

( , ) ( , ) / ( )Ov w u v d u

v

3 Algorithm  
We aim to embed vertices on directed graph into a vector 
space preserving the locality property of vertex u to all its 
neighbors. First, let’s consider the problem mapping the 
connected directed graph to a line. We define a general op-
timization target as: 

2

,
( ) ( , )( )V E u

u v u v
T u T u v y y  

uy  is the coordinate of vertex in embedded one dimension 
space. The term 

u

ET  is used to measure the importance of a 
directed edge between two vertices. If   is large, then 
the two vertices u  and  should be close to each other on 

the embedded line. The term  is used to measure the im-
portance of a vertex on the graph. If  is large, then the 
relation between vertex u  and its neighbors should be em-
phasized.  By minimizing such a target, we are able to get an 
optimized embedding for the graph on one dimensional space. 
The embedding considers both the local relation of node pairs 
and global relative importance of nodes. 

( , )ET u v
v

VT
( )VT u

In the following, we address the embedding problem of di-
rected graphs under two assumptions: 
1) Two vertices are relevant if there is edge between them. 

The relevance strength is related to the edge weight. 
2) The out-link of the vertex which has many out-links car-

ries relatively low information about the relevance be-
tween vertices. 

The assumptions are reasonable in many tasks. Let’s again 
take the Web by example. Web page authors usually insert 
links to pages which are relevant to their own pages. There-
fore, if a Web page A has a hyper-link pointing to Web page 
B, we assume A and B might be relevant in some sense. We 
should preserve such a relation in the embedded space. 
Let’s consider a web page which has many out links, such as 
the home page of www.yahoo.com. The page linked by the 
home page of yahoo may share less similarity with it, and 
then in the embedded feature space the two web pages should 
have a relatively large distance. We can use the transition 
probability of random walks to measure the locality property. 
When a web page has many out-links, each out-link will have 
a relatively low transition probability. Such a measure meets 
the assumption 1 and 2. 
Different web pages have different importance in the Web 
environment. Ranking web pages according to their impor-
tance is a well studied area. The stationary distribution of 
random walks on the link-structure environment is well 
known as a good measure of such importance which is used 
in many ranking algorithms including PageRank. In order to 
emphasize those important pages in the embedding feature 
space, we use the stationary distribution u  of random walks 
to weigh the page u  in the optimization target.  
Taking all above into account, we rewrite the optimization 
target as follows:  

2

,
( , )( )u u

u v
v

v
p u v y y

u

 

We can further rewrite the formula as follows: 
2 2

, ,
( , )( ) ( ) ( , )u u v u v u

u v u v u v
p u v y y y y p u v

2 2

, ,

2

,

1 ( ) ( , ) ( ) ( ,
2
1 ( ) ( , ) ( , )
2

u v u v u v
u v v u

u v u v
u v

)y y p u v y y p v u

y y p u v p v u
 

Thus the problem is equivalent to embedding the vertices 
into a line while preserving the local symmetric measure 

( , ) ( , ) / 2u vp u v p v u  of each vertices pair, here 
( , )u p u v  is the probability of a random walker jumps to 
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vertex u  then to , i.e. the probability of the random walker 
passes the edge ( , . This also can be deemed as a per-
centage of flux in the total flux at stationary state when we 
continuously import water into the graph. This directed force 
manifests the impact of u on v , or the volume of message 
that conveys to . 

v
)u v

u v
By optimizing the target we consider not only the local 
property reflected by edges between node pairs, but also the 
global reinforcement to the relation by taking the stationary 
distribution of random walks into account. 
We denote 

2

TP PL  

where P  is the transition matrix, i.e. ( , )ijP p i j ,  is the 
diagonal matrix of the stationary distribution, i.e. 

1( ,..., )ndiag . Clearly, from the definition L  is sym-
metric. Then we have the following proposition. 
Proposition 1  

2

,
( , )( ) 2 T

u u v
u v u v

p u v y y y Ly  

where . 1( ,..., )T
ny y y

The proof of this proposition is given in the appendix. The 
above L  is known as combinatorial Laplacian on a directed 
graph [F. R. K. Chung, 2005]. From the proposition we can 
see that L  is a semi-positive definite matrix. 
Therefore, the minimization problem reduces to find  

argmin

. . 1

T

y

T

y Ly

s t y y
 

The constraint  removes an arbitrary scaling factor 
of the embedding. Matrix  provides a natural measure of 
the vertex on the graph. The problem is solved by the general 
eigendecomposition problem: 

1Ty y

Ly y  
Alternatively, we could use  as the constraint. Then 
the solution is achieved by solving

1Ty y
Ly y . 

Let be a vector with all entry 1. It can be easily shown 
that  is an eigenvector with eigenvalue 0 for

e
e L . If the 

transition matrix is primitive, is the only eigenvector for e
0 . The meaning of the first eigenvector is to map all 

data to a single point, which minimizes the optimization 
target. To eliminate this trivial solution we put an addition 
constraint of orthogonality: 

argmin

. . 1
0

T

y

T

T

y Ly

s t y y
y e

 

Thus the solution is given by the eigenvector of the smallest 
non-zero eigenvalue. Generally, embedding the graph into 

 (k>1) is given by the n  matrix  where 

the ith row provides the embedding of the ith vertex. 
Therefore we minimize  

kR k 1[ ... ]kY y y

2

,

( , ) 2 ( )T
u u v

u v u v
p u v Y Y tr Y LY  

It can be rewrite as  
min ( )
. .

T

T

tr Y LY
s t Y Y I

 

The solution is given by  where * * *
2[ ,..., ]kY 1

*
i  is the 

eigenvector of ith smallest eigenvalue of the generalized 
eigenvalue problem Ly y . 

4 Implementation Issue  
Input: adjacency matrix W, dimension of target space  and 
a perturbation factor 

k
 

1. Compute 1 1( ) (1 )T T
OP D W e ee

n n
1 , where 

 is a vector that 1i  if row i of W  is 0, and is 
the diagonal matrix of the out degrees. 

OD

2. Solve the eigenvalue problem T P T subject to a 
normalized equation . 1T e

3. Construct the combinatorial Laplacian of the directed 

graph 
2

TP PL , where 1( ,..., )ndiag

4. Solve the generalized eigenvector problem Ly y , 
let *

1 ,..., n
* be the eigenvectors ordered according to 

their eigenvalues with *
1 having the smallest eigenvalue 

1  (in fact zero). The image of iX  embedded into  
dimensional space is given by . 

k
* * *

2 1[ ,..., ]kY

Table 1. The DGE algorithm 

The irreducibility of the Markov chain guarantees that the 
stationary distribution vector  exists. We here will build a 
Markov chain with a primitive transition probability ma-
trix P . In general, for a directed graph, the matrix of transi-
tion probability P defined by  is not 
irreducible. We will use the so called teleport random walk 
[A. Langville and C. Meyer, 2004] on a general directed graph. 
The transition probability matrix is given by 

( , ) ( , ) / ( )Op u v w u v d u

1 1 1( ) (1 )T T
OP D W e ee

n n
 

where W  is the adjacent matrix of the directed graph,  is a 
vector that 1i  if row i of W  is 0, and is the diagonal 
matrix of the out degree. Then 

OD
P will be stochastic, irre-

ducible and primitive. This can be interpreted as a probabil-
ity  of transiting to an adjacent vertex and a probability 
1  of jumping to any point on the graph uniform ran-
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domly. For those vertices that don’t have any out link, just 
uniform randomly jump to any point on the graph. Such a 
setting can be viewed as adding a perturbation to the original 
graph. The smaller the perturbation is the more accurate 
result we can get. So in practice we only need to set  to a 
very small value. In this paper, we simply set  to be 0.01. 
The stationary distribution vector then can be obtained by 
solving an eigenvalue problem T P T  subject to a nor-
malized equation . 1T e
The algorithm for embedding vertices on a directed graph 
into a vector space is summarized in Table1. 

5 Relation with Previous Works  
In [M. Belkin and P. Niyogi , 2002] the authors proposed the 
Laplacian Eigenmap algorithm for nonlinear dimensional 
reduction. We can see if our algorithm is applied to an un-
directed graph we will get a similar solution to Laplacian 
Eigenmap. In the case of undirected graph, we can define the 
transition probability as , where  
is the weight of the undirected edge , is the degree of 
vertex u . If the graph is connected then the stationary dis-
tribution on vertex u  can be proved equal to , 
where is the volume of the graph, thus 

( , ) ( , ) / up u v w u v d ( , )w u v
( , )u v ud

/ (ud Vol G)
G

/ 2

( )Vol
2 2

, ,

2

,

( , )( ) ( ) ( , )

( ) ( , ) / ( )

u u v u v u
u v u v u v

u v
u v

p u v y y y y p u v

y y w u v Vol G

/ ( )T Ty y y Dy Vol G  
where . Then the problem reduces to the 
Laplacian Eigenmap. 

1( ,..., )nD diag d d

In [D. Zhou et al., 2005] Zhou proposed a semi-supervised 
classification algorithm on a Directed Graph, by solving an 
optimization problem. The basic assumption is the smooth 
assumption that the class labels of the vertices on the directed 
graph should be similar if the vertices are closely related. The 
algorithm is to minimize a regularization risk between the 
least square error and a smooth term. Consider the problem 
that the data in the same class is scattered and the decision 
boundary is complicated, and the smooth assumption does 
not hold. Then the classification result may be hindered. 
Another problem is that by using least square error the data 
far away from the decision boundary also contribute a large 
penalty in the optimization target. Thus considering the im-
balanced data, the side with more training data may have 
more total energy, and the decision boundary is biased. In the 
experiment section we will show a comparison between 
Zhou’s algorithm and our method used together with an 
SVM classifier. 
In [D. Zhou et al., 2005] the author also proposed the directed 
version of normalized cut algorithm. The solution is given by 
the eigenvector corresponding to the second largest eigen-
value of matrix .  It can 

be seen that the eigenvector corresponding to the second 
largest eigenvalue of 

1/ 2 1/ 2 1/ 2 1/ 2( )TP P

 is in fact the eigenvector v corre-
sponding to the second smallest eigenvalue of I . 
Note that we have such an equation  

1/ 2 1/ 2T T T

T T

y Ly L
y y T

1/ 2y,  

Therefore, the cutting result is equal to embedding data into a 
line by DGE, then using threshold 0 to cut the data. 

6 Experiments  
In this section, experiments are designed to show the em-
bedding effect in both toy problems and real world data. 
Using DGE as a preprocess procedure, we also consider an 
application of the proposed directed graph embedding algo-
rithm to a web page classification problem with comparisons 
to a state-of-art algorithm. 

Toy Problems  
We first test our algorithm on the toy data shown in Fig.1.  
The edge weights are set as binary values. Fig.2(a) shows the 
result of embedding the directed graph into a plane. The red 
nodes and blue nodes in Fig.2(a) are corresponding to the 
three nodes on the left and four nodes on the right in Fig.1 
respectively. From the figure, we can see the locality prop-
erty of the graph is well preserved, and the embedding result 
reflects subgraph structure of the original graph. 

 
(a)                                                      (b) 

Figure 2. Embedding result of two toy problems on 2D space 

In another experiment, a directed graph consisting of 60 
vertices is generated. There are three subgraphs, and each 
consists of 20 vertices. Weights of the inner directed edges in 
the subgraph are drawn uniformly from interval [0.25, 1]. 
Weights of directed edges between the subgraphs are drawn 
uniformly from interval [0, 0.75]. By generating the edge 
weights in such a manner, each subgraph is relatively impact. 
The graph is a full-connected directed graph. If only given 
the graph without a prior knowledge of the data, we can 
hardly see the latent relation of the data. The embedding 
result by DGE in two dimensional space is shown in Fig.2(b). 
We can see that tightly related nodes on the directed graph 
are clustered in the 2D Euclidean space. After embedding the 
data into a vector space, we can easily perceive the clustered 
structure of the original graph, which gives us insight on the 
principal issues such as latent complexity of the directed 
graph. 
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(a)                                               (b)                                              (c)                                               (d) 

Figure 4. Classification Result: a) two-class problem, dimension=20; b) multi-class problem, dimension=20; c) multi-class in dif-
ferent dimension spaces by nonlinear SVM; d) accuracy against dimension on a fixed (500 labeled samples) training set by linear 

SVM 

Web Page  Data  
To address directed graph embedding task on real world data, 
we test our method on the WebKB dataset. We consider a 
subset containing the pages from the three universities 
Cornell, Texas and Wisconsin. We remove the isolated 
pages, resulting in 847, 809 and 1227 pages respectively. We 
may assign a weight to each hyperlink according to the tex-
tual content or the anchor text. However here we are only 
interested in how much we can obtain from link structure 
only and hence adopt the binary weight function. Fig.3 
shows the embedding result of the WebKB data in three 
dimensional space. The red, blue and black nodes are cor-
responding to the web pages of three universities: Cornell 
Texas and Wisconsin respectively. From the figure we can 
see that the embedding results of web pages in each univer-
sity are relatively impact, while those of web pages in dif-
ferent universities are well separated. This shows our method 
is effective in analyzing the link structure between different 
universities, where the inner links in one university are 
denser than that between universities. 

 
 

Figure 3. Embedding result of WebKB data 

Appl i ca t ion  in  Web Page  Class i f i ca t ion  
Our method can be used in many applications, such as clas-
sification, clustering, information retrieval. As an example, 
we apply our algorithm to a web page classification task. 
Web pages of four universities Cornell, Texas, Washington 
and Wisconsin in WebKB dataset are used. Still the binary 
edge weight setting is adopted. We first use DGE to embed 
the vertices into certain Euclidean space, and then train an 
SVM classifier to do the classification task. After that, we 
compare the results with the state-of-art classification algo-

rithm (referred as Zhou) proposed in [D. Zhou et al., 2005]. 
Here we use nu-SVM [B. Schölkopf and A. J. Smola, 2002], 
a modified version of SVM, which is easy for model selec-
tion. Both linear and nonlinear SVM are tested. In the 
nonlinear setting, RBF kernel is used.  In all experiments, the 
training data are randomly sampled from the data set. To 
ensure that there is at least one training sample for each class, 
we conduct the sampling again when there is no labeled 
point for some class. The testing accuracies are averaged 
over 20 times’ experimental results. Different dimensional 
embedding spaces are also considered to study the dimen-
sionality of the embedded space. 
The comparing results of binary classification problem are 
shown in Fig.4(a). We consider the web pages of two Uni-
versities randomly selected from the WebKB data set. We 
first use DGE to embed the whole dataset into a 
20-dimensional space, then use SVM to do the classification 
task. The parameter nu is set to 0.1 for both linear SVM and 
nonlinear SVM. The parameter of RBF kernel is set to be 
38 for nonlinear SVM. The parameter for Zhou’s algo-
rithm is set to be 0.9 as proposed in his paper. From the 
figure, we can see that in all cases where the number of 
training samples varies from 2 to 1000, DGE used together 
with either liner or nonlinear SVM consistently achieves 
better performance than Zhou’s algorithm. The reason might 
be that Zhou’s method directly applies the least square risk to 
the direct graph, which is convenient and suitable for re-
gression problems, but not so efficient in some case of clas-
sification problems, such as imbalanced data. The reason is 
that the nodes far away from the decision boundary also 
contribute large penalty for the shape of the decision 
boundary.  After embedding the data into vector space, we 
are able to analyze the decision boundary carefully. 
Nonlinear SVM can show its advantage in such a situation. 
Fig.4(b) show the result of the multi-class problem, in which 
each university is considered as a single class, and then 
training data are randomly sampled. For SVM, we use 
one-against-one extension for multi-class problem. For 
Zhou’s algorithm, the multi-class setting in paper [D. Zhou 
et al., 2004] is used. The parameter setting is the same as the 
binary class experiments. From the figure we can see that 
significant improvements are achieved by our method. 
Zhou’s method is not very efficient in multi-class problem. 
Besides the reason we discussed above, another problem of 
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Zhou’s algorithm is the smooth assumption. When the data 
in one class are scattered in the space, the smooth assump-
tion can not be well satisfied, and the decision boundary will 
be complicated, especially in the case of multi-class problem. 
Directly analyzing the decision boundary on the graph is a 
difficult task. When embedding the data into vector space, 
complicated geometry analysis can be performed and so-
phisticated alignment of the boundary can be achieved using 
methods such as nonlinear SVM.  
We also test different dimension settings for classification 
task. The same parameter setting for SVM is used for train-
ing models on different dimensional spaces. Fig.4(c) shows 
the comparing experimental results of nonlinear SVM on 
embedded vector spaces where the dimension of the em-
bedded space varies from 4 to 50. From the figure we can see 
that by first using DGE to embed data into vector space the 
classification accuracies are higher than Zhou’s work in a 
large range of dimension settings.  
Fig.4(d) shows the experimental results of linear SVM on the 
dimension settings ranging from 4 to 250. The best result is 
achieved on about 70-dimensional space. In lower dimen-
sion spaces, the data may be not linear separable, but still has 
a rather clear decision boundary. This is why the nonlinear 
SVM works well in those cases (Fig.3(c)). In a higher di-
mension the data become more linear separable, and the 
classification errors get lower. When the dimension is larger 
than 70, the data become too sparse to train a good classifier, 
which hinders the classification accuracy. The experimental 
results suggest that the data on the directed graph may have a 
latent dimension in a Euclidean vector space which is suit-
able for further analysis. 

7 Conclusion 
In this paper, an efficient algorithm DGE for embedding 
vertices on directed graphs to vector spaces is proposed. 
DGE explores the inherent pairwise relation between verti-
ces of the directed graph by using transition probability and 
the stationary distribution of Markov random walks, and 
embeds the vertices into vector spaces preserving such rela-
tion optimally. Experiments show the effectiveness of our 
method for both embedding problems and applications to 
classification task.  
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Appendix 
Proof of the Proposition 1 in section 3: 

2 2
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The first term of the right term of above equation: 
2 2
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We can do similarly deduction for other terms. Thus  
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