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Face Verification With Balanced Thresholds
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Abstract—The process of face verification is guided by a pre-
learned global threshold, which, however, is often inconsistent with
class-specific optimal thresholds. It is, hence, beneficial to pursue a
balance of the class-specific thresholds in the model-learning stage.
In this paper, we present a new dimensionality reduction algorithm
tailored to the verification task that ensures threshold balance. This
is achieved by the following aspects. First, feasibility is guaran-
teed by employing an affine transformation matrix, instead of the
conventional projection matrix, for dimensionality reduction, and,
hence, we call the proposed algorithm threshold balanced transfor-
mation (TBT). Then, the affine transformation matrix, constrained
as the product of an orthogonal matrix and a diagonal matrix, is
optimized to improve the threshold balance and classification ca-
pability in an iterative manner. Unlike most algorithms for face
verification which are directly transplanted from face identifica-
tion literature, TBT is specifically designed for face verification and
clarifies the intrinsic distinction between these two tasks. Experi-
ments on three benchmark face databases demonstrate that TBT
significantly outperforms the state-of-the-art subspace techniques
for face verification.

Index Terms—Dimensionality reduction, face verification, sub-
space learning, threshold balance.

I. INTRODUCTION

I N biometrics, there exists a clear distinction between iden-
tification and verification tasks. For identification, a probe

sample is presented and the system identifies which subject the
sample belongs to by computing the similarities between the
probe sample and all gallery samples in the database. For veri-
fication, a probe sample is presented and the system tries to find
out whether the sample belongs to the subject he/she claims.
Only the similarities between the probe sample and those from
the gallery belonging to the claimed subject are compared, and
the final decision is made based on a prelearned threshold. A
large family of algorithms have been proposed for the face iden-
tification task [1], [7], [15], [16], [18], [20], [21], [24]. Also,
many approaches [2], [6], [14] were presented for face verifi-
cation; however, most of them [4], [9] are directly transplanted
from the face identification literature and ignore the intrinsic
distinction between these two tasks. Although there were some
attempts [8], [17] to distinguish face verification from the identi-
fication task, extra postprocessing or online learning is required,
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which requires an impractical expense in both computation and
storage for online learning in real applications.

We observe that face verification in general is directly deter-
mined by a single prelearned global threshold; however, each
specific class has its own specific optimal threshold, namely a
client-specific threshold, for verification. In order to obtain max-
imum face verification accuracy, the specific optimal threshold
for each class should be equal to each other; otherwise, the error
rejection rate or error accept rate for a specific class will increase
and consequently lead to degradation in global verification ac-
curacy. However, algorithms transplanted from the face identifi-
cation literature cannot guarantee a balance of the class specific
thresholds.

Inspired by the above observations, we present a new sub-
space learning algorithm for face verification by balancing the
class specific thresholds. As opposed to conventional subspace
learning algorithms which applied the column-unitary and
column-independent projection matrix for subspace learning,
a more general affine transformation matrix is employed for
dimensionality reduction in this work. We will show that this
relaxation will allow us to balance the class specific thresholds
as well as enhance the classification performance. Moreover,
with the consideration that the right orthogonal matrix of sin-
gular value decomposition of a transformation matrix does not
affect the similarity measure if based on Euclidean distance,
the affine transformation matrix can be constrained to be the
product of an orthogonal matrix and a diagonal matrix.

The affine transformation matrix is learned in an iterative
manner. First, the transformation matrix is initialized; specifi-
cally we may initialize it with a learned projection matrix from a
conventional algorithm like Eigenfaces [20] or Fisherfaces [1],
and then reset provided that its singular value de-
composition is . Then, the diagonal matrix is op-
timized to improve the balance of the class specific thresholds
by solving a quadratic programming problem with linear con-
straints. Finally, is optimized to pursue the compactness of the
samples belonging to the same subject with the subject centers
approximately fixed. The latter two steps iteratively optimize
the threshold balance and classification capability until conver-
gence. The major aspects of our proposed algorithm, referred to
as threshold balanced transformation (TBT), are highlighted as
follows.

1) TBT guarantees a balance of class specific thresholds
without sacrificing any classification capability, which
leads to better performance over traditional subspace
learning algorithms for the verification task.

2) TBT is also of a potential advantage for face identification,
since the learned affine transformation matrix can balance
the margins between nearby classes; consequently, the dis-
tance between neighboring classes will be enlarged to a
moderate scale.
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3) The approach of the client-specific threshold [5] is also a
possible way to improve verification accuracy, but as ana-
lyzed later in this work, it is computationally impractical
and not sufficiently robust. The core idea of TBT is to
pursue a balance of class specific thresholds; its benefit to
the verification task can be generalized to other algorithms
for face verification, and it is a natural alternative to the
idea of a client-specific threshold for the verification task.

The rest of the paper is organized as follows. In Section II,
we discuss the face identification and verification tasks, which
directly motivate the TBT algorithm for face verification, as de-
scribed in Section III. Then, in Section IV, we report experi-
mental results that compare face verification and identification
techniques. Finally, we conclude this paper with a discussion of
future work in Section V.

II. IDENTIFICATION VERSUS VERIFICATION TASK

In the notation of this work, matrices are represented as up-
percase letters, such as ; italic lowercase letters such as

denote vectors, and normal lower-case letters such
as denote scalar quantities. For a classical learning
problem, the training sample set is represented as

, where is the total number of samples. The sample
belongs to the subject indexed as , where
is the subject number. There are samples belonging to the

th subject in the training set.
The key distinction between the identification and verifica-

tion tasks can be described by the questions answered by the
systems. For identification, the question “Who is this?” is asked,
and the system determines the subject identity by comparing the
similarities or distances between the provided image and all
gallery images in the database, i.e.,

(1)

and then the subject is identified to be . Here, is the
distance between the new image and the sample . For some
specific applications, a threshold is needed to decide whether
the probe object belongs to the sample subject set.

For verification, the question “Is this person whom he/she
claims to be?” is asked and the system attempts to verify the
provided identity of by computing the similarities or distances
between the presented image and the gallery images of the
claimed subject. A decision is made based on a prelearned
threshold , that is

if
else.

(2)

Face verification is fundamentally different from the face
identification task. However, most previous algorithms for
face verification have ignored the intrinsic characteristics of
the face verification task and were directly transplanted from
the face identification literature. Hence, these algorithms are
not necessarily optimal for face verification, and there exists
additional information that can be applied to further improve
face verification accuracy.

In face verification, commonly only one global threshold is
used for determining the subject identity; however, each class

Fig. 1. Examples in a 2-D space to illustrate why threshold balance is neces-
sary for optimal verification: (a) when the class specific optimal threshold � is
larger than the global threshold �, the samples in the darker area will be wrongly
rejected, and (b) when the class specific optimal threshold is smaller than the
global one, the samples in the darker area will be falsely accepted. Note that the
solid-line circles denote the gallery samples belonging to the cth class according
to the class specific threshold � , while the dashed circles denote the data area
classified as the cth class according to the global threshold �.

has its own specific optimal threshold for face verification. Let
denote the global optimal threshold and denote the class

specific optimal threshold of the th class. As demonstrated in
Fig. 1, when the class specific optimal threshold is inconsis-
tent with the global optimal threshold , the error rejection rate
or error acceptance rate will increase, and, consequently, the
verification accuracy will be degraded; therefore, it is desirable
to design a face verification algorithm that can provide balanced
class-specific optimal thresholds for different classes. In the fol-
lowing, we introduce our solution to this problem.

III. THRESHOLD BALANCED AFFINE TRANSFORMATION

FOR FACE VERIFICATION

A large number of algorithms have been proposed for the
face verification task; aside from techniques based on hidden
Markov models (HMMs), the Bayesian method, support vector
machines (SVMs), and neural networks (NNs) [13], [14], sub-
space learning techniques such as linear discriminant analysis
(LDA) are the most popular. Motivated by the benefit to face
verification of balancing class specific thresholds, in this work
we develop a new subspace learning algorithm that can extract
effective features for the verification task and at the same time
ensure the balance of the class specific thresholds.

In general, for a subspace learning algorithm, a matrix is
learned to transform the original high-dimensional feature to a
low-dimensional one. For ease of understanding, we clarify the
difference between a projection matrix and an affine transforma-
tion matrix. A projection matrix consists of linearly independent
and unitary column vectors, while an affine transformation ma-
trix has no unitary constraint on its column vectors.

In the following, we first study the advantage of the affine
transformation matrix over the projection matrix for the face
verification task.

A. Affine Transformation Matrix for Dimensionality Reduction

Most previous subspace learning algorithms assume that
there exists a projection matrix to map the original high-dimen-
sional feature to the desired low-dimensional one. For example,
LDA seeks the directions which maximize the interclass scatter
and at the same time minimize the intraclass scatter. Let the
projection matrix be , where is the dimension of
the low-dimensional feature space, then the solution matrix
optimizes the following objective function:
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(3)

where is the mean of the th class and is the mean of all
samples; denotes the trace of a matrix and is the trans-
pose of matrix . Commonly there is no closed form solution
for (3), and instead this problem is often transformed to maxi-
mizing the objective function and is
solved using the generalized eigenvalue decomposition method

(4)

where is the eigenvector corresponding to the th largest
eigenvalue of the generalized eigenvalue decomposition
problem; meanwhile constitutes the th column vector of the
projection matrix .

The learned projection matrices from traditional algorithms
like LDA cannot guarantee that the class specific optimal
thresholds are balanced. Affine transformation matrices, how-
ever, have the potential to balance these thresholds. Intuitively,
as shown in Fig. 2, although the class specific thresholds for
different classes based on the initial low-dimensional rep-
resentations are unbalanced, they can be easily balanced by
properly scaling the vertical coordinate. In theory, provided
that we have obtained a low-dimensional feature space with
balanced class-specific thresholds for the first classes, for the

th class, it is possible to find another projection direction
perpendicular to the space spanned by the first class centers.
This new projection direction then only affects the metrics
related to the th class; hence, we can properly scale
the projection direction to obtain the final feature space with
balanced class-specific thresholds for all of the classes.
This analysis motivates us to achieve a balance of class specific
thresholds by utilizing an affine transformation matrix instead
of a projection matrix for dimensionality reduction. Moreover,
the distance between nearby classes will be balanced and the
narrow margins will be enlarged to a moderate scale; thus, the
identification capability can also be improved based on the
threshold balanced representations.

Let the affine transformation matrix be ,
and its singular value decomposition is

(5)

where the matrix and are both orthog-
onal matrices, and is a di-
agonal matrix. The similarity measure based on Euclidean dis-
tance is invariant to the matrix ; therefore, the affine transfor-
mation matrix can be simply constrained without sacrificing
any accuracy to be

(6)

Fig. 2. Toy problem to show that the affine transformation matrix is potentially
superior to the projection matrix for the verification task: (a) sample distribution
from a projection matrix and (b) sample distribution from an affine transforma-
tion matrix by reweighing the vertical coordinate. Note that the solid circles
denote three different gallery samples belonging to three different classes; and
the radius of the dashed line circles are the learned global optimal thresholds
from the projection matrix in (a) and the affine transformation matrix in (b), re-
spectively. The symbol “� 4” denotes the vertical coordinate in (b) is that of (a)
multiplied by 4. It shows that although the class specific thresholds are unbal-
anced in (a), after properly reweighing the features in (b), the threshold balance
is significantly improved.

Here, matrix is the first columns of , with diagonal matrix
.

B. Procedure to Learn Threshold Balanced Affine
Transformation Matrix

The affine transformation matrix has been shown to have
the potential to present balanced class-specific thresholds for
the face verification task. In this section, we introduce how to
learn an affine transformation matrix effective for both bal-
ancing thresholds and improving classification capability.1 The
whole learning procedure consists of three steps: initialization,
threshold balance optimization, and classification capability
optimization. For the learning procedure, the objectives are
two-fold: high classification power and good threshold balance.
These two objectives lead to good verification capability. The
detailed procedure to iteratively improve one objective while
sufficiently retaining the other is as follows.

1) Initialization: The affine transformation matrix can be
initialized arbitrarily and is only required to be columnly in-
dependent. To speed up the algorithm, we can utilize the tra-
ditional subspace learning algorithm principal component anal-
ysis (PCA)+LDA [1] to initialize the matrix . First, the original
image feature is projected to a proper low-dimensional space
with matrix derived from PCA, and then LDA as in (3) is
applied to further reduce the feature dimension with the projec-
tion matrix . Finally, the transformation matrix is initial-
ized as

(7)

The relations between , , , and
are the same as in (5) and (6).

2) Threshold Balance Optimization: For each class, the class
specific optimal threshold is approximately characterized by the
distances between the class center and its nearest class centers.
Thus, to ensure that the class specific thresholds are balanced,

1Note that DLDA [23] also utilizes an affine transformation matrix for di-
mensionality reduction, but it cannot guarantee a low-dimensional representa-
tion with balanced thresholds for verification.
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it is sufficient to balance the average distances from each class
center to its -nearest class centers. In this paper, we experimen-
tally set .

To this end, for the th class, we first find its -nearest class
centers, and the corresponding class indices are denoted as
the set . Then, the objective function to be minimized for
threshold balance is as follows:

(8)
A direct solution of this objective function is not possible. As

analyzed in Section III-A, however, the threshold balance can
be substantially improved by reweighing the projection vectors.
Moreover, when pursuing threshold balance, we need to suffi-
ciently retain the classification capability. Therefore, we opti-
mize the objective function (8) by keeping the matrix fixed
since it encodes the most discriminating information of the orig-
inal features, and the diagonal matrix is optimized to pursue the
threshold balance. Then, the objective function (8) is simplified
to

(9)

where . To avoid the trivial solution , we im-
pose the constraint that ; meanwhile, in order to
ensure that all the selected features contribute to final verifica-
tion, we impose another constraint that . Then, the
objective function is constrained by

(10)

Here, ( in this work) is the minimal value for each
parameter, which ensures that each parameter will be above
zero.

Let the vector represent where
, and let be an -dimensional vector with

. Then, the
objective function (9) can be expressed as

where

Then, the optimization problem defined in (9) and (10) is
changed to a constrained quadratic optimization problem

(11)

This problem can be easily solved by using the optimization
toolbox in Matlab (such as with the function quadprog in Matlab
7.0).

3) Classification Capability Optimization: To further im-
prove the classification capability while sufficiently maintaining
balanced thresholds, we propose to pursue an affine transfor-
mation matrix that leads to compact distributions of class sam-
ples around their class centers while approximately retaining the
threshold balance property. Then, the objective function to be
optimized for classification is simplified to be the denominator
of the objective function in (3). Denote the transformed class
centers from the transformation matrix obtained in Section
III-B2 as

(12)

Then, the corresponding objective function is

(13)
Denoting and

, the optimal affine transformation
matrix can be obtained by setting the derivative of the
objective function to zero

(14)

Therefore, the optimal is

(15)

When the matrix is not of full rank, the inverse matrix can
be replaced with the pseudo-inverse matrix. Finally, the trans-
formation matrix is reset to be the product of a columnly or-
thogonal matrix and a diagonal matrix by using singular value
decomposition as in (5) and (6).

After the initialization step, the second and third steps are it-
erated to enhance the threshold balance and classification ca-
pability until reaching convergence or a user-defined number
of iterations. Due to the rotation invariance of the transforma-
tion matrix, the algorithm is considered to converge if

(set to be 0.1 in this work), where denotes
the derived transformation matrix from the th step. Finally, the
learned affine transformation matrix is used for dimension-
ality reduction and face verification as in (2) with distance func-
tion

(16)
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Fig. 3. (a) Sample images after image preprocessing. (b) The ROC curves of TBT compared with PCA+LDA on databases XM2VTS, FERET, and CMU PIE.
Note that we omit the values in the range (0.6, 1.0) for both false rejection rate and false acceptance rate for greater clarity of the graphs.

C. Discussion

In this section, we discuss some aspects of the face verifi-
cation task in relation to our proposed algorithm for learning a
TBT matrix.

1) Why Not Directly Train a Classifier for Each Class to
Avoid the Threshold Balance Issue: It is obviously beneficial
to learn a class-specific classifier if we have enough samples
for each class. However, it is often the case that the available
number of samples for each class is small, and the learning
problem for each class will be extremely unbalanced; thus, such
an approach is generally not robust enough. Our proposed algo-
rithm is a better choice which satisfies the requirements of both
threshold balance and algorithmic feasibility.

2) What are the Differences Between the Approaches of
“Client-Specific Threshold” and “Threshold Balance”: There
have been many algorithms [5] that use the client-specific
threshold for verification, yet they need to learn different
thresholds for different subjects, which is computationally
impractical; moreover, as discussed in the above question,
the solution is not robust due to the imbalance between the
numbers of positive and negative samples. Hence, although
“client-specific threshold” is a possible way to improve verifi-
cation accuracy, our proposed method of “threshold balance”
has the advantages of feasibility. Moreover, it is much easier
for a user to tune a threshold for computing the false acceptance
rate with a given false rejection rate compared to the method of
“client-specific threshold.”

3) Complexity and Convergence Analysis: For TBT, the
complexities of both initialization and classification capability
optimization steps are when the sample number and
feature number is comparable; and for the threshold balance
optimization step, it is very fast since in general. There-
fore, the complexity of the whole algorithm is
where is the iteration number. The latter two steps
optimize the transformation matrix iteratively, and in our ex-
periments, we find that commonly the solution will converge
after about loops.

IV. EXPERIMENTS

In this section, we present a set of face verification and iden-
tification experiments on the popular face databases XM2VTS
[10], FERET [11], [12], and CMU PIE [19] to demonstrate the
effectiveness of our proposed algorithm in comparison with the

most popular subspace learning algorithms for face verifica-
tion, namely Eigenfaces [20] and Fisherfaces/(PCA+LDA) [1].
We also implement a simplified noniterative version of TBT
without the third step, denoted as S-TBT in the experiments.
The performance is systematically evaluated on different com-
binations of PCA dimensions and LDA dimensions to compare
with PCA+LDA. In all the experiments, the histogram equilib-
rium method is applied for image preprocessing, some samples
of which are displayed in Fig. 3(a).

A. Data Preparation

There are standard protocols for face recognition on the
XM2VTS [10] and FERET [11] databases. These two protocols
are both designed for open-set evaluation, which means that
the testing set may contain subjects that do not appear in the
training set. Our proposed TBT and S-TBT are specifically
developed for closed-set face verification due to the expectation
of threshold balance. Hence, in this work, we design new
experimental configurations, instead of the standard ones in
[10] and [11], for algorithmic comparison and evaluation. The
details are as follows.

The XM2VTS database contains 295 persons and each person
has four frontal face images taken in four different sessions.
All the images are aligned by fixing the locations of the two
eyes and normalizing the image size to pixels. We use

images from the first three sessions for model training;
the gallery set consists of the 295 images from the first session;
and the probe set is composed of the 295 images from the fourth
session.

For the FERET database, we select the seventy subjects with
six different images for each subject. Three images of each sub-
ject are randomly selected for model training, and one of the
three images is randomly selected for the gallery set. Another
three images of each subject are used as the probe set. All the im-
ages are aligned by fixing the locations of the two eyes and nor-
malizing the size to pixels. The data set is randomly par-
titioned into gallery and probe sets. Three images of each person
are randomly selected for training; one of the three training im-
ages is randomly selected for each subject as the gallery set; and
the remaining three images are used for the probe set.

The CMU PIE (Pose, Illumination, and Expression) database
contains more than 40,000 facial images of 68 persons. The im-
ages were acquired over different poses, under variable illumi-
nation conditions and with different facial expressions. In our
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TABLE I
FACE VERIFICATION EER (%) AND IDENTIFICATION ACCURACY (%)

OF EIGENFACES (EI.), PCA+LDA (P+L), TBT, AND

S-TBT (S-T) ON THE XM2VTS DATABASE

TABLE II
FACE VERIFICATION EER (%) AND IDENTIFICATION ACCURACY (%)

OF EIGENFACES, PCA+LDA, TBT, AND S-TBT ON FERET

experiment, five near frontal poses (C27, C05, C29, C09, and
C07) and illumination indexed as 08, 10, 11, and 13 are used. 63
of the 68 persons are used for data incompleteness experiments
for the remaining five persons. Thus, each person has twenty
images and all the images are aligned by fixing the locations of
the two eyes and normalizing the image size to pixels.
The data set is randomly partitioned into the gallery and probe
sets. Six images of each person are randomly selected for model
training. Different from the experiments on XM2VTS, we use
the mean image of the training samples as the gallery image for
each subject, and the remaining fourteen images are used for the
probe set.

B. Face Verification and Identification

We systematically evaluate the performance of our proposed
TBT algorithm in both face verification and identification tasks.
Three sets of experiments on the above three databases are con-
ducted. For face verification, the equal error rate (EER), i.e.,
the threshold with equal false acceptance rate (FAR) and false
rejection rate (FRR) is used to test the verification accuracies
of the different algorithms. For face identification, based on the
learned projection matrix or affine transformation matrix, we
map the image vector from the original feature space to the
low-dimensional one, and then the nearest neighbor method is
used for final classification. For all experiments, the PCA di-
mension and final dimension are the same for PCA+LDA, TBT,
and S-TBT.

Tables I–III list detailed comparison results of Eigenfaces,
PCA+LDA, TBT and S-TBT, and Fig. 3(b) plots the receiver
operating characteristic (ROC) curves of the TBT algorithm
compared to those of the PCA+LDA algorithm for the three
databases. For each database, the algorithms were compared in
three different configurations with PCA dimensions as
and two other smaller numbers respectively. For simplicity, the
experiments are denoted as where is the dimension of
PCA step and is the dimension of LDA step.

C. Discussion

From the results listed in Tables I–III and Fig. 3(b), we can
observe a number of interesting points.

TABLE III
FACE VERIFICATION EER (%) AND IDENTIFICATION ACCURACY (%)

OF EIGENFACES, PCA+LDA, TBT, AND S-TBT ON CMU PIE

1) For the face verification task, our proposed TBT algorithm
consistently outperforms Eigenfaces and the PCA+LDA
algorithm in all dimension combinations; and the EER is
reduced up to more than 60%, in many cases, and the av-
erage EER reduction rate is more than 20%. As shown
in Fig. 3, for any given false acceptance rate, the false
rejection rate of TBT is consistently lower than that of
PCA+LDA.

2) For the face identification task, TBT is comparable with
PCA+LDA; and in most cases, TBT is significantly supe-
rior to the PCA+LDA algorithm, especially when the PCA
dimension is not well selected.

3) For the face verification task, TBT is relatively stable to
variations in PCA dimension, while the PCA+LDA algo-
rithm appears to be very sensitive to the PCA dimension
variation, which again validates the effectiveness of the
threshold balance strategy.

4) S-TBT is comparable with PCA+LDA for both verification
and identification tasks, and the extra third step of TBT can
further improve algorithmic performance in most cases,
especially for face verification.

5) In this work, we did not systematically compare TBT with
many other algorithms such as SVM and the work in [21],
since the focus of this work is on subspace learning algo-
rithms; the core idea of TBT to pursue balanced class-spe-
cific thresholds can be easily generalized to other algo-
rithms for face verification.

V. CONCLUSION AND FUTURE WORK

The work presented in this paper has given insights into the
essential distinction between face verification and face identifi-
cation tasks, and proposed a novel subspace learning algorithm,
called TBT, tailored to the face verification task. It learns an
affine transformation matrix, instead of a projection matrix as
done conventionally, to pursue a balance of the class-specific
thresholds. Extensive experiments demonstrate that our pro-
posed algorithm brings encouraging accuracy improvements
over the traditional algorithms for both face verification and
identification tasks, and also exhibits enhanced algorithmic
stability to PCA dimension variation. A possible extension of
this work is to pursue an optimal affine transformation matrix,
instead of projection matrix, for the general classification
problem, and to apply the technique for refining previous
subspace learning algorithms based on projection matrices.
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