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Abstract1

Learning-based superresolution (SR) are popular SR techniques that use application de-

pendent priors to infer the missing details in low resolution images (LRIs). However, their

performance still deteriorates quickly when the magnification factor is moderately large.

This leads us to an important problem: “Do limits of learning-based SR algorithms exist?”

In this paper, we attempt to shed some light on this problem when the SR algorithms are

designed for general natural images (GNIs). We first define an expected risk for the SR al-

gorithms that is based on the root mean squared error between the superresolved images

and the ground truth images. Then utilizing the statistics of GNIs, we derive a closed form

estimate of the lower bound of the expected risk. The lower bound can be computed by sam-

pling real images. By computing the curve of the lower bound w.r.t. the magnification factor,

we can estimate the limits of learning-based SR algorithms, at which the lower bound of

expected risk exceeds a relatively large threshold. We also investigate the sufficient number

of samples to guarantee an accurate estimation of the lower bound. From our experiments,

we have a key observation that the limits may be independent of the size of either the LRIs

or the high resolution images.

1 Introduction

Superresolution (SR) is a technique that produces an image or video with a resolution higher

than those of any of the input images or frames. Roughly speaking, SR algorithms can be

categorized into four classes [3, 11, 5]. Interpolation-based algorithms register low reso-

lution images (LRIs) with the high resolution image (HRI), then apply nonuniform inter-

polation to produce an improved resolution image which is further deblurred. Frequency-

based algorithms try to dealias the LRIs by utilizing the phase difference among the LRIs.

Reconstruction-based algorithms rely on the relationship between the LRIs and the HRI and

assume various kinds of priors on the HRI in order to regularize this ill-posed inverse prob-

lem. Recently, many learning-based SR algorithms have attracted much attention.

1.1 Learning-Based SR Algorithms

Learning-based SR algorithms are new SR techniques that may have started from the seminal

papers by Freeman and Pasztor [6] and Baker and Kanade [1]. Compared to traditional

1A short version of this technical report was accepted by International Conference on Computer Vision
2007.
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Figure 1: The Markov network adopted by Freeman and Pasztor [6] (adapted from [6]).

methods, which basically process images at the signal level, learning-based SR algorithms

incorporate application dependent priors to infer the unknown HRI. For example, as a widely

adopted framework, Freeman and Pasztor’s Markov network [6] models the SR problem as

an inference problem of the high frequency:

h′ = arg max
h′

P (h′|̃l) = arg max
h′

P (̃l|h′)P (h′),

where h′ is the missing high frequency of the HRI h, l̃ is the mid-frequency of the input

image l interpolated to the size of h. Adding the inferred high frequency to the interpolated

LRI gives the output HRI. Freeman and Pasztor defined the likelihood and the prior via image

patches:

P (̃l|h′) =
∏

k

P (̃lk|h′k), and P (h′) =
∏

h′j∈N (h′i)
P (h′i|h′j),

where h′i and l̃k are the patches in h′ and l̃, respectively, and N (h′i) is the set of neighbor-

ing high resolution patches of h′i. Figure 1 shows the Markov network that links the local

patches. P (̃lk|h′k) and P (h′i|h′j) are learnt from training images and are approximated by a

mixture of Gaussians (MoGs). The solution h′ is found by belief propagation.

From the above example, one can see that the methodology of learning-based SR algo-

rithms is quite different from traditional ones. Despite some drawbacks, such as the mag-

nification factor is usually fixed and the performance often depends on how well the input

LRI matches the training low resolution samples, learning-based SR algorithms have several

advantages. For example, they work on fewer LRIs but can still achieve a higher magni-

fication factor than traditional algorithms can. Most of them can even work on a single

image. Moreover, it is possible to design fast learning-based SR algorithms, e.g., eigenface

based face hallucination [4, 7], to achieve real-time SR. Finally, if we change the prior for

learning-based SR algorithms, the HRIs may exhibit an artistic style [6, 12]. This may enable

learning-based SR algorithms to perform style transfer. In contrast, traditional SR algorithms

do not have such capability.
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Because of their advantages, learning-based SR algorithms have become popular. Bishop

et al. [2], Pickup et al. [12], and Sun et al. [15] also adopted the Markov network as Freeman

and Pasztor [6] did but they differed in the definition of priors and likelihoods. Baker and

Kanade’s hallucination algorithm [1] further inspired the work in this field. Gunturk et al. [7],

Capel and Zisserman [4], Liu et al. [9], and Wang and Tang [18] all used face bases and

inferred the combination coefficients of the bases, where the face bases are different. Liu et

al.’s face hallucination algorithm [10] was a combination of [7] and [6] to infer the global

face structure and the local details, respectively.

Despite different implementation details, in an abstract sense, a learning process picks a

function f(z, α) from an admissible function set (by specifying the index parameter α) [17].

Then, a learning-based SR algorithm can be viewed as a function s that maps an LRI to

an HRI,2 where all prior knowledge has been used to specify s, and s is a function of the

input LRI only (i.e., we only consider single-image SR in this paper, and after training, no

additional information can be applied for SR).

1.2 What are the Limits of Learning-Based SR Algorithms?

Among the existing algorithms, those in [6, 15, 12, 2] can be applied to general images or

videos [2]. In contrast, the algorithms in [1, 10, 4, 7, 9] are devoted only to face hallucination.

The underlying reason that the second category of algorithms were proposed mainly because

the first category of algorithms cannot produce good results when the magnification factors

are only moderately large. Therefore, the application scenario needs to be narrowed down so

that more specific prior knowledge, e.g., the strong structure of faces, can be used. However,

even for the second category of algorithms, accurate alignment of faces has to be done.

Otherwise, the hallucinated faces are still unsatisfactory even for magnification factors that

are still not very large. This poses an important question: “Do limits exist for learning-

based superresolution?”, i.e., “Does there exist an upper bound for magnification factors

such that no SR algorithm can produce satisfactory results?” This paper aims at presenting

our preliminary work on this problem.

To investigate the problem quantitatively, we have to define the meaning of the “limit”. In

statistical learning theory, the performance of a learning function f(z, α) is usually evaluated

by its expected risk [17]:

R(α) =
∫

r(z, f(z, α))dF (z), (1)

2By compositing with the downsampling matrix we have a function that maps an HRI to another HRI. See
Eqn. (2).
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where r(z, f(z, α)) is the risk function and F (z) is the probability function of z. In our

problem, z represents the HRI. If we can define what the risk function is, we can use the

expected risk to evaluate the performance of learning-based SR algorithms, i.e., we have

to look at the average performance of SR algorithms. It is possible that an SR algorithm

performs well on a particular LRI. However, if the SR results on many other LRIs are poor,

we still do not consider it a good SR algorithm.

As suggested in [8], a good SR algorithm should produce HRIs that are close to the ground

truth. Otherwise, the produced HRI will not be what we desire, no matter how high its

resolution is (e.g., a high resolution car image will not be considered as the HRI of a low

resolution face image no matter how many details it presents). Therefore, we may define

the risk function as the closeness between an HRI and its superresolved version. As the

root mean squared error (RMSE) is a widely used measure of image similarity in the image

processing community (e.g., the peak signal to noise ratio in image compression) and also in

various kinds of error analysis, we may define the risk function using the RMSE between an

HRI and its superresolved version.

Although small RMSEs do not necessarily guarantee good recovery of the HRIs, large

RMSEs should nonetheless imply that the recovery is poor. Therefore, we may convert the

problem to a tractable one: find the upper bound of the magnification factors such that the

expected risk is below a relatively large threshold. Such an upper bound can be considered

the limits of learning-based SR algorithms.

1.3 Previous Work and Our Contributions

Although many SR approaches have been proposed [1, 2, 6, 10, 15, 4, 12, 11, 5, 7, 9],

theoretical analysis of SR algorithms has rarely been addressed. Only in [8] and [1], limits

of reconstruction-based SR algorithms are discussed. For learning-based algorithms, no

similar work has been done. In this paper, we provide some theoretical analysis on the limits

of learning-based SR algorithms for general natural images, which is the first work on this

problem according to the best of our knowledge. Our paper has two major contributions:

1. A closed form lower bound of the expected error between the superresolved and the

ground truth images is proved. This formula only involves the covariance matrix and

the mean of the prior distribution of HRIs. This lower bound is used to estimate the

limits of learning-based SR algorithms.

2. A formula on the sufficient number of HRIs is provided to ensure the accuracy of the

sample-based computation of the lower bound.
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Figure 2: Our methodology of finding the limits of learning-based SR algorithms. Please refer to

Section 2 for the details.

Moreover, from our experiments, we have observed that the limits may be independent of

the sizes of both LRIs and HRIs.

Currently, we limit our analysis to general natural images, i.e., the set of all natural images

of given size, because the statistics of general natural images have been studied for a long

time [14] and there have been some pertinent observations on their characteristics that are

useful for our analysis. In particular, we will use the following two properties:

1. The distribution of HRIs is not concentrated around several HRIs and the distribution

of LRIs is not concentrated around several LRIs either. Noticing that general natural

images cannot be classified into a small number of categories will justify this property.

2. Smoother LRIs have a higher probability than non-smooth ones. This property is actu-

ally called the “smoothness prior” that is widely used for regularization, for instance,

when performing reconstruction-based SR.

In contrast, for specific class of images, e.g., face or text images, there is no similar work

on their statistics to the best of our knowledge. So currently we have to focus on the SR of

general natural images.

2 Analysis of Learning-Based SR Algorithms

Figure 2 outlines our analysis on the limits of learning-based SR algorithms. We first define

the expected risk of a learning-based SR algorithm. The risk is minimized by an optimal

SR function. Using the statistics of general natural images, we derive a closed form formula

for the lower bound of the risk, which only involves the covariance matrix and the mean of

the distribution of the HRIs. By sampling the real-world HRIs, we can obtain a curve of the

lower bound of the risk w.r.t. the magnification factor. Finally, by choosing a relatively large

threshold for the lower bound of the risk, we can roughly estimate the limit of the learning-

based SR algorithms. We also estimate the sufficient number of image samples that indicates

when to stop sampling. In the following subsections, we give the details of our analysis.
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2.1 Problem Formulation

For simplicity, we present the arguments for the 1D case only. Those for the 2D case are

similar but the derivation is much more complex.

As argued in Section 1.2, we use the RMSE between an HRI and the recovered HRI to

evaluate the performance of a learning-based SR algorithm. This motivates us to define the

following expected risk of the SR algorithm:3

g(N,m) =
(

1

mN
g̃(N, m)

) 1
2

, where

g̃(N,m) =
∫

h

||h− s (Dh)||2 ph(h)dh,
(2)

in which s is the learnt SR function that maps N -dimensional images to mN -dimensional

ones, m > 1 is the magnification factor and always makes mN an integer, ph is the prob-

ability density functions of the HRIs, and D is the downsampling matrix that downsamples

mN -dimensional signals to N -dimensional ones. The downsampling matrix is introduced

here to simulate the image formation process. Although there might not be a uniform down-

sampling matrix for all the HRIs and some image formation process may even involve a

nonlinear transform on the HRI, we may nevertheless throw all the discrepancy from our

model into noise n by replacing s (Dh) with s (Dh + n). However, the discussion on the

effect of noise (see (22)) is deferred to our future work.

Eqn. (2) defines the expected risk of a particular SR algorithm s, which should be eval-

uated by running the algorithm on a large number of HRIs. This is very time consuming.

Moreover, for a particular SR algorithm, its magnification factor is often fixed. Therefore,

estimating the expected risk of a particular SR function does not help to find the limits of

all learning-based SR algorithms. Consequently, we have to study the lower bound of (2).

Before going on, we first introduce the corresponding upsampling matrix U which upsam-

ples N -dimensional signals to mN -dimensional ones. We expect that images are unchanged

if they are upsampled and then downsampled. This implies that DU = I, where I is the iden-

tity matrix. This upsampling matrix is purely a mathematical tool to facilitate the derivation

and the representation of our results. We also use Σ and h̄ to denote the covariance matrix

and the mean of the HRIs h, respectively.

2.2 Main Results

The central theorem of our paper is the following:
3Throughout our paper, vectors or matrices are written in boldface, while scalars are in normal fonts. More-

over, all the vectors without the transpose are column vectors.
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Theorem 2.1 (Lower Bound of the Expected Risk) When ph(h) is the distribution of general

natural images, namely the set of all natural images, g̃(N,m) is effectively lower bounded

by b̃(N, m), where

b̃(N, m) =
1

4
tr

[
(I−UD)Σ(I−UD)t

]

+
1

4

∣∣∣
∣∣∣(I−UD)h̄

∣∣∣
∣∣∣
2
,

(3)

in which tr(·) is the trace operator and the superscript t represents the matrix or vector

transpose. Hence g(N, m) is lower bounded by

b(N,m) =
(

1

mN
b̃(N, m)

) 1
2

. (4)

As for an HRI h, (I−UD)h = h−U(Dh) is its high frequency. So Eqn. (3) is essentially

related to the richness of the high frequency component in the HRIs. Hence Theorem 2.1

implies that the richer the high frequency component in the HRIs is, the more difficult the

SR is.

Note that Theorem 2.1 holds for all possible SR functions s as it gives the lower bound of

the risk, which we have derived conservatively. Consequently, the estimate on the limits of

learning-based SR algorithms using (4) is also conservative. And also note that ph(h) being

the distribution of the set of all natural images is important for us to arrive at (3). Otherwise,

we will not come up with the coefficient 1/4 therein and g̃(N,m) may be arbitrarily close to

0. For example, if there is only one HRI, we can always recover the HRI no matter how low

resolution the LRI is.

As a simple yet effective analytical model for ph(h) of general natural images is unavail-

able, we sample real HRIs to estimate b̃(N,m). To make sure that sufficient images have

been sampled to achieve an accurate estimate of b̃(N,m), we further prove the following

theorem:

Theorem 2.2 (Sufficient Number of Samples) If we sample M(p, ε) HRIs independently,

then with probability of at least 1− p, |ˆ̃b(N,m)− b̃(N,m)| < ε, where ˆ̃b(N,m) is the value

of b̃(N,m) estimated from real samples,4

M(p, ε) =
(C1 + 2C2)

2

16pε2
, (5)

4Throughout our paper, we use the embellishment ∧ above a value to represent the sampled or estimated
quantities.
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C1 =

√
E

(∣∣∣
∣∣∣(I−UD)(h− h̄)

∣∣∣
∣∣∣
4
)
− tr2 [(I−UD)Σ(I−UD)t], and C2 =

√
b̄tΣb̄, in

which E(·) is the expectation operator and b̄ = (I−UD)t(I−UD)h̄.

Note that both C1 and C2 are related to the variance of the high frequency component of the

HRIs. So Theorem 2.2 implies that the larger the variance is, the more samples are required.

In subsections 2.3 and 2.6, we will provide the sketches of proving the above two theo-

rems.

2.3 Lower Bound of the Expected Risk

In this subsection, we present the idea of proving Theorem 2.1. Now that different HRIs

can result in the same LRI (Dh can be identical for different h), it may be easier to analyze

(2) by fixing Dh. This can be achieved by performing a variable transform in (2). To do

so, we find a complementary matrix (not unique) Q such that


 D

Q


 is a non-singular

square matrix and QU = 0. Such a Q exists. The proof can be found in Appendix. Denote

M = (R V) =


 D

Q



−1

. From


 D

Q


 (R V) = I, we know that R = U.

Now we perform a variable transform h = M


 x

y


 , then (2) becomes

g̃(N,m) =
∫

x,y

∣∣∣∣∣∣

∣∣∣∣∣∣
(U V)


 x

y


− s (x)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

×px,y





 x

y





 dxdy

=
∫

x

px(x)V (x)dx,

(6)

where

px,y





 x

y





 = |M|ph


M


 x

y





 ,

V (x) =
∫

y

||Vy − φ (x)||2 p̃y (y|x) dy. (7)

px(x) is the marginal distribution of x, p̃y (y|x) is the conditional distribution of y given x,

and φ(x) = s(x)−Ux is the recovered high frequency component of the HRI given the LRI

x. For this reason, we call φ(x) the high frequency (HF) function. Note that x = Dh, and

Vy = h−Ux. So x is the LRI downsampled from h, and Vy is the high frequency of h.
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One can see that there is an optimal HF function such that V (x) (hence g(N,m)) is mini-

mized:

φopt(x; p̃y) = V
∫

y

yp̃y (y|x) dy, (8)

where φopt(x; p) denotes the optimal φ w.r.t. the distribution p. This means that the opti-

mal high frequency component should be the expectation of all possible high frequencies

associated to the LRI x.

Then one can easily verify that

V (x) =
∫

y

||Vy||2 p̃y (y|x) dy − ||φopt(x; p̃y)||2 . (9)

In Appendix, we show that for general natural images,

∫

x

px(x) ||φopt(x; p̃y)||2 dx ≤ 3

4

∫

x

∫

y

||Vy||2 px,y





 x

y





 dydx. (10)

Therefore, from (6) and (9) we have that

g̃(N, m) =
∫

x

px(x)




∫

y

||Vy||2 p̃y (y|x) dy − ||φopt(x; p̃y)||2

 dx

≥ 1

4

∫

x,y

||Vy||2 px,y





 x

y





 dxdy

=
1

4

∫

h

||VQh||2 ph(h)dh

=
1

4
tr

(
(I−UD)Σ(I−UD)t

)
+

1

4

∣∣∣
∣∣∣(I−UD)h̄

∣∣∣
∣∣∣
2
,

(11)

where we have used VQ = I−UD, which comes from (U V)


 D

Q


 = I. This proves

Theorem 2.1.

We see that the variance and the mean of the HRIs plays a key role in lower bounding

g(N,m). Although it is intuitive that ph(h) is critical for the limits of learning-based SR

algorithms, Theorem 2.1 exactly depicts how ph(h) influences the SR performance.

2.4 Limits of Learning-Based SR Algorithms

The introduction of the optimal HF function (or equivalently, the optimal SR function, as

sopt(x) = φopt(x) + Ux) frees us from dealing with the details of different learning-based

9



SR algorithms, as sopt attains the minimum of the expected risk. In other words, if at a

particular magnification factor, b(N, m) (see Eqn. (4)) is larger than a threshold T , i.e., the

expected RMSE between h and sopt(Dh) is larger than T , then for any SR function s, the

RMSE between h and s(Dh) is also expected to be larger than T . This will imply that at

this magnification factor no SR function can effectively recover the original HRI.

Therefore, if we have full knowledge of the variance and the mean of the prior distributions

ph(h) at different magnification factors, we can define a curve of b(N, m) as a function of

m. Then the limit of learning-based SR algorithms is upper bounded by b−1(T ).

2.5 Estimating the Lower Bound from Real Samples

To compute b(N, m), we have to know the covariance matrix and the mean of HRIs h for a

wide range of mN . There has been a long history of natural image statistics [14]. Unfortu-

nately, all the existing models only solve the problem partially: the natural images fit some

models, but not all images that are sampled from these models are natural images. On the

other hand, we do not need full knowledge of ph(h): its covariance matrix and mean already

suffice. This motivates us to sample HRIs from real data.

Thanks to the fine property of covariance matrices and means that they can be computed

incrementally and in parallel, we can easily sample a huge number of HRIs at a low memory

cost.

2.6 The Sufficient Number of HRI Samples

Now that we have estimated the lower bound from HRI samples, we have to know how many

samples are sufficient to achieve the required accuracy. We first denote ˆ̄ΣM =
1

M

M∑

k=1

(ĥk −

h̄)(ĥk − h̄)t and the estimated covariance matrix Σ̂M =
1

M

M∑

k=1

(ĥk − ˆ̄h)(ĥk − ˆ̄h)t,5 where

ĥk’s are i.i.d. samples and ˆ̄h =
1

M

M∑

k=1

ĥk is the estimated mean. Then one may check that

Σ̂M = ˆ̄ΣM − (ˆ̄hM − h̄)(ˆ̄hM − h̄)t. (12)

5For unbiased estimation of the covariance matrix, the coefficient before the summation should be 1/(M −
1). However, we are more interested in the error of b̃(N, m), rather than the covariance matrix itself. If
1/(M − 1) is used instead of 1/M , there will be an additional O(1/M) term at the right hand side of (19),
indicating that the convergence might be slightly slower. Nonetheless, when M is large, the difference is
negligible.
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In the following, we denote B = (I−UD)t(I−UD) and b̄ = Bh̄ for brevity, and denote

the i-th entry of a vector a as ai and the (i, j)-th entry of a matrix A as Aij .

With some calculation we have

|ˆ̃b(N,m)− b̃(N, m)|

≤ 1

4

∣∣∣∣∣∣

mN∑

i,j=1

Bij

(
ˆ̄ΣM ;ij − Σij

)
∣∣∣∣∣∣
+

1

2

∣∣∣∣∣
mN∑

i=1

b̄i(
ˆ̄hM ;i − h̄i)

∣∣∣∣∣ .
(13)

The details can be found in Appendix. So we have to estimate the convergence rates of both

terms.

Therefore, we define ξ =
mN∑
i,j=1

Bij
ˆ̄ΣM ;ij = tr(B ˆ̄Σ) and η =

mN∑
i=1

b̄i
ˆ̄hM ;i = b̄t ˆ̄hM . Then

their expectations are

E (ξ) = tr(BΣ), and E(η) = b̄th̄, (14)

respectively. And their variances can be found to be

var(ξ) =
C2

1

M
, (15)

and

var(η) =
C2

2

M
, (16)

respectively. The proofs can be found in Appendix.

Then by Chebyshev’s inequality [13],

P

(∣∣∣∣∣
mN∑
i,j=1

Bij

(
ˆ̄ΣM ;ij − Σij

)∣∣∣∣∣ ≥ δ

)
= P (|ξ − E(ξ)| ≥ δ) ≤ var(ξ)

δ2
=

C2
1

Mδ2
,

P

(∣∣∣∣∣
mN∑
i=1

b̄i

(
ˆ̄hM ;i − h̄i

)∣∣∣∣∣ ≥ δ

)
= P (|η − E(η)| ≥ δ) ≤ var(η)

δ2
=

C2
2

Mδ2
.

(17)

Therefore, at least at a probability of 1− p,
∣∣∣∣∣

mN∑
i,j=1

Bij

(
ˆ̄ΣM ;ij − Σij

)∣∣∣∣∣ ≤ C1√
Mp

,
∣∣∣∣∣
mN∑
i=1

b̄i

(
ˆ̄hM ;i − h̄i

)∣∣∣∣∣ ≤ C2√
Mp

.

(18)

Then by (13) and (18), with probability at least 1− p, we have
∣∣∣∣
ˆ̃b(N, m)− b̃(N,m)

∣∣∣∣ ≤
C1

4
√

Mp
+

C2

2
√

Mp
. (19)

Now one can check that Theorem 2.2 is true.
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Note that
∣∣∣b̂(N, m)− b(N,m)

∣∣∣

=

∣∣∣∣∣∣

√
1

mN
ˆ̃b(N,m)−

√
1

mN
b̃(N,m)

∣∣∣∣∣∣

=

1

mN

∣∣∣∣
ˆ̃b(N, m)− b̃(N,m)

∣∣∣∣
√

1

mN
ˆ̃b(N, m) +

√
1

mN
b̃(N, m)

≈
1

mN

∣∣∣∣
ˆ̃b(N, m)− b̃(N,m)

∣∣∣∣

2

√
1

mN
b̃(N, m)

=

∣∣∣∣
ˆ̃b(N,m)− b̃(N, m)

∣∣∣∣
2mNb(N,m)

.

(20)

So in practice, we may choose p = 0.01 and ε =
1

2
mNb(N, m) in (5) in order to make

∣∣∣b̂(N, m)− b(N, m)
∣∣∣ ≤ 0.25 at above 99% certainty. Here we choose 0.25 as the threshold

because it is roughly the mean of the graylevel quantization error.

3 Experiments

Collecting Samples. We crawled images from the web and collected 100,000+ images.

They are of various kinds of scenes: cityscape, landscape, sports, portraits, etc. Therefore,

our image library could be viewed as an i.i.d. sampling of general natural images. To sample

mN ×mN sized HRIs, we convert each image into graylevel, break it into non-overlapping

patches of size mN × mN (with at least one pixel gap among them in order to ensure

independence among them), and view each patch as a sample of HRIs of size mN ×mN .

Then we blindly run our program to estimate the covariance and mean of the HRIs, where

mN varies from 8 to 48 at a step size of 4. The number of samples is at the scale of 106 to

108. Note that such a scale may not be enough in estimating ph(h). But estimating ph(h) is

not our goal at all. We are interested in the values of b(N, m) only.

Characteristics of b(N,m). Next, we have to specify a downsampling matrix in order to

compute the lower bound b(N,m) by (4) (The upsampling matrix U is determined by D.

See Section 2.1.). We simply choose a downsampling matrix that corresponds to the bicubic

12



2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

3

4

5

6

7

m

b
*

*

2 4 6 8 10 12 14 16
0

5

10

15 3

4

5

6

7
8

9

m

b

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

3

4

5

6

7

m

b

(a) (b) (c)

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

3

4

5
6

7

m

b

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14 3

4

5

6

7
8

m

b

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

8

12

16

20

24
28 32

36
40

44

48

m

b

(d) (e) (f)

Figure 3: (a)∼(e) are curves of b(N, m) using different D’s, drawn with N fixed for each individual

curve. The corresponding N ’s are labelled at the tails of the curves (in order not to make the graph

crowded, large N ’s for short curves are not shown). (a) uses a bicubic filter with a = −1. The

asterisks at (3, 11.1) and (4,12.6) represent the expected risks of Sun et al.’s [15] and Freeman et al.’s

[6] SR algorithms, respectively. (b) uses a bicubic filter with a = 0.5. (c) uses a Gaussian filter with

σ = 0.5. (d) uses a Gaussian filter with σ = 1.5. (e) uses the bilinear filter. (f) are the curves of

b(N, m) with mN fixed. The corresponding mN ’s are labelled at the tails of the curves. The filter

used is the same as that in (a).

B-spline filter.6 Then the curves of b(N, m) w.r.t. m are shown in Figure 3(a), where for

each individual curve N is fixed.

We can see that for fixed N , b
(1)
N (m) = b(N, m) increases with m. A remarkable obser-

vation is that for different N ’s, the curves in Figure 3(a) coincide well with each other. This

suggests that for general natural images b(N, m) may be independent of N . Another interest-

6In the 1D case, a cubic filter can be written as:

k(x) =





(a + 2)|x|3 − (a + 3)|x|2 + 1, if 0 ≤ |x| ≤ 1,

a|x|3 − 5a|x|2 + 8a|x| − 4a, if 1 ≤ |x| ≤ 2,

0, if |x| > 2.

(21)

When a = −1, it is the cubic B-spline filter. The downsampling matrix for 2D images is the Kronecker product
of the 1D downsampling matrices.
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Figure 4: Part of the SR results using Sun et al.’s algorithm [15]. The magnification factor is 3.0. On

the top are the LRIs of 16× 16, interpolated to 48× 48 using bicubic interpolation. In the middle are

the SR results. At the bottom are the ground truth HRIs.

ing observation on Figures 3(a) is that b
(1)
N (m) seems to grow at the rate of (m− 1)1/2. The

important implication from these observations is: we may estimate the limits of learning-

based SR by trying relatively small sized images and small magnification factors, rather

than trying large sized images and large magnification factors, which saves computation and

memory without compromising the estimation accuracy.

However, one should be cautious that strictly speaking the D in (2) should be estimated

from real cameras. Fortunately, we have found that our lower bound does not seem to be

very sensitive to the choice of D. We have tried the bilinear filter, Gaussian filters (with the

variance varying from 0.52 to 1.52), and bicubic filters (with the parameter a varying from

−1 to 0.5, see (21)), and have found that the lower bounds are fairly close to each other. The

curves in Figures 3(a)∼(e) testify to this observation. Moreover, what we have observed in

the last paragraph is still true.

When training learning based SR algorithms, one usually collects HRIs and downsam-

ples them to LRIs. So it is also helpful to draw the curves by fixing mN instead. The

same phenomenon mentioned above can also be observed (Figure 3(f)). And the curves of

b
(2)
mN(m) = b(N, m) by fixing mN also coincide well with those of b

(1)
N (m) (Please compare

Figures 3(a) and (f)), implying that b(N,m) is also independent of the size of HRIs. This

can be easily proved: if b(N, m) = c(m) for some function c, then b
(2)
mN(m) = b(N, m) =

b
(1)
N (m) = c(m).

Testing Theorem 2.1. We run the SR algorithm by Sun et al. [15] on over 50,000 16 × 16

LRIs that are downsampled from 48×48 HRIs and that by Freeman et al. [6] on over 40,000

12 × 12 LRIs that are downsampled from 48 × 48 HRIs. Both algorithms are designed

for general images and they work at magnification factors of 3.0 and 4.0, respectively. A

few sample results are shown in Figure 4. The expected risks of Sun et al.’s algorithm and

14
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Figure 5: The evolution of b̂(4, 2) w.r.t. the number M of HRI samples. The dashed curve is the log

of the estimated sufficient samples using the currently available covariance matrix and mean. The

dotted line is used to identify when the estimated number of samples is enough. The solid curve at the

bottom is the estimated b(4, 2) using M samples. The horizontal axis is in log scale.

Freeman et al.’s are about 11.1 and 12.6, respectively, which are both above our curves

(Figure 3(a)). Therefore, these results are consistent with Theorem 2.1.

Estimating the Limits. With the curves of b(N, m), we can find the limits of learning based

algorithms by choosing an appropriate threshold T (see Section 2.4). Unfortunately, there

does not seem to exist a benchmark threshold. So every practitioner can choose a threshold

that he/she deems appropriate and estimate the limits on his/her own. For example, from the

SR results of Sun et al.’s algorithm [15] (Figure 4), we see that the fine details are already

missing. Therefore, we deem that the estimated risk 11.1 of their algorithm is a large enough

threshold. Using T = 11.1 we can expect that the limit of learning-based SR algorithms

for general natural images is roughly 10 (Figure 3(a)). This limit is a bit loose but it can be

enhanced when the noise in LRIs (see Section 2.1) is considered.7

Testing Theorem 2.2. Finally, we present an experiment to test Theorem 2.2. We sample

over 1.5 million 8 × 8 images and set m = 2 (hence N = 4). Figure 5 shows the curve of

predicted sufficient number of samples using the most updated variance and mean of HRIs,

where p and ε are chosen as described at the end of Section 2.6. We see that the estimated
7When noise is considered, Eqn. (3) is changed to

b̃(N,m) =
1
4
tr

[
(I−UD)Σ(I−UD)t

]
+

1
4
tr

(
UΣnUt

)

+
1
4

∣∣∣∣(I−UD)h̄−Un̄
∣∣∣∣2 ,

(22)

where Σn and n̄ are the variance matrix and the mean of the noise, respectively. Details omitted.
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b(4, 2) already becomes stable even the number of samples is still smaller than the predicted

number. There is still small fluctuation in b(4, 2) when M > M̂(p, ε) because we allow the

deviation from the true value to be within 0.25 at above 99% certainty. Therefore, this result

is consistent with Theorem 2.2.

4 Conclusions and Future Work

This paper presents the first attempt to analyze the limits of learning-based SR algorithms.

We have proven a closed form lower bound of the expected risk of SR algorithms. We also

sample real images to estimate the lower bound. Finally, we prove the formula that gives the

sufficient number of HRIs to be sampled in order to ensure the accuracy of the estimate.

We have also observed from experiments that the lower bound b(N, m) may be dependent

on m only and the growth rate of b(N, m) may be (m − 1)1/2. These are important obser-

vations, implying that one may more conveniently compute with small sized images and at

small magnification factors and then predict the limits. This would save much computation

and memory. We hope to prove in the future what we have observed.

As no authoritative threshold T is currently available, our estimated limit (roughly 10

times) of learning-based SR algorithms for general natural images is not convincing enough.

We are investigating how to propose an objective threshold and how to effectively sample

the statistics of noise in (22) to produce a tighter limit.

Also, we will investigate the limits of learning-based SR algorithms under more specific

scenarios, e.g., for face hallucination and text SR. We expect that more specific prior knowl-

edge of the HRI distribution will be required.
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Appendix

Proposition 4.1 Q exists.

Proof: Suppose the SVD of U is: U = O1


 Λ

0


 Ot

2, where Λ is a non-degenerate square

matrix. Then all the solutions to XU = 0 can be written as: X = O2 (0 Y)Ot
1, where

Y is any matrix of proper size. On the other hand, from DU = I we know that there exists

some Y0 such that D = O2 (Λ−1 Y0)O
t
1. Therefore,


 D

Q


 = O2


 Λ−1 Y0

0 Y


 Ot

1.

When Y is of full-rank,


 D

Q


 is a non-degenerate square matrix.

Proposition 4.2 (10) is true.

Proof: The optimal HF function given in (8) is inconvenient for estimating a lower bound

for g̃(N, m), because we do not know V and p̃y (y|x) therein. To overcome this, we assume

that the density of HRIs is provided by the mixture of Gaussians (MoGs):

ph(h) =
K∑

k=1
αkGh;k(h), (23)

where αk > 0,
K∑

k=1
αk = 1, Gh;k(h) = G(h;hk,Σk) is the Gaussian with mean hk and vari-

ance Σk. Note that the above MoGs approximation may not give an exact ph(h). However,

as every L2 function can be approximated by MoGs at an arbitrary accuracy (in the sense of

L2 norm) [19], and h − s(Dh) must be bounded (e.g., every dimension is between −255

and 255), when the MoGs approximation is sufficiently accurate, we will give a sufficiently

accurate estimate of g̃(N,m). Therefore, in order not to introduce new notations, we simply

write ph(h) as MoGs in our proof. More importantly, as we will see, MoGs actually serve as

a bridge to pave our proving process. Our final results do not involve any parameters from

MoGs, as shown in Theorem 2.1.

Writing in MoGs, we have

px,y





 x

y





 =

K∑
k=1

αkGx,y;k





 x

y





 ,

px(x) =
K∑

k=1
αkGx;k(x),

p̃y (y|x) =

K∑
k=1

αkGx;k(x)G̃y;k (y|x)

K∑
k=1

αkGx;k(x)
,

(24)
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where Gx,y;k





 x

y





 is the Gaussian corresponding to Gh;k(h) after the variable trans-

form, Gx;k(x) is the marginal distribution of Gx,y;k





 x

y





, and

G̃y;k (y|x) =

Gx,y;k





 x

y







Gx;k(x)
(25)

is the conditional distribution. As we will not use the exact formulation of Gx,y;k





 x

y





,

Gx;k(x) and G̃y;k (y|x), we omit their details.

Now φopt(x; p̃y) can be written as

φopt(x; p̃y) =

K∑
k=1

αkGx;k(x)V
∫

y

yG̃y;k (y|x) dy

K∑
k=1

αkGx;k(x)

=

K∑
k=1

αkGx;k(x)φopt(x; G̃y;k)

K∑
k=1

αkGx;k(x)
,

(26)

where

φopt(x; G̃y;k) = V
∫

y

yG̃y;k (y|x) dy. (27)

Next, we highlight two properties that general natural images have, and we will use them

for our argument:

1. The prior distribution ph(h) is not concentrated around several HRIs and the marginal

distribution px(x) is not concentrated around several LRIs either. Noticing that general

natural images cannot be classified into a small number of categories will testify to this.

This property implies that the number K of Gaussians to approximate ph(h) is not too

small, and for every x, φopt

(
x; G̃y;k

)
, k = 1, · · · , K, are most likely quite different

from each other.

2. Smoother LRIs have higher probability. This property is actually called the “smooth-

ness prior” that is widely used for regularization, e.g., when doing reconstruction based

SR. An ideal mathematical formulation of this property is [14]: px(x) ∼ exp
(
−1

2
β ||∇x||2

)
.
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Now we utilize the above two properties to argue for (10). We aim at estimating a reason-

able constant µ, such that we are sure that the following inequality holds:

∫ (
K∑

k=1

αkGx;k(x)

)
||φopt (x; p̃y)||2 dx ≤ µ ·

K∑

k=1

αk

∫
Gx;k(x)

∣∣∣
∣∣∣φopt

(
x; G̃y;k

)∣∣∣
∣∣∣
2

dx. (28)

We first infer a reasonable distribution for µ′, such that most likely the following inequality

holds:

||φopt (x; p̃y)||2 ≤ µ′ ·
K∑

k=1
αkGx;k(x)

∣∣∣
∣∣∣φopt

(
x; G̃y;k

)∣∣∣
∣∣∣
2

K∑
k=1

αkGx;k(x)
, ∀x that

K∑

k=1

αkGx;k(x) 6= 0. (29)

Eqn. (26) shows that φopt (x; p̃y) is a convex combination of φopt

(
x; G̃y;k

)
, k = 1, · · · , K.

Due to the convexity of the squared vector norm, by Jensen’s inequality [13], we have that

µ′ ≤ 1 is always true, where µ′ = 1 holds only when φopt

(
x; G̃y;k

)
, k = 1, · · · , K, are

identical. This will not happen due to the first property of general natural images. Another

extreme case is µ′ = 0. This happens only when φopt (x; p̃y) = 0. This will not happen

either as this implies that the simple interpolation sopt(x) = Ux produces the optimal HRI.

Therefore, for general natural images µ′ cannot be close to either 0 or 1. We also notice

that the strong convexity of the squared norm (thinking in 1D, there is large vertical gap

between the curve y = x2 and the line segment linking (x1, x
2
1) and (x2, x

2
2) when x1 and x2 is

not close to each other) implies that the scattering of φopt

(
x; G̃y;k

)
, k = 1, · · · , K, will make

||φopt (x; p̃y) ||2 far below the weighted squared norms of φopt

(
x; G̃y;k

)
, k = 1, · · · , K. This

implies that although µ′ could be a random number between 0 and 1, it should nevertheless

strongly bias towards 0, i.e., the probability of 0 < µ′ ≤ 0.5 should be much larger than that

of 0.5 < µ′ < 1.

For those x whose µ′ is closer to 1, their corresponding φopt

(
x; G̃y;k

)
, k = 1, · · · , K,

should be quite cluttered, implying that there is not much choice of adding different high

frequency to recover different HRIs. This more likely happens when x itself is highly tex-

tured so that the high frequency is already constrained by the context of the image. Then by

the second property of general natural images, such LRIs x have smaller probability px(x)

than those requiring smaller µ′.

Due to the bias of µ′ and px(x), and observing that (28) is actually the average of (29)

over x weighted by px(x) =
K∑

k=1
αkGx;k(x), we deem that the value 3/4 is sufficient for µ.8

8Actually, we believe that 1/2 is already enough due to the strong bias resulting from the convexity of the
squared norm. We choose a larger 3/4 just for safety.
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To further safeguard the upper bound for the left hand side of (28) and also obtain a concise

mathematical formulation in Theorem 2.1, we add an extra nonnegative term to the right

hand side of (28), i.e.,
∫

x

px(x) ||φopt (x; p̃y)||2 dx

≤ 3

4

∫

x

K∑

k=1

αkGx;k(x)




∣∣∣
∣∣∣φopt

(
x; G̃y;k

)∣∣∣
∣∣∣
2
+

∫

y

∣∣∣
∣∣∣Vy − φopt(x; G̃y;k)

∣∣∣
∣∣∣
2
G̃y;k(y|x)dy


 dx

=
3

4

∫

x

K∑

k=1

αkGx;k(x)
∫

y

||Vy||2 G̃y;k(y|x)dydx

=
3

4

∫

x

∫

y

||Vy||2 px,y





 x

y





 dydx.

(30)

This proves (10).

Proposition 4.3 (13) is true.

Proof:

|ˆ̃b(N, m)− b̃(N,m)|
=

1

4

∣∣∣∣∣tr
[
(I−UD)

(
Σ̂M −Σ

)
(I−UD)t

]
+

∣∣∣∣
∣∣∣∣(I−UD)ˆ̄hM

∣∣∣∣
∣∣∣∣
2

−
∣∣∣
∣∣∣(I−UD)h̄

∣∣∣
∣∣∣
2
∣∣∣∣∣

=
1

4

∣∣∣∣∣tr
[
B

(
Σ̂M −Σ

)]
+

∣∣∣∣
∣∣∣∣(I−UD)[(ˆ̄hM − h̄) + h̄]

∣∣∣∣
∣∣∣∣
2

−
∣∣∣
∣∣∣(I−UD)h̄

∣∣∣
∣∣∣
2
∣∣∣∣∣

=
1

4

∣∣∣∣tr
[
B

(
ˆ̄ΣM −Σ

)]
+ tr

[
B

(
Σ̂M − ˆ̄ΣM

)]

+
∣∣∣∣
∣∣∣∣(I−UD)(ˆ̄hM − h̄)

∣∣∣∣
∣∣∣∣
2

+ 2[(I−UD)h̄]t(I−UD)(ˆ̄hM − h̄)

∣∣∣∣∣

=
1

4

∣∣∣∣∣∣

mN∑

i,j=1

Bij

(
ˆ̄ΣM ;ij − Σij

)
− tr

[
B(ˆ̄hM − h̄)(ˆ̄hM − h̄)t

]

+
∣∣∣∣
∣∣∣∣(I−UD)(ˆ̄hM − h̄)

∣∣∣∣
∣∣∣∣
2

+ 2
[
(I−UD)t(I−UD)h̄

]t
(ˆ̄hM − h̄)

∣∣∣∣∣

=
1

4

∣∣∣∣∣∣

mN∑

i,j=1

Bij

(
ˆ̄ΣM ;ij − Σij

)
+ 2b̄t(ˆ̄hM − h̄)

∣∣∣∣∣∣

=
1

4

∣∣∣∣∣∣

mN∑

i,j=1

Bij

(
ˆ̄ΣM ;ij − Σij

)
+ 2

mN∑

i=1

b̄i(
ˆ̄hM ;i − h̄i)

∣∣∣∣∣∣

≤ 1

4

∣∣∣∣∣∣

mN∑

i,j=1

Bij

(
ˆ̄ΣM ;ij − Σij

)
∣∣∣∣∣∣
+

1

2

∣∣∣∣∣
mN∑

i=1

b̄i(
ˆ̄hM ;i − h̄i)

∣∣∣∣∣ .

(31)

Proposition 4.4 (15) is true.
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Proof:
E (ξ2)

= E

(
mN∑

i,j,i′,j′=1
BijBi′j′

ˆ̄ΣM ;ij
ˆ̄ΣM ;i′j′

)

=
1

M2

mN∑

i,j,i′,j′=1

BijBi′j′E

([
M∑

k=1

(ĥk;i − h̄i)(ĥk;j − h̄j)

] [
M∑

r=1

(ĥr;i′ − h̄i′)(ĥr;j′ − h̄j′)

])

=
1

M2

mN∑

i,j,i′,j′=1

BijBi′j′

{
M∑

k=1

E
[
(ĥk;i − h̄i)(ĥk;j − h̄j)(ĥk;i′ − h̄i′)(ĥk;j′ − h̄j′)

]

+2E

[
∑

1≤k<r≤M
(ĥk;i − h̄i)(ĥk;j − h̄j)(ĥr;i′ − h̄i′)(ĥr;j′ − h̄j′)

]}

=
1

M2

mN∑

i,j,i′,j′=1

BijBi′j′
{
ME

[
(hi − h̄i)(hj − h̄j)(hi′ − h̄i′)(hj′ − h̄j′)

]

+M(M − 1)E
[
(hi − h̄i)(hj − h̄j)

]
E

[
(hi′ − h̄i′)(hj′ − h̄j′)

]}

=
1

M



E




mN∑

i,j,i′,j′=1

BijBi′j′(hi − h̄i)(hj − h̄j)(hi′ − h̄i′)(hj′ − h̄j′)




+(M − 1)
mN∑

i,j,i′,j′=1
BijBi′j′ΣijΣi′j′

}

=
1

M

{
E

[
tr2

(
B(h− h̄)(h− h̄)t

)]
+ (M − 1) [tr(BΣ)]2

}

(32)

Therefore,

var(ξ)

= E (ξ2)− [E(ξ)]2

=
1

M

{
E

[∣∣∣
∣∣∣(I−UD)(h− h̄)

∣∣∣
∣∣∣
4
]
− [tr(BΣ)]2

}
.

(33)

Proposition 4.5 (16) is true.

Proof:
var(η)

= E




(
mN∑
i=1

b̄i(
ˆ̄hM ;i − h̄i)

)2



= E

(
mN∑
i,j=1

b̄ib̄j(
ˆ̄hM ;i − h̄i)(

ˆ̄hM ;j − h̄j)

)

=
1

M2

mN∑

i,j=1

b̄ib̄jE

(
M∑

k=1

(ĥk;i − h̄i)
M∑

r=1

(ĥr;j − h̄j)

)

=
1

M2

mN∑

i,j=1

b̄ib̄j




M∑

k=1

E
(
(ĥk;i − h̄i)(ĥk;j − h̄j)

)
+

∑

1≤k<r≤M

E
(
(ĥk;i − h̄i)(ĥr;j − h̄j)

)



=
1

M2

mN∑

i,j=1

b̄ib̄j(MΣij)

=
1

M
b̄tΣb̄.

(34)

22


