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a b s t r a c t

In this paper, we first conceive a new perception of the kernel feature. The kernel subspace methods can

be regarded as two independent steps: an explicit kernel feature extraction step and a linear subspace

analysis step on the extracted kernel features. The kernel feature vector of an image is composed of dot

products between the image and all the training images using nonlinear dot product kernel. Then, based

on this perception, we further extend the kernel feature vector of an image to a kernel feature matrix for

visual recognition. This extension takes different representation cues of images into account,

respectively, while only global average information is used in the traditional kernel methods. From

the view of dot product as similarity, this extension means using multiple similarities to measure two

images, which is more accordant to human vision. In order to efficiently deal with the problem of

numerical computation, a matrix-based kernel discriminant analysis algorithm is employed to learn

discriminating kernel features for visual recognition. Experiments on the FERET face database, the COIL-

100 object database, and the Wang’s nature image database show the advantage of the proposed

method.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Principal component analysis (PCA) [12,19] and linear dis-
criminant analysis (LDA) [1,27] are two classical linear subspace
methods, and they are widely used for feature extraction. The idea
of PCA is to generate a set of orthonormal projections aiming at
maximizing the covariance over all the samples. LDA seeks for a
linear transformation, which maximizes the between-class scatter
and minimizes the within-class scatter. Thus, PCA is optimal for
reconstruction, while LDA aims at better discrimination. However,
their linear properties limit their performance in many practical
applications with complicated nonlinear variations.

Recently, the kernel methods have attracted much attention
due to their good nonlinear properties [14,16,25]. The kernel
methods first map the input data into an implicit feature space F

with a nonlinear mapping, and the data are analyzed in F to get a
nonlinear representation. Kernel PCA (KPCA) [16] and kernel
discriminant analysis (KDA) [25] are popular nonlinear subspace
methods and are widely used in computer vision and pattern
recognition [5,6,11,24], in which PCA and LDA are performed to
analyze the implicit features in F to extract nonlinear principal
ll rights reserved.
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components and discriminating features, respectively. In imple-
mentation, a nonlinear dot product kernel is introduced to avoid
the computation of implicit features, which is defined to calculate
the dot product between two implicit feature vectors.

In this paper, we first give a new perception of the kernel
feature. The kernel methods are divided into two explicit and
independent steps: an explicit kernel feature extraction step and
data analysis step (such as linear subspace analysis in the kernel
subspace learning [16,25]) on the extracted kernel features. The
kernel feature vector of an image consists of dot products between
the image and all the training images using nonlinear dot product
kernel. Thus, in a sense, the training samples can be regarded as a
reference set in the kernel methods. Since this perception defines
explicit kernel features, it is easy to manipulate the kernel
methods. Here, we further extend the kernel feature vector of an
image to a kernel feature matrix for visual recognition. To better
capture the complex structure and appearance of visual objects,
we often represent the objects with various cues, such as color,
texture, local components, and so on. Assuming that we have p

different representation cues and N training images, we perform p

dot product kernels on these cues, respectively. Then we have an
N�p-dimensional matrix kernel feature for an image. Compared
with the traditional kernel methods using only global average
information, this extension considers different representation
cues of images, respectively. From the view of dot product as
similarity, the traditional kernel feature only gives an overall
similarity with a single dot product, while this extension means
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using multiple similarities to measure two images, which is more
accordant to human vision. When our eyes discriminate two
objects, we are often told the similarities between them from
various cues. So we also call the extended kernel feature a
multiple similarities-based kernel feature. However, this extended
kernel feature brings with it a problem of numerical computation,
because most of the popular data analysis methods can only
handle the vector-based data. In order to efficiently deal with this
problem, a matrix-based KDA (MKDA) algorithm is introduced to
learn the discriminating kernel features for visual recognition.
This extension is different from couple KDA (CKDA) in [23]. The
former is based on an explicit kernel matrix feature, while CKDA is
still based on implicit feature space. Moreover, our work aims to
consider multiple visual cues, respectively, but CKDA uses multi-
ple kernels for a single image cue. However, because the kernel
mapping of each kernel is implicit, simply putting them together
and regarding them as a matrix are practically unreasonable. The
proposed method gives an explicit interpretation for the kernel
matrix feature. In our experiments, we conduct the experiments
on the FERET face database [15], the COIL-100 object database
[13], and the Wang nature image dataset [2] to test the proposed
method. The experimental results show that the proposed method
has an encouraging performance.

The rest of the paper is arranged as follows: We first briefly
review the kernel-based subspace learning and present a new
perception of the kernel feature in Section 2. The new extension of
the kernel feature for visual recognition, i.e., multiple similarities-
based kernel features for visual recognition, is addressed in
Section 3. Experiments are reported in Section 4, and finally
conclusions are drawn in Section 5.
2. A new perception of the kernel feature

Before presenting our perception of the kernel feature, we give
a short review of KPCA and KDA to show our observation. The
ideas of KPCA and KDA are first to map the input data into an
implicit feature space F by a nonlinear mapping f, and then PCA
and LDA are performed, respectively, in F to get the nonlinear
principal components and discriminating features of the input
data [16,25]. It is unnecessary to know the implicit feature vector
f(x) explicitly, and we only need to calculate the dot product
between two implicit feature vectors with a Mercer dot product
kernel, such as the Gaussian kernel used in the paper, kðx; yÞ ¼

ðfðxÞ � fðyÞÞ ¼ expð�gjjðx� yÞ=sjj2Þ.
For the following analysis, we define some symbols first.

X ¼ {x1, x2, y, xN} is the training set with N images and C classes.
Each class has Nc samples, and Xc represents the sample set of the
cth class. Define the dot product matrix K ¼ [K1, K2, y, KN], where
the column vector Ki is composed of dot products between xi

and all the training images, i.e., Ki ¼ (k(xi,x1),k(xi,x2),y,k(xi,xN))T,
so K is a symmetrical matrix. m represents the mean of all the Ki,
and m is the mean of all the f(xi), i.e., m ¼ 1=N

PN
i¼1Ki and m ¼

1=N
PN

i¼1fðxiÞ. For simplicity, f(xi)AXc means xiAXc, and KiAXc

means xiAXc.

2.1. KPCA

Define matrix F(X) ¼ [f(x1), f(x2), y, f(xN) as the mapping
matrix of X in F, and matrix F̄ðXÞ ¼ ½m; m; . . . ; m� is an N column
matrix with vector m. KPCA is equivalent to solving the problem of
eigenvectors and eigenvalues of covariance matrix of F(X) [16]:

ðWf
Þ
T
½FðXÞ � F̄ðXÞ�½FðXÞ � F̄ðXÞ�TWf

¼ Lf, (1)

where Wf is the matrix of eigenvectors, and Lf is the diagonal
matrix of eigenvalues in F.
Because Wf is a linear transformation in F, any solution of
eigenvector wfAWf can be represented by a combination of all
the f(xi), wf ¼

PN
i¼1aifðxiÞ. Then we can rewrite Wf

¼ F(X)a,
where a is the matrix of coefficients. Since F(X)TF(X) ¼ K and
FðXÞT F̄ðXÞ ¼ K̄ , where matrix K̄ ¼ [m,m,y,m] is an N column
matrix with vector m; Eq. (1) can be rewritten as

aTðK � K̄ÞðK � K̄ÞTa ¼ Lf. (2)

Thus, the problem of KPCA is equivalent to solving the
eigenvectors of the covariance matrix of K.

2.2. KDA

Define the between-class scatter Sb
f and the within-class

scatter Sfw in F as Sfb ¼
PC

i¼1Niðmi � mÞðmi � mÞT and Sfw ¼
PC

i¼1P
fðxjÞ2Xi

ðfðxjÞ � miÞðfðxjÞ � miÞ
T, where mi is the mean of the ith

class samples in F. The idea of KDA is to perform LDA in F, i.e.,
maximizing the following objective function [25]:

JðWf
Þ ¼ arg max

Wf

jðWf
Þ
TSfb Wf

j

jðWf
Þ
TSfwWf

j
. (3)

Similarly, any solution wfAWf can be represented by wf ¼PN
i¼1aifðxiÞ due to linear transform property, so Eq. (3) can be

rewritten as

JðaÞ ¼ arg max
a

jaTGbaj
jaTGwaj

, (4)

where Gb ¼
PC

i¼1Niðmi � m̄Þðmi � m̄ÞT, Gw ¼
PC

i¼1SKj2Xi
ðKj �miÞ

ðKj �miÞ
T, mi ¼ 1=Ni

PNi
j¼1Kj with KjAXi. Thus, the problem of

KDA is converted into finding the leading eigenvectors of Gw
�1Gb.

2.3. A new perception

From the above description, we see that KPCA is equivalent to
solving the eigenvectors of covariance of K, and KDA is based on
finding the leading eigenvectors of Gw

�1Gb, where Gw and Gb are the
within-class and the between-class scatter based on Ki. So we can
consider that the kernel-based subspace learning actually in-
cludes two independent steps: the kernel feature extraction with
the dot product kernel and the linear subspace analysis on the
kernel features. Dot products between an image and all the
training images form the kernel feature vector of the image. {Ki},
i ¼ 1, 2, y, N, is the kernel feature set of the training images. KPCA
and KDA are equivalent to performing PCA and LDA on the {Ki},
respectively. Since the dot product kernel is a nonlinear function
of two images, using the linear subspace analysis on the kernel
features one can get nonlinear features of the input images.

Based on this perception, it is easy to understand the
projection of a new image z in KPCA or KDA subspace as y ¼ aTKz,
where Kz ¼ (k(z,x1), k(z,x2), y, k(z,xN))T is the kernel feature vector
of the image z, i.e., its elements are dot products of the image z

and all the training images. This is exactly the projection onto Wf

[16,25]. Thus, in a sense, we can regard the training images as a
reference set. Before the kernel methods compare two images,
they first measure the similarities between them and the training
images, respectively. Fig. 1 gives an illustration. Given two
samples yi and yj, their kernel features fi and fj are first extracted,
respectively, and then their similarity S(yi,yj) is measured in the
PCA or LDA subspace that is obtained by the training samples.

It seems that this perception is also suitable for support vector
machine (SVM) [14]. The discriminating function of SVM is:
f ðxÞ ¼ sgnf

Pn
i¼1aiyikðx; xiÞ þ bg, where xi, i ¼ 1, 2, y, n means

support vector, and ai is the non-zero weight of support vector xi,
and yi represents the label {+1,�1} of xi. In fact, the SVM classifier
can be rewritten as f ðxÞ ¼ sgnf

PN
i¼1aiyikðx; xiÞ þ bg, where the
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Fig. 1. Perception of KPCA and KDA.
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weights ai of the non-support vectors are equal to 0. If we let
bi ¼ aiyi, then f(x) ¼ sgn(bTkx+b), where kx ¼ (k(x,x1), k(x,x2), y,
k(x,xN))T is the kernel feature of the image x.

In addition, this perception helps to explain why some non-
Mercer kernels can also achieve a good performance [8,20].
According to our perception, the kernel feature extraction is an
independent and explicit step, and the kernel function can be
regarded as a similarity function between two images [3]. Thus, we
can take a similarity measure function as a valid kernel function if
it is propitious to recognition, even though it does not satisfy the
Mercer conditions. Moreover, based on this perception of explicit
kernel feature extraction, we can further extend the kernel features.
3. A new extension of the kernel feature for visual recognition

In Section 2, we give a new perception of the kernel feature.
Different from the idea of implicit feature space, the kernel feature
in our perception becomes an explicit and independent step, so
we can easily manipulate the kernel feature. In this section, we
propose to extend the kernel feature vector of an image to a kernel
feature matrix, and in order to efficiently deal with numerical
computation a matrix-based KDA algorithm is adopted to learn
discriminating features for visual recognition.

3.1. The kernel feature matrix

The traditional kernel methods often consider the global
representations of the images in the form of vectors, and compute
the dot products between an image and all the training images to
form its kernel feature vector. Thus, they ignore detailed visual
information except global information, and they cannot provide
refined visual representation. Many studies show that global
representations are sensitive to environment noise [4,20].

According to our perception, the kernel feature extraction is an
explicit and independent step, so we can easily extend the kernel
feature. It is known that, to better capture the complex structure
and appearance of the objects, we should represent the images
with different cues, such as texture, color, local components, and
so on. Here, we propose to perform the dot product kernels on
different cues, respectively, and the kernel feature vector is
extended to a kernel feature matrix. This extension considers
different information, respectively, so it should be more accurate
for describing the images than the traditional one, only consider-
ing the global information. In a sense of dot product as similarity,
this extension means using multiple similarities to measure two
images, which is similar to human eyes that often tell us the
similarities between two objects according to various cues.

Assuming that the images are represented by p cues, we use p

dot product kernels on p cues, respectively. Then, the kernel
feature vector Ki of the image xi becomes a feature matrix ~Ki as

~Ki ¼

k1ðx
1
i ; x

1
1Þ k2ðx

2
i ; x

2
1Þ � � � kpðx

p
i ; x

p
1Þ

k1ðx
1
i ; x

1
2Þ k2ðx

2
i ; x

2
2Þ � � � kpðx

p
i ; x

p
2Þ

..

. ..
. ..

. ..
.

k1ðx
1
i ; x

1
NÞ k2ðx

2
i ; x

2
NÞ � � � kpðx

p
i ; x

p
NÞ

2
666664

3
777775

, (5)
where kp is the dot production kernel function for the pth cue. We
also call it multiple similarities-based kernel features.

This extended kernel feature embodies more information, but
brings with it a problem of numerical computation, for the
popular data analysis methods are all based on the vector-based
data. The intuitive idea is to reshape ~Ki as a vector with N�p

elements. However, this reshaping loses coupled information
existed in rows and columns of ~Ki, which is very useful for
recognition. We can see that the rows of ~Ki are multiple
similarities information between two images, and the columns
of ~Ki represent the kernel features based on each cue. Moreover,
the reshaping leads to expensive computation due to dimension
increasing p times. For example, if there are 1000 training samples
and 10 different cues, then the number of dimension becomes 104.
With subspace learning, performing eigen decomposition in such
a high-dimensional space may cause instability of numerical
computation. In order to efficiently deal with these problems, we
adopt the MKDA algorithm to learn nonlinear discriminating
subspace with these matrix-based kernel features for recognition
in the following.
3.2. Matrix-based KDA

Similar to the traditional KDA, based on the extracted kernel
features, MKDA also employs the Fisher criterion that maximizes
the between-class scatter and minimizes the within-class scatter,
but it extends the vector-based norm into the Frobenius norm as
in [26]. With the kernel features ~Ki, i ¼ 1, 2, y, N, the between-
class scatter ~Sb and the within-class scatter ~Sw measured by the
Frobenius norm are

~Sb ¼
XC

i¼1

NijjMi � M̄jj2F , (6)

~Sw ¼
XC

i¼1

X
~Kj2Xi

jj ~Kj �Mijj
2
F , (7)

where M is the mean matrix of all the ~Ki, and Mi represents the
mean matrix of the ith class, and ~KiAXi means that ~Kj belongs to
the ith class.

The goal is to find the optimal projection matrices L 2 <N�dL

and R 2 <p�dR which maximize ~Sb and minimize ~Sw in the low
dimensional subspace of L�R, i.e., maximizing ~S

0

b ¼
PC

i¼1Nijj

LT
ðMi � M̄ÞRjj2F and minimizing ~S

0

w ¼
PC

i¼1

P
~Kj2Xi
jjLT
ð ~Kj �MiÞRjj

2
F

at the same time.
Because jjXjj2F ¼ traceðXXT

Þ, ~S
0

b and ~S
0

w can be written as ~S
0

b ¼

traceðLTDR
bLÞ and ~S

0

w ¼ traceðLTDR
wLÞ when R is given, where

DR
b ¼

XC

i¼1

NiðMi � M̄ÞRRT
ðMi � M̄ÞT, (8)

DR
w ¼

XC

i¼1

X
~Kj2Xi

ð ~Kj �MiÞRRT
ð ~Kj �MiÞ

T. (9)

Then we can get the optimal projection L by maximizing
trace((LTDw

R L)�1(LTDb
RL)), i.e., computing the eigenvectors of

(Dw
R )�1Db

R.
Similarly, if L is fixed, we can rewrite ~S

0

b and ~S
0

w as ~S
0

b ¼

traceðRTDL
bRÞ and ~S

0

w ¼ traceðRTDL
wRÞ, because of trace(AB) ¼ tra-

ce(BA), where

DL
b ¼

XC

i¼1

NiðMi � M̄ÞTLLT
ðMi � M̄Þ, (10)
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Table 1
The MKDA algorithm

Input: K̄1,K̄2,y,K̄N

Initialization: Set R0  ðIdR
;0ÞT, and compute the mean Mi of the i-th class for

each i, and the global mean M.

For t ¼ 1 to T

(1) For a given Rt�1, compute Dw
R and Db

R using Eqs. (8) and (9), and get the

optimal Lt by solving the first dL leading eigenvectors of (Dw
R )�1Db

R.

(2) Based on Lt, compute Dw
L and Db

L as in Eqs. (10) and (11), and get the optimal

Rt by solving the first dR leading eigenvectors of (Dw
L )�1Db

L.

(3) If t41,jjLt � Lt�1jjo� and jjRt � Rt�1jjo�, break; else, continue.

End
Output: L ¼ Lt and R ¼ Rt

Table 2
The best recognition rates of the four methods

Method LDA KDA VKDA MKDA

Recognition rate (%) 94.48 95.07 95.99 97.57

Fig. 2. Recognition rates with different dimensions of the four methods.
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DL
w ¼

XC

i¼1

X
~Kj2Xi

ð ~Kj �MiÞ
TLLT
ð ~Kj �MiÞ. (11)

Then the optimal projection R can be obtained by maximizing
trace((RTDw

L R)�1(RTDb
LR)), i.e., solving the eigenvectors of (Dw

L )�1Db
L.

Thus, the final optimal solution can be computed by an
iterative procedure, shown in Table 1. It can be found that the
MKDA algorithm not only avoids the eigen-decomposition in the
N� p dimensional space, but also well preserves the geometric
relations of row and column of ~Ki. In addition, in the traditional
KDA, the available dimension has the upper bound C�1, while
MKDA has no such constraint.

For a new pattern z, its projection is: Yi ¼ LT ~KzR, where ~Kz is
the kernel feature matrix of the image z, ~Kz ¼ {Ai,j ¼ {ki(zi,xj

i)}},
i ¼ 1, 2, y, p and j ¼ 1, 2, y, N.
4. Experiments

Our experiments are conducted on the FERET face database
[15], the COIL-100 object database [13], and the Wang’s nature
image database [2]. We compare the proposed MKDA with KDA,
LDA, and the method of reshaping the kernel feature matrix ~Ki as a
vector (we denote it as VKDA for simplicity). The Gaussian kernel
is employed for all the kp in MKDA, VKDA, and KDA. As for the
parameter g, we set it as g ¼ b/s, where s is the dimension of x and
y, and b is an adjustable constant. It seems that b ¼ 0.5 is better
for KDA among [0.1 1] on the three databases. For comparison and
simplicity, we simply set b ¼ 0.5 in our experiments for all the
kernel functions. The nearest neighbor classifier is used for
classification.

4.1. The FERET database

The FERET database is widely used to evaluate the perfor-
mance of face recognition methods [15]. Our experimental data
include FA and FB sets, and 1000 front view face images selected
from training CD of the FERET database. There are 1196 images in
FA set and 1195 images in FB set, and all of the subjects have only
one image in FA and FB sets. We use 1000 images from the
training CD as the training set. FA images are used for gallery
images, and FB images are taken as probe images. All the images
are cropped to 48�54 by fixing two eye locations at (12,14) and
(36,14). The variations include illumination, expression and tiny
pose changes.

In this group experiment, we use Gabor representations of the
image, for Gabor-based face recognition has achieved great
success [7,18] due to the good properties of Gabor filters, such
as spatial localization, spatial frequency characteristic, and
orientation selectivity. Similar to previous studies, 40 Gabor
filters are adopted, i.e., five scales and eight orientations, and then
40 Gabor images are obtained for each image. In previous works,
such as LDA [7] and KDA [18], they often consider 40 Gabor
images together and reshape them into a vector. To reduce the
computation complexity, the popular technique is to downsample
the Gabor images. Actually 40 Gabor images correspond to
different scales and orientations, respectively, so they should
have different response characteristics. Here, we take them as 40
different cues of the face image in MKDA, i.e., p ¼ 40. Similar to
[7,18], we downsample the Gabor images with sampling factor
r ¼ 4 and reshape them as a vector to test LDA and KDA methods.

Table 2 reports the best recognition rates of the four methods.
MKDA gives a higher recognition rate than LDA, KDA and VKDA.
The performance of MKDA is also comparable with the result
reported in the latest literature [17]. MKDA gets the recognition
rate of 97.57%, while the best recognition rate of [17] is 97.2%. We
also investigate the recognition performance with variation of
feature numbers shown in Fig. 2, where we fix the feature
numbers dR ¼ 16 in the right matrix R, and test the performance
of MKDA with the variation of left matrix L. We can see the
superiority of MKDA. Fig. 3 shows the performance of MKDA with
variation of dL and dR. We can see that the performance of MKDA
stabilizes near the best result when dRX10 and dL between 100
and 600. Comparing with the original dimension of kernel
features, 103

�40, MKDA can get a good performance with a
small number of dimensions.
4.2. The COIL-100 database

The COIL-100 [13] database has 100 different objects, and each
object has 72 color images at pose intervals of 51. The image size is
128�128. In our experiments, we convert the images into gray
images, and evaluate the robustness to such view changes for
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Fig. 3. The performance of MKDA with different dimensions.

Table 3
The best recognition rates of the four methods

Method LDA KDA VKDA MKDA

Recognition rate (%) 84.59 95.65 94.24 99.22

Fig. 4. Recognition rates with different dimensions of the four methods.

Table 4
The classification errors of four methods

Method LDA KDA VKDA MKDA

Error rate (%) 12 10.9 13.5 10.4

Q. Liu et al. / Neurocomputing 71 (2008) 1850–18561854
general objects. Same as in [9,10], we select 18 views of each of the
100 objects as the training samples, starting with the pose at 01
and continuing at intervals of 201, and the rest of the images for
testing. For simplicity, we divide the images into 16 patches with
size of 32�32, and take these patches as local components of the
object to test MKDA, i.e., p ¼ 16. Thus, the dimension of a kernel
feature matrix is 1800�16.

The best recognition rates of the four methods are reported in
Table 3. The results are similar to the above results on the FERET
database, i.e., MKDA outperforms the other methods. The
recognition rate of MKDA is also comparable with the reported
results in [9,10]. Using the same testing protocol, methods in the
literature report the recognition rate from 87.5% to 99.9%. We
simply divide the image into 16 patches on the average, and take
them as local components in the experiments. Perhaps the
performance of MKDA can be further improved if we automati-
cally detect local components according to the object structure.
Fig. 4 gives the recognition performances of four methods with
the variation of feature numbers. Because the class numbers of
the training images are 100, the dimensions of LDA, KDA and LKDA
are equal to 99. As for MKDA, we set dR ¼ 8 and investigate dL

from 10 to 100. The performances are similar to those on the
FERET database too.

4.3. The Wang’s database

The Wang’s database consists of 1000 nature images of 10
categories, each represented by 100 images, illustrating the
following themes [2,9]: African people and villages, beach,
buildings, buses, dinosaurs, elephants, flowers, horses, mountain
and glaciers, and food. Such common categories exhibit high
intra-class variability. The images are of size 384�256. Same as in
[2,9], the leave-one-out testing protocol is adopted to test the
proposed method for image classification.

Four kinds of visual features are used to represent the images
[21,22]: color histogram, color moments, wavelet-based texture
and directionality. A color histogram is taken in HSV space with
quantization of 8�4 ¼ 32 bins on H and S channels; the first
three moments from each of the three color channels are used for
color moment; a 24-dimensional PWT-based wavelet texture
features and an 8-dimensional directionality features are con-
tained to construct an 73-dimensional feature vector for each
image. For MKDA, these four kinds of visual features are
considered, respectively, i.e., p ¼ 4. Thus, the dimension of the
kernel feature matrix is 999�4. Table 4 reports the error rates of
four methods, where MKDA keeps dL ¼ 100 and dR ¼ 3. Same as in
the above experiments, MKDA has a better classification perfor-
mance than the three related methods. The error rate of MKDA is
10.4%. This result is also better than the published results. Error
rates in the literature vary from 62.5% to 15.9% [2,9].
5. Discussions

The above experiments on the three different databases show
that MKDA outperforms LDA, KDA and VKDA. It shows the
advantage of the extension of the kernel feature and the matrix-
based KDA algorithm. We can see that simply reshaping the kernel
feature matrix as a vector loses the coupled information in the
kernel feature matrix, and the high-dimensional vector also
causes instability of numerical computation due to performing
eigen-decomposition in a higher-dimensional space.

The proposed MKDA is based on the new perception that the
kernel method is comprised of an explicit feature extraction step
and a feature analysis step. According to the principle of the
implicit feature space, if we want to use multiple cues together,
we should map each of them into the implicit feature space,
respectively. However, the implicit feature space is unknown to
us, so it is difficult to integrate different implicit feature space
together. Based on our perception of the kernel feature, it is easy
to understand the extended kernel matrix features in MKDA. From
the sense of similarity, the kernel matrix feature embodies the
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property of multiple similarity measurement of human vision
system. In addition, this perception also relaxes the criterion of
kernel selection, and helps to interpret some useful non-Mercer
kernels [8,20]. In this paper, we only adopt the Gaussian kernel for
all the cues in MKDA, and its parameter is set in terms of KDA. The
performance of MKDA can be further improved if we can design a
special kernel for each cue. Besides the kernel selection, this new
perception brings out another interesting issue. The kernel feature
of an image is comprised of the dot products between the image
and all the training samples. In a sense, we can regard the training
samples as a reference set, and the similarity between two images
is actually a relative similarity with respect to the reference set. In
the traditional kernel methods including the proposed method,
the reference set is the training set. How to select an effective
reference set is a very interesting issue, which is worthy of further
investigation in future work.
6. Conclusions

In this paper, we first give a new perception of the kernel
methods. The kernel methods are actually divided into two
separated steps, i.e., the kernel feature extraction and the data
analysis based on the extracted kernel features. Dot products
between an image and all the training images form its kernel
features. Based on this perception, we extend the kernel feature
vector to a kernel feature matrix, because the images are often
represented by different cues, such as color, texture, local
components, and so on. In order to efficiently deal with the
problem of numerical computation, a matrix-based KDA algo-
rithm is developed to learn discriminating kernel features for
visual recognition. Experiments on the FERET face database, the
COIL-100 object database, and the Wang’s nature image database
show the advantage of the proposed method.
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