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Abstract

Recently, substantial efforts have been devoted to
the subspace learning techniques based on tensor
representation, such as 2DLDA [Ye et al., 2004],
DATER [Yan et al., 2005] and Tensor Subspace
Analysis (TSA) [He et al., 2005]. In this context,
a vital yet unsolved problem is that the computa-
tional convergency of these iterative algorithms is
not guaranteed. In this work, we present a novel so-
lution procedure for general tensor-based subspace
learning, followed by a detailed convergency proof
of the solution projection matrices and the objec-
tive function value. Extensive experiments on real-
world databases verify the high convergence speed
of the proposed procedure, as well as its superiority
in classification capability over traditional solution
procedures.

1 Introduction

Subspace learning algorithms [Brand, 2003] such as Princi-
pal Component Analysis (PCA) [Turk and Pentland, 1991]
and Linear Discriminant Analysis (LDA) [Belhumeur ef al.,
19971 traditionally express the input data as vectors and of-
ten in a high-dimensional feature space. In real applications,
the extracted features are usually in the form of a multidi-
mensional union, i.e. a tensor, and the vectorization process
destroys this intrinsic structure of the original tensor form.
Another drawback brought by the vectorization process is the
curse of dimensionality which may greatly degrade the algo-
rithmic learnability especially in the small sample size cases.

Recently substantial efforts have been devoted to the em-
ployment of tensor representation for improving algorith-
mic learnability [Vasilescu and Terzopoulos, 2003]. Among
them, 2DLDA [Ye et al,, 2004] and DATER [Yan er al.,
2005] are tensorized from the popular vector-based LDA
algorithm. Although the initial objectives of these algo-
rithms are different, they all end up with solving a higher-
order optimization problem, and commonly iterative pro-
cedures were used to search for the solution. A collec-
tive problem encountered by their solution procedures is
that the iterative procedures are not guaranteed to con-
verge, since in each iteration, the optimization problem
is approximately simplified from the Trace Ratio form
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arg maxgsx Tr(UkTS,’;Uk)/TT(UkTSkUk) ! to the Ratio

Trace form argmax. Tr[ (UF" SEUF)=1(U*T SPUF) | in
order to obtain a closed-form solution for each iteration. Con-
sequently, the derived projection matrices are unnecessary to
converge, which greatly limits the application of these algo-
rithms since it is unclear how to select the iteration number
and the solution is not optimal even in the local sense.

In this work, by following the graph embedding formula-
tion for general dimensionality reduction proposed by [Yan
et al., 2007], we present a new solution procedure for sub-
space learning based on tensor representation. In each it-
eration, instead of transforming the objective function into
the ratio trace form, we transform the trace ratio optimiza-
tion problem into a trace difference optimization problem
maxpk Tr[UkT (57 —A\S*¥)U*] where A s the objective func-
tion value computed from the solution (U*[?_,) of the pre-
vious iteration. Then, each iteration is efficiently solved with
the eigenvalue decomposition method [Fukunaga, 1991]. A
detailed proof is presented to justify that A, namely the value
of the objective function, will increase monotonously, and
also we prove that the projection matrix U* will converge to
a fixed point based on the point-ro-set map theories [Hogan,
1973].

It is worthwhile to highlight some aspects of our solution
procedure to general subspace learning based on tensor rep-
resentation here:

1. The value of the objective function is guaranteed to
monotonously increase; and the multiple projection ma-
trices are proved to converge. These two properties en-
sure the algorithmic effectiveness and applicability.

. Only eigenvalue decomposition method is applied for
iterative optimization, which makes the algorithm ex-
tremely efficient; and the whole algorithm does not suf-
fer from the singularity problem that is often encoun-
tered by the traditional generalized eigenvalue decompo-
sition method used to solve the ratio trace optimization
problem.

. The consequent advantage brought by the sound theo-
retical foundation is the enhanced potential classification

"Matrices S% and S* are both positive semidefinite and more
detailed definitions are described afterward.
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capability of the derived low-dimensional representation
from the subspace learning algorithms.

The rest of this paper is organized as follows. Section II
reviews the general subspace learning based on tensor rep-
resentation, and then we introduce our new solution proce-
dure along with the theoretical convergency proof in section
III. By taking the Marginal Fisher Analysis (MFA) algorithm
proposed in [Yan et al., 2007] as an example, we verify the
convergency properties of the new proposed solution pro-
cedure and the classification capability of the derived low-
dimensional representation is examined with a set of experi-
ments on the real-world databases in Section IV.

2 Subspace Learning with Tensor Data

In this section, we present a general subspace learning frame-
work by encoding data as tensors of arbitrary order, extended
from the one proposed by [Yan er al., 2007] and taking the
data inputs as vectors. The concepts of tensor inner produc-
tion, mode-k production with matrix, and mode-% unfolding
are referred to the work of [Yan et al., 2005].

2.1 Graph Embedding with Tensor Representation

Denote the sample set as X = [X;,Xs,...,Xy],X; €
RmaxmaX..xmn 4 — 1 N, with IV as the total number of
samples. Let G = {X, S} be an undirected similarity graph,
called an intrinsic graph, with vertex set X and similarity ma-
trix S € RV*¥N . The corresponding diagonal matrix D and
the Laplacian matrix L of the graph G are defined as
L=D-8§, Dii:ZSijVi. (1)
J#i

The task of graph embedding is to determine a low-
dimensional representation of the vertex set X that preserves
the similarities between pairs of data in the original high-
dimensional feature space. Denote the low-dimensional em-
bedding of the vertices as Y = [Y1,Ys,..., Y], where
Y, € RMiXmy X Xmi, g the embedding for the vertex X;,
with the assumption that Y; is the mode-k production of X;
with a series of column orthogonal matrices U k e pmae Xm;c,
Y, =X, Ul xo U2 x, U™, UF U =1,,. (2
where I,,,; is an mj-by-mj, identity matrix. To maintain sim-
ilarities among vertex pairs according to the graph preserving

criterion [Yan et al., 2007], we have

i 1 Yi =Y |2 Sy

’
k’

(U*)*[R_, = argmin — 3)
h=t Ukp_, f(Uk|k:1)
(X = X)) X UFRR_, |12 Sy
_ argmin Z'L;ﬁ] || ( Jk) _ k |/€71 H J ’ (4)
Uk‘z:l f(U |k:1)

where f(U¥|7_,) is a function that poses extra constraint for
the graph similarity preserving criterion. Here U* [, means
the sequence U', U? to U™ and so for the other similar rep-
resentations in the following parts of this work. Commonly,

[ (Ug|}_,) may have two kinds of definitions. One is for scale
normalization, that is,

N
FOR=) = D 11X > UF Ry B,

i=1

(&)

where B is a diagonal matrix with non-negative elements.
The other is a more general constraint which relies on a new
graph, referred to as penalty graph with similarity matrix S?,
and is defined as

FOMR=1) = D01 (Xi = Xy) < Uy 25T
i£]

Without losing generality, we assume that the constraint
function is defined with penalty matrix for simplicity; and for
scale normalization constraint, we can easily have the similar
deduction for our new solution procedure. Then, the gen-
eral formulation of the tensor-based subspace learning is ex-
pressed as

(6)

arg max Zi;ﬁj (X = X5) x5 UF[p_y | Sfj
Ukln_, Zi;ﬁj | (X — Xj) Xk Uk”;:l 12 Sij'

Recent studies [Shashua and Levin, 2001] [Ye, 2005] [Ye
et al., 2004] [Yan et al., 2005] have shown that dimensional-
ity reduction algorithms with data encoded as high-order ten-
sors usually outperform those with data represented as vec-
tors, especially when the number of training samples is small.
Representing images as 2D matrices instead of vectors allows
correlations between both rows and columns to be exploited
for subspace learning.

Generally, no closed-form solution exists for (7). Previ-
ous works [Ye et al., 2004] [Yan et al., 2005] utilized iter-
ative procedures to search for approximate solutions. First,

@)

the projection matrices U', ..., U™ are initialized arbitrarily;
then each projection matrix U” is refined by fixing the other
projection matrices U, ..., U1, U**1 . U™ and solv-
ing the optimization problem:
. L UR YE - U YR |28y,
U* = arg max Lt | e — 155 (8)
U 3 iy UMY = URTYF|2S;
Tr(UF SPU*
= arg max M O]
Uk Tr(Uk" SEUF)

where Y;* is the mode-k unfolding matrix of the tensor Y; =
X, X1 U'... Xp—1 Uk-1 X a1 Ukt . Xy U™ and Sk =
Zi;ﬁj Sij(yik - ng)(yzk - ij)Taslf Zi;ﬁj Szpj (sz -
}/jk)(}/ik _ }/Jk)T

The optimization problem in (9) is still intractable, and tra-
ditionally its solution is approximated by transforming the
objective function in (9) into a more tractable approximate
form, namely, Ratio Trace form,

Ut = argmaxTr((UkTSkUk)_l(UkTS,Z;Uk)) (10)
Uk

which can be directly solved with the generalized eigenvalue
decomposition method. However, this distortion of the objec-
tive function leads to the computational issues as detailed in
the following subsection.

I[JCAI-07

630



2.2 Computational Issues

As the objective function in each iteration is changed from the
trace ratio form (9) to the ratio trace form (10), the deduced
solution can satisfy neither of the two aspects: 1) the objective
function value in (7) can monotonously increase; and 2) the
solution (U',U?,...,U™) can converge to a fixed point. In
this work, we present a convergent solution procedure to the
optimization problem defined in (7).

3 Solution Procedure and Convergency Proof

In this section, we first introduce our new solution procedure
to the tensor-based subspace learning problems, and then give
the convergency proof to the two aspects mentioned above.

As described above, there does not exist closed-form solu-
tion for the optimization problem (7), and we solve the op-
timization problem also in an iterative manner. For each it-
eration, we refine one projection matrix by fixing the others
and an efficient method is proposed for this refinement. In-
stead of solving a ratio trace optimization problem (10) for an
approximate solution, we transform the trace ratio optimiza-
tion problem (9) into a trace difference optimization problem
defined as

Ut = argnlljakxTr(UkT(Sz —ASHUR), (1D
where ) is the value of objective function (7) computed from
the projection matrices of the previous iteration.

Though the iterative procedure may converge to a local op-
timum for the optimization problem (7), it can monotonously
increase the objective function value as proved later, which
directly leads to its superiority over the ratio trace based opti-
mization procedure, since the step-wise solution of the latter
is unnecessarily optimal for (9).

We iteratively refine the projection matrices, and the de-
tailed solution procedure to solve the tensor-based general
subspace learning problem is listed in Algorithm 1.

3.1 Analysis of Monotonous Increase Property

Rewrite the objective function of (7) as

;} (X = X;) < UR[E_y 11255
GUr_,) = & , (13)
( |k71) ; ”()(Z _ Xj) X & Uk Z:l ||2Sij
Eav)

and then we have the theory as below:
Theorem-1. By following the terms in Algorithm-1 and
Eqn. (13), we have

GUL, ... Ukt Uk Ut o) <
GUL,...,uFY Uk Ukt ur ). (14)

Proof. Denote g(U) = Tr(UT (S} — AS*)U) where
AN=GU},..., U Uk Ukt o),

then we have
Q(Utk—l) =0.

Algorithm 1 . Procedure to Tensor-based Subspace Learning
1:

Initialization. Initialize U}, UZ, . .
umn orthogonal matrices.
Iterative optimization.
For t=1,2,..., T4, DO

For k=1,2,...,n,Do

Dl
I

., Uy as arbitrary col-

2:

L . o k-l o n_ 2qp
1. Set A = O Xa DU o XUy Lol 7S5

n
o=k

(Xi=X,)xoUp 2k oue 1, 1283
=1 -1

]
2. Compute S* and S? as in (9) based on the projection
matrices U}, ..., UF Y and UF!, ... U™ .
Conduct Eigenvalue Decomposition:
(S = AS*)oj = Njuj, j=1,....m,
where v; is the eigenvector corresponding to the j-
th largest eigenvalue \;.

Reshape the projection directions for the sake of or-
thogonal transformation invariance:

(a) SetV = [’Ul,’UQ, v

7rUm;C];

(b) Let S = VVT(Y, XEXFT)VVT, where
X f is the mode-k unfolding of the tensor X;;

(c) Conduct Eigenvalue Decomposition as

S%u; = v; uj. (12)

Set the column vectors of matrix U[ as the leading
eigenvectors, namely, UF = [u1, ua, . . . ,um;c].

End
If|UF —UF | < /mem), e,k =1,2,...,n(cis set
to 10~ in this work), then break.

End
3: Output the projection matrices U*=U} k=1,2,... n.

Moreover, from UTU = Im;c , it is easy to prove that
my,
swpgl) = 3.
j=1

From Algorithm 1, we have g(Uf) = Z;”:;vl Aj, and hence
9(UF) = g(Uf ) = 0.

Then, Tr(UF" (S? — ASK)UF) > 0. As matrix S* is pos-
itive semidefinite 2, we have

Tr(UF SpUE)
Tr(UF SkUF) T
that is,
G(UPISZ1, UPaliy) < GUPN5—r, Uiz ys)

>Though S* may have zero eigenvalues, Tr(UtkTSk UF) will be
positive when m/, is larger than the number of the zero eigenvalues.
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Figure 1: The value of the objective function (7) vs. iteration number. (a) USPS database (b) ORL database, and (c) CMU PIE
database. Here the traditional method means the solution procedure based ratio trace optimization.

From theorem-1, we can conclude that the value of the ob-
jective function monotonously increases.

3.2 Proof of Convergency

To prove the convergency of the projection matrices
U',U?,...,U", we need the concept of point-to-set map.
The power set p(x) of a set x is the collection of all sub-
sets of x. A point-to-set map (2 is a function: x — p(x).
In our solution procedure to tensor-based subspace learning,
the map from (UF_;|7_,) to (UF|?_,) can be considered as
a point-to-set map, since each U} is invariant under any or-
thogonal transformation.

Strict Monotony. An algorithm is a point-to-set map
Q:x — p(x). Given an initial point x, an algorithm gen-
erates a sequence of points via the rule that z; € Q(z_1).
Suppose J : x — R is continuous, non-negative function,
an algorithm is called strict monotony if 1) y € Q(z) implies
that J(y) > J(z), and 2) y € Q(z) and J(y) = J(z) imply
that y = x.

Let set x be the direct sum of the orthogonal ma-
trix space Omkxmﬁc, that is, the data space x
Omxm @ O™ XM @y . @ O™ *"n, then the Algo-
rithm 1 produces a point-to-set algorithm with respect to
J(x) = G(U*|7_,), and it can be proved to be strictly mono-
tonic as follows.

Theorem-2. The point-to-set map from Algorithm 1 is
strictly monotonic.

Proof. From theorem-1, we have G(UF ,[7_,) <
G(UF|n_,), and hence the first condition for strict monotony
is satisfied. For the second condition, we take U' as an
example to prove that this condition is also satisfied. If
GUL,|7_,) = G(UF|7_,), then from the proof of theorem-
1, we have g(U}_;) g(U}) with A GUL[R_y)
and S*, S¥ computed from (U |?_,). From the proof of
theorem-1, we can have that there only exists one orthogo-
nal transformation® between U} ; and U}. As shown in Al-
gorithm 1, this kind of orthogonal transformation has been
normalized by the reshaping step, hence we have U} ;=U.

Similarly, we can prove that U} = UF | fork =1,2,...,n,

3This claim is based on the assumption that there do not exist
duplicated eigenvalues in (11).

hence the second condition is also satisfied and the Algo-
rithm 1 is strictly monotonic.

Theorem-3 [Meyer, 1976]. Assume that the algorithm O
is strictly monotonic with respect to J and it generates a se-
quence {z;} which lies in a compact set. If y is normed, then
|ze — e[| — 0.

From theorem-3, we can have the conclusion that the ob-
tained (UF|7_,) will converge to a local optimum, since the
X is compact and with norm definition.

4 Experiments

In this section, we systematically examine the convergency
properties of our proposed solution procedure to tensor-based
subspace learning. We take the Marginal Fisher Analysis
(MFA) as an instance of general subspace learning, since
MFA has shown to be superior to many traditional subspace
learning algorithms such as Linear Discriminant Analysis
(LDA); more details on the MFA algorithm is referred to [ Yan
et al.,2007]. Then, we evaluate the classification capability of
the derived low-dimensional representation from our solution
procedure compared with the traditional procedure proposed
in [Ye et al., 2004] and [Yan ez al., 2005]. For tensor-based
algorithm, the image matrix, 2"d tensor, is used as input, and
the image matrix is transformed into the corresponding vector
as the input of vector-based algorithms.

4.1 Data Sets

Three real-world data sets are used. One is the USPS hand-
written dataset * of 16-by-16 images of handwritten digits
with pixel values ranging between -1 and 1. The other two
are the benchmark face databases, ORL and CMU PIE °. For
the face databases, affine transform is performed on all the
samples to fix the positions of the two eyes and the mouth
center. The ORL database contains 400 images of 40 per-
sons, where each image is normalized to the size of 56-by-46
pixels. The CMU PIE (Pose, Illumination, and Expression)
database contains more than 40,000 facial images of 68 peo-
ple. In our experiment, a subset of five near frontal poses

4 Available at: http://www-stat-class.stanford.edu/ tibs/ElemStat-
Learn/data.html

3 Available at http://www.face-rec.org/databases/.
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Figure 2: The step difference of the projection matrices vs. iteration number. (a,d) USPS database, (b,e) ORL database, and

(c,f) CMU PIE database.

(C27, C05, C29, C0O9 and CO07) and illuminations indexed as
08 and 11 are used and normalized to the size of 32-by-32.

4.2 Monotony of Objective Function Value

In this subsection, we examine the monotony property of the
objective function value from our solution procedure com-
pared with the optimization procedure that step-wisely trans-
forms the objective function into the ratio trace form. The
USPS, ORL and PIE databases are used for this evalua-
tion. The detailed results are shown in Figure 1. It is ob-
served that the traditional ratio trace based procedure does
not converge, while our new solution procedure guarantees
the monotonous increase of the objective function value and
commonly our new procedure will converge after about 4-10
iterations. Moreover, the final converged value of the objec-
tive function from our new procedure is much larger than the
value of the objective function for any iteration of the ratio
trace based procedure.

4.3 Convergency of the Projection Matrices

To evaluate the solution convergency property compared with
the traditional ratio trace based optimization procedure, we
calculate the difference norm of the projection matrices from
two successive iterations and the detailed results are dis-
played in Figure 2. It demonstrates that the projection matri-
ces converge after 4-10 iterations for our new solution pro-
cedure; while for the traditional procedure, heavy oscilla-
tions exist and the solution does not converge. As shown in
Figure 3, the recognition rate is sensitive to the oscillations
caused by the unconvergent projection matrices and the clas-
sification accuracy is degraded dramatically.

Table 1: Recognition error rates (%) on the ORL database.

[ Method | G3P7 | G4P6 | G5P5 |
WIODR. | 28.57 | 2417 | 215
LDA | 17.86 | 17.08 | 11.00
MFART | 17.50 | 16.25 | 10.50
MFA_TR | 1393 | 10.00 | 6.50
TMFART | 12.14 | 11.67 | 5.00
TMFA_TR | 11.07 | 6.67 | 4.00

Table 2: Recognition error rates (%) on the PIE database.

[ Method | G3P7 | G4P6 | G5P5 |
wloDR. | 49.89 | 31.75 | 30.16
LDA | 18.82 | 19.84 | 18.10
MFART | 1655 | 15.61 | 13.65
MFA_TR | 1497 | 13.49 | 9.52
TMFA RT | 1474 | 1429 | 3.81
TMFA_TR | 13.61 | 1217 | 9.52

4.4 Face Recognition

In this subsection, we conduct classification experiments on
the benchmark face databases. The Tensor Marginal Fisher
Analysis algorithm based on our new solution procedure
(TMFA_TR) is compared with the traditional ratio trace based
Tensor Marginal Fisher Analysis (TMFA_RT), LDA, Ratio
Trace based MFA (MFA_RT) and Trace Ratio based MFA
(MFA_TR), where MFA_TR means to conduct tensor-based
MFA by assuming n=1. To speed up model training, PCA is
conducted as a preprocess step for vector-based algorithms.
The PCA dimension is set as N-N. (/N is the sample number
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Figure 3: Recognition error rate (%) vs. iteration number. (a) ORL database(G4P6), and (b) CMU PIE database(G4P6).

and NV, is the class number), which is equivalent to the case
for Fisherface algorithm [Belhumeur et al., 1997]. The same
graph configuration with nearest neighbor £ = 3 for the in-
trinsic graph and k, = 40 for the penalty graph is adopted
for all the MFA based algorithms. Since the traditional tensor
subspace learning algorithms do not converge, we terminate
the process after 3 iterations.

For comparison, the classification result on the original
gray-level features without dimensionality reduction is also
reported as the baseline, denoted as *w/o DR.” in the result
tables. In all the experiments, the Nearest Neighbor method
is used for final classification. All possible dimensions of the
final low-dimensional representation are evaluated, and the
best results are reported. For each database, we test various
configurations of training and testing sets for the sake of sta-
tistical confidence, denoted as 'Gx Py’ for which  images of
each subject are randomly selected for model training and the
remaining y images of each subject are used for testing. The
detailed results are listed in Table 1 and 2. From these results,
we can have the following observations:

1. TMFA_TR mostly outperforms all the other methods
concerned in this work, with only one exception for the
case GHP5 on the CMU PIE database.

2. For vector-based algorithms, the trace ratio based for-
mulation (MFA_TR) is consistently superior to the ratio
trace based one (MFA _RT) for subspace learning.

3. Tensor representation has the potential to improve the
classification performance for both trace ratio and ratio
trace formulations of subspace learning.

5 Conclusions

In this paper, a novel iterative procedure was proposed to
directly optimize the objective function of general subspace
learning based on tensor representation. The convergence of
the projection matrices and the monotony property of the ob-
jective function value were proven. To the best of our knowl-
edge, it is the first work to give a convergent solution for gen-
eral tensor-based subspace learning.
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