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Abstract—There is a growing interest in subspace learning tech-
niques for face recognition; however, the excessive dimension of the
data space often brings the algorithms into the curse of dimension-
ality dilemma. In this paper, we present a novel approach to solve
the supervised dimensionality reduction problem by encoding an
image object as a general tensor of second or even higher order.
First, we propose a discriminant tensor criterion, whereby multiple
interrelated lower dimensional discriminative subspaces are de-
rived for feature extraction. Then, a novel approach, called -mode
optimization, is presented to iteratively learn these subspaces by
unfolding the tensor along different tensor directions. We call this
algorithm multilinear discriminant analysis (MDA), which has the
following characteristics: 1) multiple interrelated subspaces can
collaborate to discriminate different classes, 2) for classification
problems involving higher order tensors, the MDA algorithm can
avoid the curse of dimensionality dilemma and alleviate the small
sample size problem, and 3) the computational cost in the learning
stage is reduced to a large extent owing to the reduced data dimen-
sions in -mode optimization. We provide extensive experiments on
ORL, CMU PIE, and FERET databases by encoding face images
as second- or third-order tensors to demonstrate that the proposed
MDA algorithm based on higher order tensors has the potential
to outperform the traditional vector-based subspace learning al-
gorithms, especially in the cases with small sample sizes.

Index Terms—2-D LDA, 2-D PCA, linear discriminant analysis
(LDA), multilinear algebra, principal component analysis (PCA),
subspace learning.

I. INTRODUCTION

SUBSPACE learning is an important direction in computer
vision research [3], [9], [12], [13], [29]. Most traditional

algorithms, such as the principal component analysis (PCA)
[17], [20], [21], [24] and linear discriminant analysis (LDA)
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[1], [2], [11], [15], [22], [26], input an image object as a 1-D
vector [4], [5]. Some recent works, however, have started to
consider an object as a 2-D matrix for subspace learning.
Yang et al. [25] and Liu et al. [10] proposed two methods,
named 2-D PCA and 2-D LDA1 to conduct PCA and LDA
respectively by simply replacing the image vector with image
matrix in computing the corresponding variance matrices.
However, the intuitive meaning of learned eigenvectors is still
unclear as stated in [25]. Kong et al. [7] proposed an algorithm
called 2-D FDA, with the similar idea as 2-D LDA, for dimen-
sionality reduction and showed its advantages in small sample
size problem. Ye et al. [27], [28] presented more general forms
of 2-D PCA and 2-D LDA by simultaneously computing two
subspaces. Shashua et al. [18] also considered the image as a
matrix and searched for the best tensor-rank approximation to
the original third-order image tensor. Similar to PCA, it is an
unsupervised learning algorithm, thus, not always optimal for
classification tasks. These recent approaches beg the question
of whether it is possible to gain even more in supervised or
unsupervised learning by taking into account the representation
of higher order tensors. In this paper, we give a positive answer
to this question.

Our observation is as follows. In the real world, the extracted
feature of an object often has some specialized structures and
such structures are in the form of second or even higher order
tensors [23]. For example, this is the case when a captured
image is a second-order tensor, i.e., matrix, and when the
sequence data such as a video for event analysis, is in the
form of third-order tensor. It would be desirable to uncover
the underlying structures in these problems for data analysis.
However, most previous work on dimensionality reduction and
classification would first transform the input image data into
a 1-D vector, which ignores the underlying data structure and
often leads to the curse of dimensionality dilemma and the
small sample size problem. In this paper, we investigate how
to conduct discriminant analysis by encoding an object as a
general tensor of second or higher order. Also, we explore the
characteristics of the higher order tensor-based discriminant
analysis in theory. We will demonstrate that this analysis allows
us to alleviate the above two problems when using the vector
representation.

More specifically, our contributions are as follows. First, we
propose a novel criterion for dimensionality reduction, called
discriminant tensor criterion (DTC) which maximizes the in-
terclass scatter and at the same time minimizes the intraclass

1Note that the algorithm in [10] is not called 2-D LDA; we call it 2-D LDA
here because it shares the same framework as 2-D PCA.
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scatter both measured in the tensor-based metric. Different from
the traditional subspace learning criterion which derives only
one subspace, in our approach multiple interrelated subspaces
are obtained through the optimization of the criterion where the
number of the subspaces is determined by the order of the fea-
ture tensor used.

Second, we present a procedure to iteratively learn these in-
terrelated discriminant subspaces via a novel tensor analysis ap-
proach, called -mode optimization approach. We explore the
foundation of the -mode optimization approach to show that it
unfolds the tensors into matrices along the th direction. When
the column vectors of the unfolded matrices are considered as
the new objects to be analyzed, a special discriminant analysis
is performed by computing the scatter as the sums of the scatter
computed from the new samples with the same column indices.
This explanation provides an intuitive explanation for the su-
periority of our proposed algorithm in comparison with other
vector-based approaches.

We summarize the advantages of our algorithm, multilinear
discriminant analysis (MDA), as follows.

1) MDA is a general supervised dimensionality reduction
framework. It can avoid the curse of dimensionality
dilemma by using higher order tensors and -mode op-
timization approach, because the latter is performed in a
much lower-dimension feature space than the traditional
vector-based methods, such as LDA, do.

2) MDA also helps alleviate the small sample size problem.
As explained later, in the -mode optimization, the sample
size is effectively multiplied by a large scale.

3) Many more feature dimensions are available in MDA than
in LDA because the available feature dimension of LDA is
theoretically limited by the number of classes in the data,
whereas the MDA is not.

4) The computational cost can be reduced to a large extent
as the -mode optimization in each step is performed on a
feature space of smaller size.

5) The extension from vector to tensor for data representation
and feature extraction is general, and it can also be applied
in SVM and many other algorithms to improve algorithmic
learnability and effectiveness.

As a result of all the above characteristics, we expect MDA
to be a natural alternative to LDA algorithm and a more general
algorithm for the pattern classification problems in image anal-
ysis where an object can be encoded in tensor representation.

The rest of the paper is organized as follows. In Section II, we
introduce the DTC and its iterative solution procedure. In Sec-
tion III, we justify the procedure and analyze the characteristics
of the proposed algorithm. Then, in Section IV, we present the
extensive face recognition experiments by encoding the image
objects as second- or third-order tensors and compare the re-
sults to traditional subspace learning algorithms. Finally, in Sec-
tion V, we conclude the paper with future work discussions.

II. MULTILINEAR DISCRIMINANT ANALYSIS

Most previous approaches to subspace learning, such as the
popular PCA and LDA, consider an object as a 1-D vector. The
corresponding learning algorithms are performed on a very high
dimension feature space. As a result, these methods often suffer

Fig. 1. Tensor representation examples: Second- and third-order object repre-
sentations.

from the problem of curse of dimensionality. On a close ex-
amination, however, we have found that most objects in com-
puter vision are more naturally represented as second- or higher
order tensors. For example, the image matrix in Fig. 1(a) is a
second-order tensor and the filtered Gabor image in Fig. 1(b) is
a third-order tensor. In this work, we study how to conduct dis-
criminant analysis in the general case that the objects are repre-
sented as tensors of second or higher order.

A. Discriminant Tensor Criterion

In this paper, the bold uppercase symbols represent tensor ob-
jects, such as ; the normal uppercase symbols rep-
resent matrices, such as ; the italic lowercase symbols rep-
resent vectors, such as ; and the normal lowercase sym-
bols represent scale numbers, such as . Assume that the
training samples are represented as the th-order tensors

, and belongs to the class
indexed as . Consequently, the sample set
can be represented as an th-order sample tensor

.
Before describing the DTC, we review the terminologies on

tensor operations [6], [8], [23]. The inner product of two ten-
sors and of the same dimensions is defined as

; the norm of a tensor is de-
fined as , and the distance between tensors
and are defined as . In the second-order
tensor case, i.e., matrix-form, the norm is called Frobenius norm
and is written as . The -mode product of a tensor and
a matrix is defined as , where

The DTC is designed to pursue multiple interrelated projec-
tion matrices, i.e., subspaces, which maximize the interclass
scatter and at the same time minimize the intraclass scatter mea-
sured in tensor metric described above. That is

(1)

where is the average tensor of the samples belonging to class
, is the total average tensor of all the samples, and is
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Fig. 2. Illustration of the k-mode unfolding of a third -order tensor.

sample number of class . Similar to the Fisher criterion, the in-
terclass scatter is measured by the sum of the weighted distances
between the class center tensors and total sample center
tensor ; meanwhile, the intraclass scatter is measured by the
sum of the distances between each sample to its corresponding
class center tensor. Despite the similarity, the data representa-
tion and metric are different between these two criterions.

Equation (1) is equivalent to a higher order nonlinear opti-
mization problem with a higher order nonlinear constraint; thus,
it is difficult to find a closed-form solution. Alternatively, we
search for an iterative optimization approach to derive the inter-
related discriminative subspaces.

B. -Mode Optimization

We now discuss how to optimize the objective function from
only one direction of the tensor, i.e.,

(2)

Before this analysis, we introduce the conception of -mode
unfolding of a tensor. Fig. 2 demonstrates two ways to unfold
a third-order tensor. In the 1-mode version, a tensor is unfolded
into a matrix along the axis, and the matrix width direction is
indexed by searching index and index iteratively. For the
2-mode version, the tensor is unfolded along the axis. This
process can be extended to the general th-order tensor.

Formally, the -mode unfolding of a tensor into a matrix is
defined as

with

(3)

The problem in (2) is a special discriminant analysis problem.
It can be understood in two steps: 1) the sample tensors are un-
folded into matrices in the -mode; 2) the column vector of the
unfolded matrices is considered as the new object with the same

class label as the original sample tensor and then the scatter
matter for discriminant analysis is the sum of the scatter com-
puted from the new samples with the same column index in the
unfolded matrices. Theorem 1 below gives the details.

Theorem-1: The optimization problem in (2) can be reformu-
lated as a special discriminant analysis problem as follows:

(4)

where, for the ease of presentation, represents the th
column vector of matrix which is the -mode unfolded
matrix from sample tensor . and are defined in
the same way as with respect to tensors and .

Proof: Here, we take as an example to prove the the-
orem. With simple algebraic computation, we can obtain

, where is the -mode unfolding of the
tensor ; then, we have

Similarly, .
Therefore, the optimization problem in (2) can be reformu-

lated as a special discriminant analysis problem, and it can be
solved in the same way for the traditional LDA algorithm [1],
[3].

C. Multilinear Discriminant Analysis

As described above, the DTC has no closed-form solution. In
response to this issue, we present an iterative procedure to solve
the problem. In each iteration, are
assumed known, then the DTC is changed to

(5)
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Fig. 3. Procedure for MDA.

Denote ,
then

(6)

It has the same formulation as (2) by replacing with ; thus,
it can be solved using the above described -mode optimization
approach. Therefore, the projection matrices can be iteratively
optimized, and the entire procedure to optimize the DTC is listed
in Fig. 3.

D. Classification With Multilinear Discriminant Analysis

With the learned projection matrices , the low-di-
mensional representation of the training sample ,

, can be computed as .
When a new data comes, we first compute its low-dimen-
sional representation as

Then its class label is predicted to be that of the sample whose
low-dimensional representation is nearest to , that is

and then the sample is classified to the class . In this paper,
we use this method for final classification in all the experiments
due to its simplicity in computation.

III. ALGORITHMIC ANALYSIS AND DISCUSSES

In this section, we introduce the merits of our proposed pro-
cedure MDA in terms of learnability and time complexity and
also discuss its relationship with LDA, 2-D LDA [10], Tensor-
face [23], and Shasua’s work [18].

Algorithmic Analysis

1) Singularity and Curse of Dimensionality: In LDA, the
size of the scatter matrix is if a tensor
is transformed into a vector. It is often the case that

for a moderate data set. Thus, in many cases, the intra-
class scatter matrix is singular; thus, the accuracy and robustness
of the solution are often degraded. For most pattern recognition
problems, is very large, and, hence, to train a cred-
ible classifier requires a huge number of training samples for
the learnability of LDA. In MDA, however, the step-wise intra-
class scatter matrix is in size of , which is much smaller
than that of LDA. As described in Section II, the objects to be
analyzed in MDA are the column vectors of the unfolded ma-
trices and the sample number can be considered to be enlarged
to . In most cases, can be sat-
isfied; therefore, there is far less singularity problem in MDA
when based on higher order tensors. Moreover, the number
is much smaller than , so the curse of dimensionality
dilemma is reduced to a large extent.

2) Available Projection Directions: The most important
factor limiting the application of LDA is that the available
dimension for pattern recognition has an upper bound .
Although many approaches have been proposed to utilize
the null space of the intraclass scatter matrix, the intrinsic
dimension cannot be larger than . In our proposed MDA
algorithm, the largest number of the available dimensions for
each subspace can be obtained through the following theorem.

Theorem 2: The largest number of the available dimension is
for MDA in each step.

Proof: As in (4), , then

; and, at the same
time, with the equality satisfied when all the

is in full rank. So, the largest number of the available dimen-
sion is .

Moreover, there are projection matrices; thus, there are
far more projection directions for dimensionality reduction in
MDA, and it provides discriminating capability for much more
features.

3) Computational Cost: For ease of understanding, let us as-
sume that the sample tensor has uniform dimension numbers for
all directions, i.e., , . Therefore, the com-
plexity of LDA is , while in MDA, the complexity to
compute the scatter matrices is and complexity for

-mode optimization is for each loop, which is much
lower than that of LDA. Although MDA has no closed-form solu-
tion and many loops are required to achieve convergence, it is still
much faster than LDA owing to its simplicity in each iteration.

A. Discusses

1) Connections to LDA and 2-D LDA: LDA and 2-D LDA
[25] both optimize the so-called Fisher criterion

(7)
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In LDA, the sample data are represented as vectors
and the scatter matrices are

In 2-D LDA, the sample data are matrices represented as
and the scatter matrices are computed

by replacing the vectors in (7) as matrices and

In both cases, the averages are defined in the same way as the
case with tensor representation. Actually, with simple algebraic
computation, LDA and 2-D LDA are both special formulations
of our proposed MDA: LDA can be reformulated as a special
case of MDA with , while 2-D LDA can be reformulated
as a special case of MDA with and using only one sub-
space instead of two in regular MDA with .

2) Relationship With Tensorface: Tensorface [23] is a re-
cently proposed algorithm for dimensionality reduction. It also
utilizes the higher order statistics for data analysis as in MDA.
However, in Tensorface, an image is still treated as a vector and
the image ensembles of all persons under all predefined poses,
illuminations and expressions are treated as a high-order tensor;
while in MDA, an image object is directly treated as a matrix
and the whole data set is encoded as a third-order tensor. The
difference in tensor composition makes these two algorithms
different in many aspects: 1) the semantics of the learned sub-
spaces are different. In Tensorface, the learned subspaces char-
acterize the variations from external factors including pose, il-
lumination, and expression; whereas in MDA, these subspaces
characterize the discriminating information from internal fac-
tors such as row and column directions. 2) In Tensorface, the
image object is treated as a vector and usually the dimension is
extremely high; thus, it may suffer from the curse of dimension-
ality dilemma. However, as described beforehand, MDA can ef-
fectively overcome this issue. 3) They are superior to each other
in different aspects: Tensorface is good at classifying faces with
different pose, illumination or expression; while MDA works
well in the small sample size problem. As the above differ-
ences between Tensorface and MDA algorithm, we do not fur-
ther compare them in the experiment section.

3) Relationship With Shasua’s Work: The general idea of
Shasua’s work [18] is to consider the collection of sample ma-
trices as a third-order tensor and search for an approximation
of its tensor-rank. It is different from the MDA algorithm in the
following aspects: 1) Shasua’s work aims to approximate the
sample matrices with a set of rank-one matrices; while MDA
does not target at data reconstruction. 2) In Shasua’s work, the
rank-one matrices are learned one by one; while in MDA, the
projection matrices are optimized iteratively. 3) Shasua’s work
is unsupervised and, hence, not always optimal for classification

Fig. 4. Ten samples in the ORL face database.

task; while MDA is supervised, and the data structure along with
the label information are both effectively utilized.

IV. EXPERIMENTS

In this section, three benchmark face databases, ORL [14],
FERET [16], and CMU PIE [19] were used to evaluate the ef-
fectiveness of our proposed algorithm, MDA, in face recognition
accuracy. Our proposed algorithm is referred to as MDA/2-2 and
MDA/3-3 for problems with tensor of second and third order, re-
spectively, where the first number (the first 2 in 2-2) refers to the
tensor order and the second number means the number of sub-
spaces used.

These algorithms were compared with the popular Eigenface,
Fisherface, and the 2-D LDA algorithms. The 2-D LDA algo-
rithm has been proved to be special MDA using a single sub-
space, thus, is referred to as MDA/2-1 in this work. In order to
compare with the Fisherface fairly, we also report the best re-
sult on different feature dimensions in the LDA step, which is
referred to as the symbol O after Fisherface in all results.

In all the experiments, the gallery and probe data were both
transformed into lower dimensional tensors or vectors via the
learned subspaces, and the nearest neighbor classifier was used
for final classification. The experiments were conducted by en-
coding the face images in different ways, i.e., vector, matrix,
and the filtered Gabor tensor. Moreover, the performances on
the cases with different number of training samples were also
evaluated to demonstrate their robustness in the small sample
size problems.

A. ORL Database — MDA/2-2

The ORL database contains 400 images of 40 individuals.
These images were captured at different times and have different
variations including expression (open or closed eyes, smiling or
nonsmiling) and facial details (glasses or no glasses). The im-
ages were taken with a tolerance for some tilting and rotation of
the face up to 20 . All images were in grayscale and normalized
to the resolution of pixels and histogram equilibrium
was applied in the preprocessing step. Ten sample images of
one person in the ORL database after the scale normalization
are displayed in Fig. 4.

Four sets of experiments were conducted to compare the
performance of MDA/2-2 with Eigenface, Fisherface/O, and
MDA/2-1. In each experiment, the image set was partitioned
into the gallery and probe set with different numbers. For ease
of representation, the experiments are named as which
means that images per person are randomly selected for
training and the remaining images for testing.

Table I shows the best face recognition accuracies of all the
algorithms in our experiments with different gallery and probe
set partitions. The comparative results show that MDA/2-2 out-
performs Eigenface, Fisherface/O, and MDA/2-1 on all four sets
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TABLE I
RECOGNITION ACCURACY (%) COMPARISON OF MDA/2-2, EIGENFACE,

FISHERFACE/O, AND MDA/2-1ON ORL DATABASE

Fig. 5. Ten images of one person in PIE1 database.

of experiments, especially in the cases with a small number of
training samples.

B. PIE Database — MDA/3-3 and MDA/2-2

The CMU Pose, Illumination, and Expression (PIE) database
contains more than 40 000 facial images of 68 people. The im-
ages were acquired over different poses, under variable illumi-
nation conditions and with different facial expressions. In this
experiment, two subdatabases were used to evaluate our pro-
posed algorithms.

In the first subdatabase, referred to as PIE1, five near frontal
poses (C27, C05, C29, C09, and C07) and illumination indexed
as 08 and 11 were used. Each person has ten images and all the
images were aligned by fixing the locations of two eyes, and
normalized to pixels. Similar to the previous experi-
ments, histogram equilibrium was applied in the preprocessing
step. Fig. 5 shows ten examples of one person.

The data set was randomly partitioned into gallery and probe
sets; and two samples each person was used for training. We
extracted the 40 Gabor features with five different scales and
eight different directions in the down-sampled positions and
each image is encoded as a third-order tensor of size .
Table II shows the detailed face recognition accuracies. The re-
sults clearly demonstrate that MDA/3-3 is superior to all other
algorithms. Moreover, it shows that the Gabor feature can help
improve the face recognition accuracy in both Eigenface and
Fisherface/O. For a detailed illustration on the face recognition
rates with different feature numbers, Figs. 6–8 plot the recog-
nition rates of Eigenface, 2-D LDA, and MDA/2-2 when using
different number of low-dimensional features in the G4/P6 ex-
periment of the PIE1 subset. Meanwhile, we test the stability of
MDA with respect to two factors: one is the number of itera-
tions and another is to initiate first or first.
The results from G3/P7 experiment on PIE1 subset as plotted in
Fig. 9 show that the face recognition rate is stable with respect
to different number of iterations; and the recognition rates are
also stable to initiate first or first.

Another subdatabase PIE2 consists of the same five poses as
in PIE1, but the illumination indexed as 10 and 13 were also
used. Therefore, the PIE2 database is more difficult for classi-
fication. We conducted three sets of experiments on this sub-
database. Table III lists all the comparative experimental results

Fig. 6. Recognition accuracies (%) of Eigenface and Fisherface versus number
of features on PIE1 database.

Fig. 7. Recognition accuracies (%) of MDA/2-1 and Fisherface/O versus
number of features on PIE1 database.

Fig. 8. Recognition accuracies (%) of MDA/2-2 versus numbers of features
along the row and column directions, respectively, on PIE1 database.

Fig. 9. Face recognition rates of MDA/2-2 versus Iteration numbers on exper-
iment G3/P7 of the PIE1 subset. Note that the legend U1-Init means that we
initiate U = I first in the MDA algorithm, and U2-Init means that we ini-
tiate U = I first in the MDA algorithm.

of the MDA/2-2, Eigenface, Fisherface/O, and MDA/2-1. The
reconstruction-based Eigenface performs very poor in all the
three cases; Fisherface is better than Eigenface, yet it also fails
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TABLE II
RECOGNITION ACCURACY (%) COMPARISON OF EIGENFACE, FISHERFACE/O,

AND MDA WITH TENSORS OF DIFFERENT ORDERS ON PIE-1 DATABASE

TABLE III
RECOGNITION ACCURACY (%) COMPARISON OF MDA/2-2, EIGENFACE,

FISHERFACE/O, AND MDA/2-1 ON THE PIE2 DATABASE

TABLE IV
RECOGNITION ACCURACY (%) COMPARISON OF MDA/3-3, EIGENFACE,

FISHERFACE/O, MDA/2-1 AND MDA/2-2 ON THE FERET DATABASE

in the cases with only two training images for each person. In
all the three experiments, MDA/2-2 performs the best.

C. Feret Database—MDA/3-3 and MDA/2-2

Two types of experiments were conducted on the FERET
database. One is conducted on 70 people of the FERET database
with six different images for each person; two of them were ap-
plied as gallery set and the other four for probe set. We extracted
40 Gabor features with five different scales and eight different
directions in the down-sampled positions and each image was
encoded as a third-order tensor of size for MDA/3-3.

We compared all the above mentioned algorithms on the
FERET database. Table IV demonstrates the comparative
face recognition accuracies. Similar to the results in the PIE1
subdatabase; it shows that the Gabor features can significantly
improve the performance and MDA/3-3 consistently outper-
forms all the other algorithms.

Other types of experiments were conducted on the large-scale
case, where the training CD [16] of the FERET databases was
used for the training of the different algorithms, and then the
fa and fb images of 1195 persons were used as the gallery and
probe set respectively. The images are aligned by fixing the lo-
cations of the two eyes and resized to pixels. When
the training image number is big enough, the PCA dimension

is not always the best for Fisherface algorithm as re-
ported in [5]; thus, we also report the results of the PCA di-
mensions by preserving 98% and 95% energies with the similar
idea as in [5]. The experimental results are reported in Table V,

and it shows that MDA/2-1 is worse than Fisherface in accuracy
while MDA/2-2 still outperforms all the other algorithms, even
the PCA dimension of Fisherface algorithm is tuned by different
energy.

D. Discussions

From the experimental results listed in Tables I–IV and
Figs. 6–9, we can have a lot of observations.

1) For all the cases directly based on original gray-level fea-
tures, MDA/2-2 shows best among all the evaluated al-
gorithms, which validates the effectiveness of the matrix,
namely second-order tensor, representation in improving
algorithmic learnability compared with vector representa-
tion.

2) MDA/3-3 consistently outperforms all other algorithms
in all cases. The superiority of MDA/3-3 stems from
two aspects: on the one hand, the third-order tensor rep-
resentation is obtained from the Garbor features which
are more robust compared with the original gray-level
features; one the other hand, the curse of dimensionality
and small sample size problem are greatly alleviated in
MDA/3-3 as discussed in Section III-A, and, hence, the
derived subspace potentially have greater discrimination
capability compared with other vector-based algorithms.

3) MDA/3-3 and MDA/2-2 are very robust in the cases only
with a small number of training samples, which again val-
idates the advantage of MDA algorithms in alleviating the
small sample size problem. In these cases, Eigenface al-
most fails to present acceptable results. Fisherface/O is
a little better than Eigenface, but still much worse than
MDA/2-2 and MDA/3-3.

4) MDA/2-1 is also robust in the cases with a small number
of training samples and outperforms Fisherface/O in most
cases. However, it is worse than MDA/2-2 and MDA/3-3 in
face recognition accuracy in all the cases. It demonstrates
that the collaboration of multiple subspaces can greatly en-
hance the classification capability.

5) As discussed in [1], LDA is not always superior to PCA,
especially in the cases when the training set cannot well
represent the data distribution. There are some cases in
which Eigenface outperforms Fisherface, such as in the
ORL database and the PIE1 database.

6) Many methods have been proposed to improve the perfor-
mance of Fisherface. In this work, we only tested one way
that explores the performances on all feature dimensions.
We did not further evaluate the other methods because those
methods, such as random subspace [22], can also be applied
on MDA with tensors of higher order tensors.

V. CONCLUSION

Inthispaper,anovelalgorithm,MDA,hasbeenproposedforsu-
pervised dimensionality reduction with general tensor represen-
tation. In MDA, the image objects were encoded as an th-order
tensor. An approach called -mode optimization was proposed
to iteratively learn multiple interrelated discriminative subspaces
fordimensionalityreductionofthehigherordertensor.Compared
with traditional algorithms, such as PCA and LDA, our proposed
algorithm effectively avoids the curse of dimensionality dilemma
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TABLE V
RECOGNITION ACCURACY (%) COMPARISON OF EIGENFACE, FISHERFACE, MDA/2-1, AND MDA/2-2 ON FERET DATABASE FOR THE LARGE-SCALE CASE.

NOTE THAT THE NUMBER IN THE BRACKET IS THE FEATURE DIMENSION WITH THE HIGHEST RECOGNITION RATE FOR EACH ALGORITHM

and alleviates the small sample size problem. Due to the low re-
quirement on samples and the high performance in classification
problem, MDA should be a general alternative of LDA algorithm
for problems encoding objects as tensors. An interesting appli-
cation of our proposed MDA algorithm is to apply MDA/4-4 for
video-based face recognition and we are planning to explore this
application in our future researches.
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